dragon-ml-toolbox 20.2.0__py3-none-any.whl → 20.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (109) hide show
  1. {dragon_ml_toolbox-20.2.0.dist-info → dragon_ml_toolbox-20.3.0.dist-info}/METADATA +1 -1
  2. dragon_ml_toolbox-20.3.0.dist-info/RECORD +143 -0
  3. ml_tools/ETL_cleaning/__init__.py +5 -1
  4. ml_tools/ETL_cleaning/_basic_clean.py +1 -1
  5. ml_tools/ETL_engineering/__init__.py +5 -1
  6. ml_tools/GUI_tools/__init__.py +5 -1
  7. ml_tools/IO_tools/_IO_loggers.py +12 -4
  8. ml_tools/IO_tools/__init__.py +5 -1
  9. ml_tools/MICE/__init__.py +8 -2
  10. ml_tools/MICE/_dragon_mice.py +1 -1
  11. ml_tools/ML_callbacks/__init__.py +5 -1
  12. ml_tools/ML_chain/__init__.py +5 -1
  13. ml_tools/ML_configuration/__init__.py +7 -1
  14. ml_tools/ML_configuration/_training.py +65 -1
  15. ml_tools/ML_datasetmaster/__init__.py +5 -1
  16. ml_tools/ML_datasetmaster/_base_datasetmaster.py +31 -20
  17. ml_tools/ML_datasetmaster/_datasetmaster.py +26 -9
  18. ml_tools/ML_datasetmaster/_sequence_datasetmaster.py +38 -23
  19. ml_tools/ML_evaluation/__init__.py +5 -1
  20. ml_tools/ML_evaluation_captum/__init__.py +5 -1
  21. ml_tools/ML_finalize_handler/__init__.py +5 -1
  22. ml_tools/ML_inference/__init__.py +5 -1
  23. ml_tools/ML_inference_sequence/__init__.py +5 -1
  24. ml_tools/ML_inference_vision/__init__.py +5 -1
  25. ml_tools/ML_models/__init__.py +21 -6
  26. ml_tools/ML_models/_dragon_autoint.py +302 -0
  27. ml_tools/ML_models/_dragon_gate.py +358 -0
  28. ml_tools/ML_models/_dragon_node.py +268 -0
  29. ml_tools/ML_models/_dragon_tabnet.py +255 -0
  30. ml_tools/ML_models_sequence/__init__.py +5 -1
  31. ml_tools/ML_models_vision/__init__.py +5 -1
  32. ml_tools/ML_optimization/__init__.py +11 -3
  33. ml_tools/ML_optimization/_multi_dragon.py +2 -2
  34. ml_tools/ML_optimization/_single_dragon.py +47 -67
  35. ml_tools/ML_optimization/_single_manual.py +1 -1
  36. ml_tools/ML_scaler/_ML_scaler.py +12 -7
  37. ml_tools/ML_scaler/__init__.py +5 -1
  38. ml_tools/ML_trainer/__init__.py +5 -1
  39. ml_tools/ML_trainer/_base_trainer.py +136 -13
  40. ml_tools/ML_trainer/_dragon_detection_trainer.py +31 -91
  41. ml_tools/ML_trainer/_dragon_sequence_trainer.py +24 -74
  42. ml_tools/ML_trainer/_dragon_trainer.py +24 -85
  43. ml_tools/ML_utilities/__init__.py +5 -1
  44. ml_tools/ML_utilities/_inspection.py +44 -30
  45. ml_tools/ML_vision_transformers/__init__.py +8 -2
  46. ml_tools/PSO_optimization/__init__.py +5 -1
  47. ml_tools/SQL/__init__.py +8 -2
  48. ml_tools/VIF/__init__.py +5 -1
  49. ml_tools/data_exploration/__init__.py +4 -1
  50. ml_tools/data_exploration/_cleaning.py +4 -2
  51. ml_tools/ensemble_evaluation/__init__.py +5 -1
  52. ml_tools/ensemble_inference/__init__.py +5 -1
  53. ml_tools/ensemble_learning/__init__.py +5 -1
  54. ml_tools/excel_handler/__init__.py +5 -1
  55. ml_tools/keys/__init__.py +5 -1
  56. ml_tools/math_utilities/__init__.py +5 -1
