dragon-ml-toolbox 4.4.0__py3-none-any.whl → 4.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 4.4.0
3
+ Version: 4.5.0
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: Karl Loza <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,5 +1,5 @@
1
- dragon_ml_toolbox-4.4.0.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
- dragon_ml_toolbox-4.4.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
1
+ dragon_ml_toolbox-4.5.0.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
+ dragon_ml_toolbox-4.5.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
3
3
  ml_tools/ETL_engineering.py,sha256=4wwZXi9_U7xfCY70jGBaKniOeZ0m75ppxWpQBd_DmLc,39369
4
4
  ml_tools/GUI_tools.py,sha256=n4ZZ5kEjwK5rkOCFJE41HeLFfjhpJVLUSzk9Kd9Kr_0,45410
5
5
  ml_tools/MICE_imputation.py,sha256=b6ZTs8RedXFifOpuMCzr68xM16mCBVh1Ua6kcGfiVtg,11462
@@ -7,16 +7,16 @@ ml_tools/ML_callbacks.py,sha256=0a-Rbr0Xp_B1FNopOKBBmuJ4MqazS5JgDiT7wx1dHvE,1316
7
7
  ml_tools/ML_evaluation.py,sha256=4dVqe6JF1Ukmk1sAcY8E5EG1oB1_oy2HXE5OT-pZwCs,10273
8
8
  ml_tools/ML_inference.py,sha256=Fh-X2UQn3AznWBjf-7iPSxwE-EzkGQm1VEIRUAkURmE,5336
9
9
  ml_tools/ML_trainer.py,sha256=dJjMfCEEM07Txy9KEH-2srZ3CZUa4lFWTJhpNWQ4Ndk,14974
10
- ml_tools/PSO_optimization.py,sha256=xtnPute5pkS_w-VvqOBgRLgke09mjfacGC2m9DiipHE,27626
10
+ ml_tools/PSO_optimization.py,sha256=9bplCNOSe2Ozcz5yQRkbih7geuDO9UJ6dJTMSJJ8zVk,27965
11
11
  ml_tools/RNN_forecast.py,sha256=2CyjBLSYYc3xLHxwLXUmP5Qv8AmV1OB_EndETNX1IBk,1956
12
12
  ml_tools/SQL.py,sha256=9zzS6AFEJM9aj6nE31hDe8S9TqLonk-J1amwZoiHNbk,10468
13
13
  ml_tools/VIF_factor.py,sha256=2nUMupfUoogf8o6ghoFZk_OwWhFXU0R3C9Gj0HOlI14,10415
14
- ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ ml_tools/__init__.py,sha256=q0y9faQ6e17XCQ7eUiCZ1FJ4Bg5EQqLjZ9f_l5REUUY,41
15
15
  ml_tools/_logger.py,sha256=TpgYguxO-CWYqqgLW0tqFjtwZ58PE_W2OCfWNGZr0n0,1175
16
16
  ml_tools/_pytorch_models.py,sha256=ewPPsTHgmRPzMMWwObZOdH1vxm2Ij2VWZP38NC6zSH4,10135
17
17
  ml_tools/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
18
18
  ml_tools/custom_logger.py,sha256=njM_0XPbQ1S-x5LeSQAaTo2if-XVOR_pQSGg4EDeiTU,4603
19
- ml_tools/data_exploration.py,sha256=Ki6_2eEW1-Qm9cxZO2yiGRKd2_76CcaNxNM2bmFtfPA,23681
19
+ ml_tools/data_exploration.py,sha256=qc_Oolxco2x9IhlYu5zPIuVBGiBw65HnypuGm8cQOOM,23677
20
20
  ml_tools/datasetmaster.py,sha256=_tNC2v98eCQGr3nMW_EFs83TRgRme8Uc7ttg1vosmQU,30106
21
21
  ml_tools/ensemble_inference.py,sha256=0SNX3YAz5bpvtwYmqEwqyWeIJP2Pb-v-bemENRSO7qg,9426
22
22
  ml_tools/ensemble_learning.py,sha256=Zi1oy6G2FWnTI5hBwjlexwF3JKALFS2FN6F8HAlVi_s,35391
@@ -24,7 +24,7 @@ ml_tools/handle_excel.py,sha256=J9iwIqMZemoxK49J5osSwp9Ge0h9YTKyYGbOm53hcno,1300
24
24
  ml_tools/keys.py,sha256=kK9UF-hek2VcPGFILCKl5geoN6flmMOu7IzhdEA6z5Y,1068
25
25
  ml_tools/path_manager.py,sha256=Z8e7w3MPqQaN8xmTnKuXZS6CIW59BFwwqGhGc00sdp4,13692
26
26
  ml_tools/utilities.py,sha256=mz-M351DzxWxnYVcLX-7ZQ6c-RGoCV9g4VTS9Qif2Es,18348
27
- dragon_ml_toolbox-4.4.0.dist-info/METADATA,sha256=i4pL1XJcLM7OaY8fQHYXXOXkykPbzjlpbbihCMEgZ20,6572
28
- dragon_ml_toolbox-4.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
29
- dragon_ml_toolbox-4.4.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
30
- dragon_ml_toolbox-4.4.0.dist-info/RECORD,,
27
+ dragon_ml_toolbox-4.5.0.dist-info/METADATA,sha256=PzpYHROSr85CBbNnCcS-XInzpOFhAyXbPZ5YkLaYbps,6572
28
+ dragon_ml_toolbox-4.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
29
+ dragon_ml_toolbox-4.5.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
30
+ dragon_ml_toolbox-4.5.0.dist-info/RECORD,,
@@ -2,7 +2,7 @@ import numpy as np
2
2
  from pathlib import Path
3
3
  import xgboost as xgb
4
4
  import lightgbm as lgb
5
- from typing import Literal, Union, Tuple, Dict, Optional
5
+ from typing import Literal, Union, Tuple, Dict, Optional, Any
6
6
  import pandas as pd
7
7
  from copy import deepcopy
8
8
  from .utilities import (
@@ -25,6 +25,7 @@ from contextlib import nullcontext
25
25
  __all__ = [
26
26
  "ObjectiveFunction",
27
27
  "multiple_objective_functions_from_dir",
28
+ "parse_lower_upper_bounds",
28
29
  "run_pso",
29
30
  "plot_optimal_feature_distributions"
30
31
  ]
@@ -169,6 +170,18 @@ def multiple_objective_functions_from_dir(directory: Union[str,Path], add_noise:
169
170
  return objective_functions, objective_function_names
170
171
 
