dragon-ml-toolbox 5.2.1__py3-none-any.whl → 5.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 5.2.1
3
+ Version: 5.2.2
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: Karl Loza <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,5 +1,5 @@
1
- dragon_ml_toolbox-5.2.1.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
- dragon_ml_toolbox-5.2.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
1
+ dragon_ml_toolbox-5.2.2.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
+ dragon_ml_toolbox-5.2.2.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
3
3
  ml_tools/ETL_engineering.py,sha256=4wwZXi9_U7xfCY70jGBaKniOeZ0m75ppxWpQBd_DmLc,39369
4
4
  ml_tools/GUI_tools.py,sha256=n4ZZ5kEjwK5rkOCFJE41HeLFfjhpJVLUSzk9Kd9Kr_0,45410
5
5
  ml_tools/MICE_imputation.py,sha256=b6ZTs8RedXFifOpuMCzr68xM16mCBVh1Ua6kcGfiVtg,11462
@@ -7,7 +7,7 @@ ml_tools/ML_callbacks.py,sha256=xiJ6NnoVwF_TVak6sYzwWFk4CI3vRJGjxvGI1Yq6euw,1333
7
7
  ml_tools/ML_datasetmaster.py,sha256=IzT2v1o71PgYCFi9RXccBnmH-t-ExzX8sn9cCD2gz-Y,33603
8
8
  ml_tools/ML_evaluation.py,sha256=4dVqe6JF1Ukmk1sAcY8E5EG1oB1_oy2HXE5OT-pZwCs,10273
9
9
  ml_tools/ML_inference.py,sha256=Fh-X2UQn3AznWBjf-7iPSxwE-EzkGQm1VEIRUAkURmE,5336
10
- ml_tools/ML_models.py,sha256=vG4i_lmQ9Jz6twO2jmu6teHET8qluKO02odSwzYfvRI,5436
10
+ ml_tools/ML_models.py,sha256=SJhKHGAN2VTBqzcHUOpFWuVZ2Y7U1M4P_axG_LNYWcI,6460
11
11
  ml_tools/ML_optimization.py,sha256=2L9BSUzgLOEwBU84TN1qDh1KAOJ4R6C6NYSe7jmE4RI,9656
12
12
  ml_tools/ML_trainer.py,sha256=t58Ka6ryaYm0Fi5xje-e-fkmz9DwDLIeJLbh04n_gDg,15034
13
13
  ml_tools/PSO_optimization.py,sha256=stH2Ux1sftQgX5EwLc85kHcoT4Rmz6zv7sH2yzf4Zrw,22710
@@ -26,7 +26,7 @@ ml_tools/keys.py,sha256=kK9UF-hek2VcPGFILCKl5geoN6flmMOu7IzhdEA6z5Y,1068
26
26
  ml_tools/optimization_tools.py,sha256=MuT4OG7_r1QqLUti-yYix7QeCpglezD0oe9BDCq0QXk,5086
27
27
  ml_tools/path_manager.py,sha256=Z8e7w3MPqQaN8xmTnKuXZS6CIW59BFwwqGhGc00sdp4,13692
28
28
  ml_tools/utilities.py,sha256=mz-M351DzxWxnYVcLX-7ZQ6c-RGoCV9g4VTS9Qif2Es,18348
29
- dragon_ml_toolbox-5.2.1.dist-info/METADATA,sha256=aOUNeJp2N8iT0y85jlp7N_6PsRbOnrBJgS5FhiVCjWs,6638
30
- dragon_ml_toolbox-5.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
31
- dragon_ml_toolbox-5.2.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
32
- dragon_ml_toolbox-5.2.1.dist-info/RECORD,,
29
+ dragon_ml_toolbox-5.2.2.dist-info/METADATA,sha256=1xc1_iWoGsLxwEFcyLRRSJCJJNdQZNsVHCSykfaVKGQ,6638
30
+ dragon_ml_toolbox-5.2.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
31
+ dragon_ml_toolbox-5.2.2.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
32
+ dragon_ml_toolbox-5.2.2.dist-info/RECORD,,
ml_tools/ML_models.py CHANGED
@@ -66,6 +66,21 @@ class MultilayerPerceptron(nn.Module):
66
66
  def forward(self, x: torch.Tensor) -> torch.Tensor:
67
67
  """Defines the forward pass of the model."""
68
68
  return self._layers(x)
69
+
70
+ def __repr__(self) -> str:
71
+ """Returns the developer-friendly string representation of the model."""
72
+ # Extracts the number of neurons from each nn.Linear layer
73
+ layer_sizes = [layer.in_features for layer in self._layers if isinstance(layer, nn.Linear)]
74
+
75
+ # Get the last layer and check its type before accessing the attribute
76
+ last_layer = self._layers[-1]
77
+ if isinstance(last_layer, nn.Linear):
78
+ layer_sizes.append(last_layer.out_features)
79
+
80
+ # Creates a string like: 10 -> 40 -> 80 -> 40 -> 2
81
+ arch_str = ' -> '.join(map(str, layer_sizes))
82
+
83
+ return f"MultilayerPerceptron(arch: {arch_str})"
69
84
 
70
85
 
71
86
  class SequencePredictorLSTM(nn.Module):
@@ -128,6 +143,14 @@ class SequencePredictorLSTM(nn.Module):
128
143
  predictions = self.linear(lstm_out)
129
144
 
130
145
  return predictions
146
+
147
+ def __repr__(self) -> str:
148
+ """Returns the developer-friendly string representation of the model."""
149
+ return (
150
+ f"SequencePredictorLSTM(features={self.lstm.input_size}, "
151
+ f"hidden_size={self.lstm.hidden_size}, "
152
+ f"recurrent_layers={self.lstm.num_layers})"
153
+ )
131
154
 
132
155
 
133
156
  def info():