  57. ml_tools/optimization_tools/__init__.py +5 -1
  58. ml_tools/path_manager/__init__.py +8 -2
  59. ml_tools/plot_fonts/__init__.py +8 -2
  60. ml_tools/schema/__init__.py +8 -2
  61. ml_tools/schema/_feature_schema.py +3 -3
  62. ml_tools/serde/__init__.py +5 -1
  63. ml_tools/utilities/__init__.py +5 -1
  64. ml_tools/utilities/_utility_save_load.py +38 -20
  65. dragon_ml_toolbox-20.2.0.dist-info/RECORD +0 -179
  66. ml_tools/ETL_cleaning/_imprimir.py +0 -13
  67. ml_tools/ETL_engineering/_imprimir.py +0 -24
  68. ml_tools/GUI_tools/_imprimir.py +0 -12
  69. ml_tools/IO_tools/_imprimir.py +0 -14
  70. ml_tools/MICE/_imprimir.py +0 -11
  71. ml_tools/ML_callbacks/_imprimir.py +0 -12
  72. ml_tools/ML_chain/_imprimir.py +0 -12
  73. ml_tools/ML_configuration/_imprimir.py +0 -47
  74. ml_tools/ML_datasetmaster/_imprimir.py +0 -15
  75. ml_tools/ML_evaluation/_imprimir.py +0 -25
  76. ml_tools/ML_evaluation_captum/_imprimir.py +0 -10
  77. ml_tools/ML_finalize_handler/_imprimir.py +0 -8
  78. ml_tools/ML_inference/_imprimir.py +0 -11
  79. ml_tools/ML_inference_sequence/_imprimir.py +0 -8
  80. ml_tools/ML_inference_vision/_imprimir.py +0 -8
  81. ml_tools/ML_models/_advanced_models.py +0 -1086
  82. ml_tools/ML_models/_imprimir.py +0 -18
  83. ml_tools/ML_models_sequence/_imprimir.py +0 -8
  84. ml_tools/ML_models_vision/_imprimir.py +0 -16
  85. ml_tools/ML_optimization/_imprimir.py +0 -13
  86. ml_tools/ML_scaler/_imprimir.py +0 -8
  87. ml_tools/ML_trainer/_imprimir.py +0 -10
  88. ml_tools/ML_utilities/_imprimir.py +0 -16
  89. ml_tools/ML_vision_transformers/_imprimir.py +0 -14
  90. ml_tools/PSO_optimization/_imprimir.py +0 -10
  91. ml_tools/SQL/_imprimir.py +0 -8
  92. ml_tools/VIF/_imprimir.py +0 -10
  93. ml_tools/data_exploration/_imprimir.py +0 -32
  94. ml_tools/ensemble_evaluation/_imprimir.py +0 -14
  95. ml_tools/ensemble_inference/_imprimir.py +0 -9
  96. ml_tools/ensemble_learning/_imprimir.py +0 -10
  97. ml_tools/excel_handler/_imprimir.py +0 -13
  98. ml_tools/keys/_imprimir.py +0 -11
  99. ml_tools/math_utilities/_imprimir.py +0 -11
  100. ml_tools/optimization_tools/_imprimir.py +0 -13
  101. ml_tools/path_manager/_imprimir.py +0 -15
  102. ml_tools/plot_fonts/_imprimir.py +0 -8
  103. ml_tools/schema/_imprimir.py +0 -10
  104. ml_tools/serde/_imprimir.py +0 -10
  105. ml_tools/utilities/_imprimir.py +0 -18
  106. {dragon_ml_toolbox-20.2.0.dist-info → dragon_ml_toolbox-20.3.0.dist-info}/WHEEL +0 -0
  107. {dragon_ml_toolbox-20.2.0.dist-info → dragon_ml_toolbox-20.3.0.dist-info}/licenses/LICENSE +0 -0
  108. {dragon_ml_toolbox-20.2.0.dist-info → dragon_ml_toolbox-20.3.0.dist-info}/licenses/LICENSE-THIRD-PARTY.md +0 -0
  109. {dragon_ml_toolbox-20.2.0.dist-info → dragon_ml_toolbox-20.3.0.dist-info}/top_level.txt +0 -0
@@ -268,8 +268,7 @@ def yield_dataframes_from_dir(datasets_dir: Union[str,Path], verbose: bool=True)
268
268
  yield df, df_name
269
269
 
