dragon-ml-toolbox 3.5.0__py3-none-any.whl → 3.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 3.5.0
3
+ Version: 3.5.1
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: Karl Loza <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,6 +1,6 @@
1
- dragon_ml_toolbox-3.5.0.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
- dragon_ml_toolbox-3.5.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=6cfpIeQ6D4Mcs10nkogQrkVyq1T7i2qXjjNHFoUMOyE,1892
3
- ml_tools/ETL_engineering.py,sha256=9dojA9RqE7bq1A70tegsERszoqll7UmcJelVeQeefik,39519
1
+ dragon_ml_toolbox-3.5.1.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
+ dragon_ml_toolbox-3.5.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=6cfpIeQ6D4Mcs10nkogQrkVyq1T7i2qXjjNHFoUMOyE,1892
3
+ ml_tools/ETL_engineering.py,sha256=URol7s45fVIdLqnhyOU1Etbi-D7MksFg-qtNwsKiunY,39488
4
4
  ml_tools/GUI_tools.py,sha256=uFx6zIrQZzDPSTtOSHz8ptz-fxZiQz-lXHcrqwuYV_E,20385
5
5
  ml_tools/MICE_imputation.py,sha256=ed-YeQkEAeHxTNkWIHs09T4YeYNF0aqAnrUTcdIEp9E,11372
6
6
  ml_tools/ML_callbacks.py,sha256=gHZk-lyzAax6iEtG26zHuoobdAZCFJ6BmI6pWoXkOrw,13189
@@ -13,13 +13,13 @@ ml_tools/VIF_factor.py,sha256=4b3HmrrolN7ZIAo16TWwLlExqj_xaa8MxbkXD1xPCys,10295
13
13
  ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  ml_tools/_particle_swarm_optimization.py,sha256=b_eNNkA89Y40hj76KauivT8KLScH1B9wF2IXptOqkOw,22220
15
15
  ml_tools/_pytorch_models.py,sha256=bpWZsrSwCvHJQkR6UfoPpElsMv9AvmiNErNHC8NYB_I,10132
16
- ml_tools/data_exploration.py,sha256=IkpOyIRPKdu4qKeUdvvMvNPelSVWegNEKMqX3IInmpw,25003
16
+ ml_tools/data_exploration.py,sha256=41q0ux4rsf6ktQDzX1haYOk0iRZzmNucrHRi_rqlNLs,25013
17
17
  ml_tools/datasetmaster.py,sha256=N-uwfzWnl_qnoAqjbfS98I1pVNra5u6rhKLdWbFIReA,30122
18
18
  ml_tools/ensemble_learning.py,sha256=PPtBBLgLvaYOdY-MlcjXuxWWXf3JQavLNEysFgzjc_s,37470
19
19
  ml_tools/handle_excel.py,sha256=lwds7rDLlGSCWiWGI7xNg-Z7kxAepogp0lstSFa0590,12949
20
20
  ml_tools/logger.py,sha256=jC4Q2OqmDm8ZO9VpuZqBSWdXryqaJvLscqVJ6caNMOk,6009
21
21
  ml_tools/utilities.py,sha256=7cVWXjdxgSoIbZunuxJEOnJDSYp29liYsZexbrVDabs,23132
22
- dragon_ml_toolbox-3.5.0.dist-info/METADATA,sha256=yxz0lVEDn3k40f3nZk_pocW8WCOXifF6ItuUMJ8LFsM,3273
23
- dragon_ml_toolbox-3.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
24
- dragon_ml_toolbox-3.5.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
25
- dragon_ml_toolbox-3.5.0.dist-info/RECORD,,
22
+ dragon_ml_toolbox-3.5.1.dist-info/METADATA,sha256=F1RicIFxIpnKadElu8EU_k6P0FYKwGPRjHF2YXe9F6E,3273
23
+ dragon_ml_toolbox-3.5.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
24
+ dragon_ml_toolbox-3.5.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
25
+ dragon_ml_toolbox-3.5.1.dist-info/RECORD,,
@@ -48,13 +48,12 @@ class ColumnCleaner:
48
48
  ## Usage Example
49
49
 
50
50
  ```python
51
- phone_rules = {
52
- # Matches (123) 456-7890 and reformats to 123-456-7890
53
- r'\((\d{3})\)\s*(\d{3})-(\d{4})': r'$1-$2-$3'
51
+ id_rules = {
52
+ # Matches 'ID-12345' or 'ID 12345' and reformats to 'ID:12345'
53
+ r'ID[- ](\d+)': r'ID:$1'
54
54
  }
55
55
 
56
- phone_cleaner = ColumnCleaner(column_name='phone_number', rules=phone_rules)
57
-
56
+ id_cleaner = ColumnCleaner(column_name='user_id', rules=id_rules)
58
57
  # This object would then be passed to a DataFrameCleaner.
59
58
  ```
60
59
  """
@@ -529,7 +528,7 @@ class KeywordDummifier:
529
528
 
530
529
  categorize_expr = categorize_expr.otherwise(None).alias("category")
531
530
 
532
- temp_df = pl.DataFrame(categorize_expr)
531
+ temp_df = pl.select(categorize_expr)
533
532
  df_with_dummies = temp_df.to_dummies(columns=["category"])
534
533
 
535
534
  final_columns = []
@@ -91,7 +91,7 @@ def drop_zero_only_columns(df: pd.DataFrame, verbose: bool=True) -> pd.DataFrame
91
91
  continue
92
92
 
93
93
  # For numeric columns, check if there's at least one non-zero value.
94
- if (column != 0).any():
94
+ if (column.fillna(0) != 0).any():
95
95
  cols_to_keep.append(col_name)
96
96
 
97
97
  dropped_columns = original_columns - set(cols_to_keep)