dragon-ml-toolbox 6.0.0__py3-none-any.whl → 6.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 6.0.0
3
+ Version: 6.0.1
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: Karl Loza <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,11 +1,11 @@
1
- dragon_ml_toolbox-6.0.0.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
- dragon_ml_toolbox-6.0.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
1
+ dragon_ml_toolbox-6.0.1.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
+ dragon_ml_toolbox-6.0.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
3
3
  ml_tools/ETL_engineering.py,sha256=4wwZXi9_U7xfCY70jGBaKniOeZ0m75ppxWpQBd_DmLc,39369
4
4
  ml_tools/GUI_tools.py,sha256=n4ZZ5kEjwK5rkOCFJE41HeLFfjhpJVLUSzk9Kd9Kr_0,45410
5
5
  ml_tools/MICE_imputation.py,sha256=oFHg-OytOzPYTzBR_wIRHhP71cMn3aupDeT59ABsXlQ,11576
6
6
  ml_tools/ML_callbacks.py,sha256=FEJ80TSEtY0-hdnOsAWeVApQt1mdzTdOntqtoWmMAzE,13310
7
7
  ml_tools/ML_datasetmaster.py,sha256=bbKCNA_b_uDIfxP9YIYKZm-VSfUSD15LvegFxpE9DIQ,34315
8
- ml_tools/ML_evaluation.py,sha256=A7AlEjy4ZOcdQMh9M3TJIDvCOXqzAbhgLxyhli8S_WY,13593
8
+ ml_tools/ML_evaluation.py,sha256=-Z5fXQi2ou6l5Oyir06bO90SZIZVrjQfgoVAqKgSjks,13800
9
9
  ml_tools/ML_inference.py,sha256=Fh-X2UQn3AznWBjf-7iPSxwE-EzkGQm1VEIRUAkURmE,5336
10
10
  ml_tools/ML_models.py,sha256=SJhKHGAN2VTBqzcHUOpFWuVZ2Y7U1M4P_axG_LNYWcI,6460
11
11
  ml_tools/ML_optimization.py,sha256=zGKpWW4SL1-3iiHglDP-dkuADL73T0kxs3Dc-Lyishs,9671
@@ -19,7 +19,7 @@ ml_tools/_logger.py,sha256=TpgYguxO-CWYqqgLW0tqFjtwZ58PE_W2OCfWNGZr0n0,1175
19
19
  ml_tools/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
20
20
  ml_tools/custom_logger.py,sha256=njM_0XPbQ1S-x5LeSQAaTo2if-XVOR_pQSGg4EDeiTU,4603
21
21
  ml_tools/data_exploration.py,sha256=P4f8OpRa7Q4i-11nkppxXw5Lx2lwlpn20GwWBbN_xbM,23901
22
- ml_tools/ensemble_evaluation.py,sha256=ywpBCvmVImocZAcKv52mSdQKKHdLswozknoev39l4Yo,24682
22
+ ml_tools/ensemble_evaluation.py,sha256=wnqoTPg4WYWf2A8z5XT0eSlW4snEuLCXQVj88sZKzQ4,24683
23
23
  ml_tools/ensemble_inference.py,sha256=rtU7eUaQne615n2g7IHZCJI-OvrBCcjxbTkEIvtCGFQ,9414
24
24
  ml_tools/ensemble_learning.py,sha256=dAyFgSTyvxJWjc_enJ_8EUoWwiekBeoNyJNxVY-kcUU,21868
25
25
  ml_tools/handle_excel.py,sha256=J9iwIqMZemoxK49J5osSwp9Ge0h9YTKyYGbOm53hcno,13007
@@ -27,7 +27,7 @@ ml_tools/keys.py,sha256=HtPG8-MWh89C32A7eIlfuuA-DLwkxGkoDfwR2TGN9CQ,1074
27
27
  ml_tools/optimization_tools.py,sha256=MuT4OG7_r1QqLUti-yYix7QeCpglezD0oe9BDCq0QXk,5086
28
28
  ml_tools/path_manager.py,sha256=Z8e7w3MPqQaN8xmTnKuXZS6CIW59BFwwqGhGc00sdp4,13692
29
29
  ml_tools/utilities.py,sha256=LqXXTovaHbA5AOKRk6Ru6DgAPAM0wPfYU70kUjYBryo,19231
30
- dragon_ml_toolbox-6.0.0.dist-info/METADATA,sha256=v7JMG994i_tGqZJmN87pWxswxJEGQTsH2m2fQ_qz0C0,6698
31
- dragon_ml_toolbox-6.0.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
- dragon_ml_toolbox-6.0.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
33
- dragon_ml_toolbox-6.0.0.dist-info/RECORD,,
30
+ dragon_ml_toolbox-6.0.1.dist-info/METADATA,sha256=SxZPqt9cAVNkerRZYCpZP_-v7feEx5MTK5lCXeA5dxc,6698
31
+ dragon_ml_toolbox-6.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
32
+ dragon_ml_toolbox-6.0.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
33
+ dragon_ml_toolbox-6.0.1.dist-info/RECORD,,
ml_tools/ML_evaluation.py CHANGED
@@ -163,7 +163,7 @@ def classification_metrics(save_dir: Union[str, Path], y_true: np.ndarray, y_pre
163
163
  fig_cal, ax_cal = plt.subplots(figsize=(8, 8), dpi=100)
164
164
  CalibrationDisplay.from_predictions(y_true, y_score, n_bins=15, ax=ax_cal)
165
165
 