270
270
 
271
-
272
- def save_dataframe_filename(df: Union[pd.DataFrame, pl.DataFrame], save_dir: Union[str,Path], filename: str) -> None:
271
+ def save_dataframe_filename(df: Union[pd.DataFrame, pl.DataFrame], save_dir: Union[str,Path], filename: str, verbose: int=3) -> None:
273
272
  """
274
273
  Saves a pandas or polars DataFrame to a CSV file.
275
274
 
@@ -280,9 +279,16 @@ def save_dataframe_filename(df: Union[pd.DataFrame, pl.DataFrame], save_dir: Uni
280
279
  The directory where the CSV file will be saved.
281
280
  filename (str):
282
281
  The CSV filename. The '.csv' extension will be added if missing.
282
+ verbose (int):
283
+ Verbosity level for logging.
284
+ - 0: Error level
285
+ - 1: Warning level
286
+ - 2: Info level
287
+ - 3: Detailed process info
283
288
  """
284
289
  # This check works for both pandas and polars
285
290
  if df.shape[0] == 0:
291
+ # Warning instead of error to allow graceful skipping
286
292
  _LOGGER.warning(f"Attempting to save an empty DataFrame: '{filename}'. Process Skipped.")
287
293
  return
288
294
 
@@ -317,10 +323,11 @@ def save_dataframe_filename(df: Union[pd.DataFrame, pl.DataFrame], save_dir: Uni
317
323
  _LOGGER.error(f"Unsupported DataFrame type: {type(df)}. Must be pandas or polars.")
318
324
  raise TypeError()
319
325
 
320
- _LOGGER.info(f"Saved dataset: '{filename}' with shape: {df_to_save.shape}")
326
+ if verbose >= 2:
327
+ _LOGGER.info(f"Saved dataset: '{filename}' with shape: {df_to_save.shape}")
321
328
 
322
329
 
323
- def save_dataframe(df: Union[pd.DataFrame, pl.DataFrame], full_path: Path):
330
+ def save_dataframe(df: Union[pd.DataFrame, pl.DataFrame], full_path: Path, verbose: int=3) -> None:
324
331
  """
325
332
  Saves a DataFrame to a specified full path.
326
333
 
@@ -330,6 +337,11 @@ def save_dataframe(df: Union[pd.DataFrame, pl.DataFrame], full_path: Path):
330
337
  Args:
331
338
  df (Union[pd.DataFrame, pl.DataFrame]): The pandas or polars DataFrame to save.
332
339
  full_path (Path): The complete file path, including the filename and `.csv` extension, where the DataFrame will be saved.
340
+ verbose (int): Verbosity level for logging.
341
+ - 0: Error level
342
+ - 1: Warning level
343
+ - 2: Info level
344
+ - 3: Detailed process info
333
345
  """
334
346
  if not isinstance(full_path, Path) or not full_path.suffix.endswith(".csv"):
335
347
  _LOGGER.error('A path object pointing to a .csv file must be provided.')
@@ -337,13 +349,15 @@ def save_dataframe(df: Union[pd.DataFrame, pl.DataFrame], full_path: Path):
337
349
 
338
350
  save_dataframe_filename(df=df,
339
351
  save_dir=full_path.parent,
340
- filename=full_path.name)
352
+ filename=full_path.name,
353
+ verbose=verbose)
341
354
 
342
355
 
343
356
  def save_dataframe_with_schema(
344
357
  df: pd.DataFrame,
345
358
  full_path: Path,
346
- schema: "FeatureSchema"
359
+ schema: "FeatureSchema",
360
+ verbose: int=3
347
361
  ) -> None:
348
362
  """
349
363
  Saves a pandas DataFrame to a CSV, strictly enforcing that the
@@ -367,28 +381,28 @@ def save_dataframe_with_schema(
367
381
  The complete file path where the DataFrame will be saved.
368
382
  schema (FeatureSchema):
369
383
  The schema object to validate against.
370
-
371
- Raises:
372
- ValueError:
373
- - If the DataFrame is missing columns required by the schema
374
- within its first N columns.
375
- - If the DataFrame's first N columns contain unexpected
376
- columns that are not in the schema.
384
+ verbose (int):
385
+ Verbosity level for logging.
386
+ - 0: Error level
387
+ - 1: Warning level
388
+ - 2: Info level
389
+ - 3: Detailed process info
377
390
  """
378
391
  if not isinstance(full_path, Path) or not full_path.suffix.endswith(".csv"):
379
392
  _LOGGER.error('A path object pointing to a .csv file must be provided.')
380
393
  raise ValueError()
381
394
 
382
395
  # Call the helper to validate and reorder
383
- df_to_save = _validate_and_reorder_schema(df=df, schema=schema)
396
+ df_to_save = _validate_and_reorder_schema(df=df, schema=schema, verbose=verbose)
384
397
 
385
398
  # Call the original save function
386
- save_dataframe(df=df_to_save, full_path=full_path)
399
+ save_dataframe(df=df_to_save, full_path=full_path, verbose=verbose)
387
400
 
388
401
 
389
402
  def _validate_and_reorder_schema(
390
403
  df: pd.DataFrame,
391
- schema: "FeatureSchema"
404
+ schema: "FeatureSchema",
405
+ verbose:int=3
392
406
  ) -> pd.DataFrame:
393
407
  """
394
408
  Internal helper to validate and reorder a DataFrame against a schema.
@@ -436,9 +450,11 @@ def _validate_and_reorder_schema(
436
450
 
437
451
  # If we pass validation, the sets are equal. Now check order.
438
452
  if df_feature_cols == expected_features:
439
- _LOGGER.info("DataFrame feature columns already match schema order.")
453
+ if verbose >= 2:
454
+ _LOGGER.info("DataFrame feature columns already match schema order.")
440
455
  else:
441
- _LOGGER.warning("DataFrame feature columns do not match schema order. Reordering...")
456
+ if verbose >= 1:
457
+ _LOGGER.warning("DataFrame feature columns do not match schema order. Reordering...")
442
458
 
443
459
  # Rebuild the DataFrame with the correct feature order + target columns
444
460
  new_order = expected_features + df_target_cols
@@ -446,9 +462,11 @@ def _validate_and_reorder_schema(
446
462
 