171
172
 
173
+ def parse_lower_upper_bounds(source: dict[str,tuple[Any,Any]]):
174
+ """
175
+ Parse lower and upper boundaries, returning 2 lists:
176
+
177
+ `lower_bounds`, `upper_bounds`
178
+ """
179
+ lower = [low[0] for low in source.values()]
180
+ upper = [up[1] for up in source.values()]
181
+
182
+ return lower, upper
183
+
184
+
172
185
  def _set_boundaries(lower_boundaries: list[float], upper_boundaries: list[float]):
173
186
  assert len(lower_boundaries) == len(upper_boundaries), "Lower and upper boundaries must have the same length."
174
187
  assert len(lower_boundaries) >= 1, "At least one boundary pair is required."
ml_tools/__init__.py CHANGED
@@ -0,0 +1 @@
1
+ from .custom_logger import custom_logger
@@ -348,7 +348,7 @@ def plot_correlation_heatmap(df: pd.DataFrame,
348
348
  full_path = save_path / plot_title
349
349
 
350
350
  plt.savefig(full_path, bbox_inches="tight", format='svg')
351
- print(f"Saved correlation heatmap: '{plot_title}.svg'")
351
+ print(f"Saved correlation heatmap: '{plot_title}'")
352
352
 
353
353
  plt.show()
354
354
  plt.close()