166
- ax_cal.set_title('Calibration Plot (Reliability Curve)')
166
+ ax_cal.set_title('Reliability Curve')
167
167
  ax_cal.set_xlabel('Mean Predicted Probability')
168
168
  ax_cal.set_ylabel('Fraction of Positives')
169
169
  ax_cal.grid(True)
@@ -197,7 +197,7 @@ def regression_metrics(y_true: np.ndarray, y_pred: np.ndarray, save_dir: Union[s
197
197
  f" Coefficient of Determination (R²): {r2:.4f}"
198
198
  ]
199
199
  report_string = "\n".join(report_lines)
200
- print(report_string)
200
+ # print(report_string)
201
201
 
202
202
  save_dir_path = make_fullpath(save_dir, make=True, enforce="directory")
203
203
  # Save text report
@@ -308,6 +308,8 @@ def shap_summary_plot(model, background_data: Union[torch.Tensor,np.ndarray], in
308
308
  # Save Bar Plot
309
309
  bar_path = save_dir_path / "shap_bar_plot.svg"
310
310
  shap.summary_plot(shap_values, instances_to_explain_np, feature_names=feature_names, plot_type="bar", show=False)
311
+ ax = plt.gca()
312
+ ax.set_xlabel("SHAP Value Impact", labelpad=10)
311
313
  plt.title("SHAP Feature Importance")
312
314
  plt.tight_layout()
313
315
  plt.savefig(bar_path)
@@ -317,6 +319,10 @@ def shap_summary_plot(model, background_data: Union[torch.Tensor,np.ndarray], in
317
319
  # Save Dot Plot
318
320
  dot_path = save_dir_path / "shap_dot_plot.svg"
319
321
  shap.summary_plot(shap_values, instances_to_explain_np, feature_names=feature_names, plot_type="dot", show=False)
322
+ ax = plt.gca()
323
+ ax.set_xlabel("SHAP Value Impact", labelpad=10)
324
+ cb = plt.gcf().axes[-1]
325
+ cb.set_ylabel("", size=1)
320
326
  plt.title("SHAP Feature Importance")
321
327
  plt.tight_layout()
322
328
  plt.savefig(dot_path)
@@ -351,7 +351,7 @@ def plot_calibration_curve(
351
351
  ax=ax
352
352
  )
353
353
 
354
- ax.set_title(f"{model_name} - Calibration Plot for {target_name}", fontsize=base_fontsize)
354
+ ax.set_title(f"{model_name} - Reliability Curve for {target_name}", fontsize=base_fontsize)
355
355
  ax.tick_params(axis='both', labelsize=base_fontsize - 2)
356
356
  ax.set_xlabel("Mean Predicted Probability", fontsize=base_fontsize)
357
357
  ax.set_ylabel("Fraction of Positives", fontsize=base_fontsize)