447
463
  # Log the presumed target columns for user verification
448
464
  if not df_target_cols:
449
- _LOGGER.warning(f"No target columns were found after index {n_features-1}.")
465
+ if verbose >= 1:
466
+ _LOGGER.warning(f"No target columns were found after index {n_features-1}.")
450
467
  else:
451
- _LOGGER.info(f"Target Columns: {df_target_cols}")
468
+ if verbose >= 2:
469
+ _LOGGER.info(f"Target Columns: {df_target_cols}")
452
470
 
453
471
  return df_to_process # type: ignore
454
472
 
@@ -1,179 +0,0 @@
1
- dragon_ml_toolbox-20.2.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-20.2.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
3
- ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
- ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
5
- ml_tools/ETL_cleaning/__init__.py,sha256=TytE8RKmtW4KQlkaTxpYKlJAbCu-VAc82eDdHwVD3Jo,427
6
- ml_tools/ETL_cleaning/_basic_clean.py,sha256=yZUcmMdBZl06Tgq66Cjzf7U1HQOuHhdNZeJG6pZ5MSk,13881
7
- ml_tools/ETL_cleaning/_clean_tools.py,sha256=pizTBK69zHt7HpZc_bcX9KoX2loLDcyQJddf_Kl-Ldo,5129
8
- ml_tools/ETL_cleaning/_dragon_cleaner.py,sha256=dge7KQSO4IdeXV4pCCJCb5lhAzR8rmwZPoCscm1A9KY,10272
9
- ml_tools/ETL_cleaning/_imprimir.py,sha256=2mYaCg5rYb-bweb1TAUdwZQadeOC92dKxlgOwq0U1tc,256
10
- ml_tools/ETL_engineering/__init__.py,sha256=NFE0iBj_D-qjjBtR-nGbHWUUEPwOiwS3j--giGxQbik,944
11
- ml_tools/ETL_engineering/_dragon_engineering.py,sha256=D-D6tmhyQ3I9-cXgxLVVbQBRTZoNsWaKPsvcTUaetws,10810
12
- ml_tools/ETL_engineering/_imprimir.py,sha256=DqHwD9iidOTzSUrg95ayXiBiUjTi9L5d51vmM_3TYVU,538
13
- ml_tools/ETL_engineering/_transforms.py,sha256=qOxa_vjh3gzS4IiGFqq_0Wnh0ilQO41jRiIp-6Ej4vw,47079
14
- ml_tools/GUI_tools/_GUI_tools.py,sha256=vjiBbiU3qCxB4rivBWHNBnq-NhpDZZERslkmi_61WxY,48987
15
- ml_tools/GUI_tools/__init__.py,sha256=Oisj9YTX5B3BTZqmjosGR7c4HWY84UvaUsfhdg22YYM,309
16
- ml_tools/GUI_tools/_imprimir.py,sha256=aq-Lh5Z3Y0O5z_es8d08NsBt_PhnEhsigMuLxxQMJ54,227
17
- ml_tools/IO_tools/_IO_loggers.py,sha256=DLxY3Oo4yvZp_jjST0txRDJ1gpwaK1IWiRkvzG7yizs,8692
18
- ml_tools/IO_tools/_IO_save_load.py,sha256=xVeQzrd4r-L9ruFPvO8cV3bvzYHhJ0coOfZMrNWq5rs,4426
19
- ml_tools/IO_tools/_IO_utils.py,sha256=quOqBVSi_z0AI7qznCNAcLRB_f4kaI-abANngXUBcYA,4384
20
- ml_tools/IO_tools/__init__.py,sha256=ZeEM5bbZ5udgRXFAL51uRXzoCzPLO8TWZ4AiME7NNy0,411
21
- ml_tools/IO_tools/_imprimir.py,sha256=eN-V60xtDNFINThuRTjXknMxtbK8Ah0MWgc8l2GTXMA,250
22
- ml_tools/MICE/_MICE_imputation.py,sha256=N1cDwVYfoHvIZz7FLLcW-guZUo8iFKedtkfS7CU6TVE,5318
23
- ml_tools/MICE/__init__.py,sha256=i5N_fd3rxpEgLsKKDoLbokW0rHm-ADEg8r3gBB5426E,313
24
- ml_tools/MICE/_dragon_mice.py,sha256=qEOy9Gx1QzVBvkvGR8790TkvKw8-fp06vCDGWM6j9os,17806
25
- ml_tools/MICE/_imprimir.py,sha256=YVhgZlUQ-NrDUVhHTK3u8s1QEbZ_jvDVF7-0FptVsxs,215
26
- ml_tools/ML_callbacks/__init__.py,sha256=dF37KXezy6P3VArhZbm5CI6si65GA-qVY70jvZFZYkA,427
27
- ml_tools/ML_callbacks/_base.py,sha256=xLVAFOhBHjqnf8a_wKgW1F-tn2u6EqV3IHXsXKTn2NE,3269
28
- ml_tools/ML_callbacks/_checkpoint.py,sha256=Ioj9wn8XlsR_S1NnmWbyT9lkO8o2_DcHVMrFtxYJOes,9721
29
- ml_tools/ML_callbacks/_early_stop.py,sha256=qzTzxfDCDim0qj7QQ7ykJNIOBWbXtviDptMCczXXy_k,8073
30
- ml_tools/ML_callbacks/_imprimir.py,sha256=Wz6NXhiCFSJsAZh3JnQ4qt7tj2_qhu14DTwu-gkkzZs,257
31
- ml_tools/ML_callbacks/_scheduler.py,sha256=mn97_VH8Lp37KH3zSgmPemGQV8g-K8GfhRNHTftaNcg,7390
32
- ml_tools/ML_chain/__init__.py,sha256=UVD1xaJ59pft_ysg8z_ihqjEDQqPRQwmhui_zNRFp7I,491
33
- ml_tools/ML_chain/_chaining_tools.py,sha256=BDwTvgJFbJ-wgy3IkP6_SNpNaWpHGXV3PhAM7sYmHeU,13675
34
- ml_tools/ML_chain/_dragon_chain.py,sha256=x3fN136C5N9WcXJJW9zkNrBzP8QoBaXpxz7SPF3txjg,5601
35
- ml_tools/ML_chain/_imprimir.py,sha256=tHVXoGhMlbpkpcoGKwtkYVFlHFEllRCsYdpiAFI1aZk,285
36
- ml_tools/ML_chain/_update_schema.py,sha256=z1Us7lv6hy6GwSu1mcid50Jmqq3sh91hMQ0LnQjhte8,3806
37
- ml_tools/ML_configuration/__init__.py,sha256=wSpfk8bHRSoYjcKJmjd5ivB4Fw8UFjyOZL4hct9rJT0,2637
38
- ml_tools/ML_configuration/_base_model_config.py,sha256=95L3IfobNFMtnNr79zYpDGerC1q1v7M05tWZvTS2cwE,2247
39
- ml_tools/ML_configuration/_finalize.py,sha256=l_n13bLu0avMdJ8hNRrH8V_wOBQZM1UGsTydKBkTysM,15047
40
- ml_tools/ML_configuration/_imprimir.py,sha256=H3h0xYUA6y8LYtO57DIHD0GTX-9b2CaMI2T_3jp5qOo,1452
41
- ml_tools/ML_configuration/_metrics.py,sha256=PqBGPO1Y_6ImmYI3TEBJhzipULE854vbvE0AbP5m8zQ,22888
42
- ml_tools/ML_configuration/_models.py,sha256=lvuuqvD6DWUzOa3i06NZfrdfOi9bu2e26T_QO6BGMSw,7629
43
- ml_tools/ML_configuration/_training.py,sha256=W-x2J0tqBIVqEkmjfvu7frIuK98JB6aUfG8IZBzdECI,5949
44
- ml_tools/ML_datasetmaster/__init__.py,sha256=30QTwpZBwZRg5M6CNSjCLNc0vnKFLw0LA7u9Wg0DGOg,517
45
- ml_tools/ML_datasetmaster/_base_datasetmaster.py,sha256=c0oXlZb6LrJb11BGvBKXIjQYmEuWdALAdcOxbHAe8Uw,14330
46
- ml_tools/ML_datasetmaster/_datasetmaster.py,sha256=9B8NdasdeFNMvEMCt5ceq2xRJrB7g6JkgD3KDYFYAJE,18383
47
- ml_tools/ML_datasetmaster/_imprimir.py,sha256=K-EkqibbpTRWMFJevYbGkjr3KrVkFXuQe4dnlKWylxI,305
48
- ml_tools/ML_datasetmaster/_sequence_datasetmaster.py,sha256=srzC9BbBpHJGmbUem1AAQF9XXHn7EUJljPz69O2eUUA,17788
49
- ml_tools/ML_datasetmaster/_vision_datasetmaster.py,sha256=kvSqXYeNBN1JSRfSEEXYeIcsqy9HsJAl_EwFWClqlsw,67025
50
- ml_tools/ML_evaluation/__init__.py,sha256=6z0buFssINnsjxjs0NQl3NzgaT30PzNqZ5ZvFMxb5i8,1059
51
- ml_tools/ML_evaluation/_classification.py,sha256=SmhIxJy81iIFrys36LUoKrH5ey9IqzE-UxR2-tdgseI,28396
52
- ml_tools/ML_evaluation/_feature_importance.py,sha256=mTwi3LKom_axu6UFKunELj30APDdhG9GQC2w7I9mYhI,17137
53
- ml_tools/ML_evaluation/_imprimir.py,sha256=7Qiar5iKRRybQA3YzEsA4s9pJ79cUmYi2r_Q6LaLqRQ,588
54
- ml_tools/ML_evaluation/_loss.py,sha256=1a4O25i3Ya_3naNZNL7ELLUL46BY86g1scA7d7q2UFM,3625
55
- ml_tools/ML_evaluation/_regression.py,sha256=hnT2B2_6AnQ7aA7uk-X2lZL9G5JFGCduDXyZbr1gFCA,11037
56
- ml_tools/ML_evaluation/_sequence.py,sha256=gUk9Uvmy7MrXkfrriMnfypkgJU5XERHdqekTa2gBaOM,8004
57
- ml_tools/ML_evaluation/_vision.py,sha256=abBHQ6Z2GunHNusL3wcLgfI1FVNA6hBUBTq1eOA8FSA,11489
58
- ml_tools/ML_evaluation_captum/_ML_evaluation_captum.py,sha256=6g3ymSxJGHXxwIN7WCD2Zi9zxKWEv-Qskd2cCGQQJ5Y,18439
59
- ml_tools/ML_evaluation_captum/__init__.py,sha256=fMudQu8Hs8OAkLT1kWKI7WaYIQ6sgi4hPwvXRwqjv_I,270
60
- ml_tools/ML_evaluation_captum/_imprimir.py,sha256=-macVCEmmnj8aXob1UBJrjMYHQx_6Uu2b7nIcmLxJH8,201
61
- ml_tools/ML_finalize_handler/_ML_finalize_handler.py,sha256=g-vkHJDTGXZsKOUA-Yfg7EuA1SmaHjzesCPiAyRMg2k,7054
62
- ml_tools/ML_finalize_handler/__init__.py,sha256=ub1KDL5r3vfEC6UskL2PhV-_2nuprlBuOteC1lc0gD0,135
63
- ml_tools/ML_finalize_handler/_imprimir.py,sha256=36kt-mdcqgPkWN5GBXlFD5Aqr_AwWMiec7klEr20VRQ,132
64
- ml_tools/ML_inference/__init__.py,sha256=zvNa2Bt7OqKQ2D0fAc5IVdUDWZJ8l0CM20vsuLsM73g,399
65
- ml_tools/ML_inference/_base_inference.py,sha256=wwmGGBnSCrtVvv30TWBwc3jK8b0Sym43NAPU97a3G6w,7594
66
- ml_tools/ML_inference/_chain_inference.py,sha256=1wdKBRqDlW5uhd0bnfpPKftAikaaTYk9brShoX49voU,7708
67
- ml_tools/ML_inference/_dragon_inference.py,sha256=OOJhT50bQWdrmX2oggtdBzOMtVNZlmVnOujquRPbq4c,14619
68
- ml_tools/ML_inference/_imprimir.py,sha256=pnZxz3_LGkJewXOQlwQIgAtJ-fMevgOZzRyBfx8PMDg,234
69
- ml_tools/ML_inference/_multi_inference.py,sha256=XPVYWTOG8jiMV-iOWYTV0NTZk3fggPYI93kDlrPjtqo,8107
70
- ml_tools/ML_inference_sequence/__init__.py,sha256=b5M4gvNrNQS8usY7RPytaraXWC6LqnN_byFJ9GBvZ3w,154
71
- ml_tools/ML_inference_sequence/_imprimir.py,sha256=3W4QyHQ0-4bffp87yaNW6c74uE0fCDDWLeSFzbSNOgE,142
72
- ml_tools/ML_inference_sequence/_sequence_inference.py,sha256=Fb2H-4qTdsqYxH6YO4KcbQfXfQDUUaUZ36QB_F2gl8M,16223
73
- ml_tools/ML_inference_vision/__init__.py,sha256=v8Gsvst3ZnNqfw96JmIpGAgJpE45ufhDr-DJP0Qe8s8,149
74
- ml_tools/ML_inference_vision/_imprimir.py,sha256=3GS_EjR-hzK0tXceowVJ06pmSV5wXvM5GU3oKe9lAVY,140
75
- ml_tools/ML_inference_vision/_vision_inference.py,sha256=qCmKpOk0vDj1XwGeRBg4KUjLBRdiqZEx61GYmLWHj9M,20063
76
- ml_tools/ML_models/__init__.py,sha256=OKPrMEG5SZgFUKkzM0NPv4-Yyd83_RrXKT-iwRvhgOA,599
77
- ml_tools/ML_models/_advanced_models.py,sha256=KlFCM0vi1RLy_N3R2A9U6qOLvSlz6xDvGYVkOzaiBBU,45304
78
- ml_tools/ML_models/_base_mlp_attention.py,sha256=bhG6qgKcnFQ6H7fKZcj_NAoR2tJfpuAY9YPKr5LlB0Q,7199
79
- ml_tools/ML_models/_base_save_load.py,sha256=h2ymwYAz3sw31Evuv48seULwt53w_rwwm1aPiiFJtl4,5754
80
- ml_tools/ML_models/_dragon_tabular.py,sha256=SlMR2SNpHU897GJGlBQjlKOC6Gi55f1l0pXF_Z9B2E0,10416
81
- ml_tools/ML_models/_imprimir.py,sha256=WOa9fETpArBvMZigX9AbUi8jipuZOBpZbABPb27TW3g,387
82
- ml_tools/ML_models/_mlp_attention.py,sha256=kmnXk-hy_zg6Fni4xsy8euYjtBjuOgCVQdZXSNR8aIY,5837
83
- ml_tools/ML_models/_models_advanced_helpers.py,sha256=T4eeG7b42GuAeT3KG1pi10ctdveM7pNKYxeUj1HKzCE,39110
84
- ml_tools/ML_models_sequence/__init__.py,sha256=GFLSmbc6PBtFI4xKL9gz6brEFRFNNoB53Bcm844lFf4,128
85
- ml_tools/ML_models_sequence/_imprimir.py,sha256=XggLqpY_FmrqOHS5kvCpIste57OpGejrspobt_-d7eQ,131
86
- ml_tools/ML_models_sequence/_sequence_models.py,sha256=c6TOyVeePN1XyIee2wcve9mx3g0QKItZli5f-c87YqY,5590
87
- ml_tools/ML_models_vision/__init__.py,sha256=8NO-5Hjj3O6g6iyUE93-wPLbIkrDUWeNfgp_xqZt-q8,470
88
- ml_tools/ML_models_vision/_base_wrapper.py,sha256=9GcwVw7H19xBO3d-xzyr3-5NL66imfVzw9hYDIXfcSM,10094
89
- ml_tools/ML_models_vision/_image_classification.py,sha256=miwMNoTXpmmZSiqeXvDKpx06oaBYpyBRIGVdg646tWw,6897
90
- ml_tools/ML_models_vision/_image_segmentation.py,sha256=NRjn91bDD2OJWSJFrrNW9s41qgg5w7pw68Q61-kg-As,4157
91
- ml_tools/ML_models_vision/_imprimir.py,sha256=pfcMOyy0rKuD1jTNij5i8f-HQwpIWWNj06gwHd3nxls,305
92
- ml_tools/ML_models_vision/_object_detection.py,sha256=AOGER5bx0REc-FfBtspJmyLJxn3GdwDSPwFGveobR94,5608
93
- ml_tools/ML_optimization/__init__.py,sha256=6cf5z4xnDSt00hnRIOzRsprsurE164bPFZrwYgEh1b8,406
94
- ml_tools/ML_optimization/_imprimir.py,sha256=bCxJyUU-Kxc-duKo3kbZD7j7fjaQ51F0ketn1fq_i3M,267
95
- ml_tools/ML_optimization/_multi_dragon.py,sha256=kfMr252VSTeTakXf6ISFQFPtw81k8OTkbB9ctqeg71M,37456
96
- ml_tools/ML_optimization/_single_dragon.py,sha256=9OvqMi-HC8Ek1ATUsX2C7tt8ssrW_VSpeFnq2Ij0-bY,8542
97
- ml_tools/ML_optimization/_single_manual.py,sha256=vh3_rXiqdwLg1SPLKR1HuJ_njYF3wfMADdRuxJns07w,21798
98
- ml_tools/ML_scaler/_ML_scaler.py,sha256=8L8gTSNLAcOHNJ1y0jva_H3R4YcSLqGOj9J2LfSV2IM,8623
99
- ml_tools/ML_scaler/__init__.py,sha256=s5L7FD1Sbg8VwdyM8Ef722vHX_a1TNVfgCAIUC40D5I,109
100
- ml_tools/ML_scaler/_imprimir.py,sha256=QAVN_fR5g25SmYX-XBIVi_A9XA4E36yJFy7tfzFaut8,124
101
- ml_tools/ML_trainer/__init__.py,sha256=f3vR157OplYFom4U4X_ciULcGKvEYkwVZFN66So0kEg,316
102
- ml_tools/ML_trainer/_base_trainer.py,sha256=QOaPBOdkmchlMDOoOI7M1aaTdmH2BQ5iqjcbLSfTuC4,12533
103
- ml_tools/ML_trainer/_dragon_detection_trainer.py,sha256=vkRBY-Z9Sybv9RCnEw-IsQc0yIBHc_7RzG3ma-MipFM,19276
104
- ml_tools/ML_trainer/_dragon_sequence_trainer.py,sha256=ffkdld6w6A2Gr0iT45aGvvVoWRW3RU1P_BAQ9158_LI,26165
105
- ml_tools/ML_trainer/_dragon_trainer.py,sha256=B97tNSPFmAcJGZLHXf5_rlJ989Ix-G4DurxSNoudQnw,61670
106
- ml_tools/ML_trainer/_imprimir.py,sha256=t8Dhz4Tdllr8hGewUpxErRWditHUXYQXSbEHeZDxaeg,185
107
- ml_tools/ML_utilities/__init__.py,sha256=1nMc3wEmz4eF4lZwkPyub6Nry1mgmsTmUMK6bZUNjiU,676
108
- ml_tools/ML_utilities/_artifact_finder.py,sha256=X4xz_rmi0jVan8Sun_6431TcQiNM-GDHm-DHLA1zYms,15816
109
- ml_tools/ML_utilities/_imprimir.py,sha256=T7N1BVtHpja-pqyQ_Ctt6z4R2onm3uypDzlU-KcEE_o,382
110
- ml_tools/ML_utilities/_inspection.py,sha256=_UMkxaqjsx8QhJMnf_ik-MvDND6h8rQvJt8ZxojWr8Q,12640
111
- ml_tools/ML_utilities/_train_tools.py,sha256=3pg2JLV2SHmpzD1xjlPBQVsoXeqXDmiwcM8kr2V0jh8,7488
112
- ml_tools/ML_vision_transformers/__init__.py,sha256=Eoaxf2AhvQvAXxPVuc_1uhd3DzKlsHisT8T-Xhj-wQM,445
113
- ml_tools/ML_vision_transformers/_core_transforms.py,sha256=mxMBmRtg0Jw1s4f8ExAOkzMYE1zYJKosZb14eWUyHlw,9420
114
- ml_tools/ML_vision_transformers/_imprimir.py,sha256=JRC1MgRp2Y0OTYRjC6n2ON_FvVnq7WKs1ClBZtJQgsk,303
115
- ml_tools/ML_vision_transformers/_offline_augmentation.py,sha256=f1-GPjt-8jCdJWIlurmD00rhVrhpPpFri-xusoiEwZY,6210
116
- ml_tools/PSO_optimization/_PSO.py,sha256=kEeCD1azTzdyqIdHgwjjkx-WJlpuHSICYv5j0mfG030,24828
117
- ml_tools/PSO_optimization/__init__.py,sha256=8Db7MYRX0jrmzlfKWx5KJinp4AkAywEHAACEmAU32w8,229
118
- ml_tools/PSO_optimization/_imprimir.py,sha256=diQpMNaJyqFASGmzF7qUOZyx-DUV-Q1ucSAf9gnmTcQ,189
119
- ml_tools/SQL/__init__.py,sha256=p34n311n8PdE-5ql91O1qJZIffayP1t9cYTYIXp2H78,96
120
- ml_tools/SQL/_dragon_SQL.py,sha256=SxiDoGbt1HODpqvmMz6a2TZyQ0ZpPnjfI71vMfv5DZI,11465
121
- ml_tools/SQL/_imprimir.py,sha256=1EJeYL9Otizx-uB0FFG_fTEiBFj2UfQHYw9mBJHvaec,122
122
- ml_tools/VIF/_VIF_factor.py,sha256=0xeMhaReG2vpBhPkOz0qaqnGmMXCz24frBTQdl6cTLk,10380
123
- ml_tools/VIF/__init__.py,sha256=7TN78X4PZ_ApScYU6fNOK-7YfeiI49NBoroaK-Xpcr0,199
124
- ml_tools/VIF/_imprimir.py,sha256=l-b47s6wPri7iYtt9D5rRq5AtNFfCydivQ2Bp5JBLKw,170
125
- ml_tools/_core/__init__.py,sha256=m-VP0RW0tOTm9N5NI3kFNcpM7WtVgs0RK9pK3ZJRZQQ,141
126
- ml_tools/_core/_logger.py,sha256=xzhn_FouMDRVNwXGBGlPC9Ruq6i5uCrmNaS5jesguMU,4972
127
- ml_tools/_core/_schema_load_ops.py,sha256=KLs9vBzANz5ESe2wlP-C41N4VlgGil-ywcfvWKSOGss,1551
128
- ml_tools/_core/_script_info.py,sha256=LtFGt10gEvCnhIRMKJPi2yXkiGLcdr7lE-oIP2XGHzQ,234
129
- ml_tools/data_exploration/__init__.py,sha256=w9dM6wjmxfbEXQCWGFVL_cIuLHtYVP364aQvzRwfZXY,1674
130
- ml_tools/data_exploration/_analysis.py,sha256=H6LryV56FFCHWjvQdkhZbtprZy6aP8EqU_hC2Cf9CLE,7832
131
- ml_tools/data_exploration/_cleaning.py,sha256=LpoOHOB6HVtdObZExg-B8SxZW-JUc51tblnkCFDZxKg,20846
132
- ml_tools/data_exploration/_features.py,sha256=wW-M8n2aLIy05DR2z4fI8wjpPjn3mOAnm9aSGYbMKwI,23363
133
- ml_tools/data_exploration/_imprimir.py,sha256=0nXu60HpeJZ8s83mpVoRtdKILK3t8EHRFVk7d9vRVUo,876
134
- ml_tools/data_exploration/_plotting.py,sha256=zH1dPcIoAlOuww23xIoBCsQOAshPPv9OyGposOA2RvI,19883
135
- ml_tools/data_exploration/_schema_ops.py,sha256=PoFeHaS9dXI9gfL0SRD-8uSP4owqmbQFbtfA-HxkLnY,7108
136
- ml_tools/ensemble_evaluation/__init__.py,sha256=Xxx-F-_TvSVzMaocKXOo_tEXLibMJtf_YY85Ac3U0EI,483
137
- ml_tools/ensemble_evaluation/_ensemble_evaluation.py,sha256=-sX9cLMaa0FOQDikmVv2lsCYtQ56Kftd3tILnNej0Hg,28346
138
- ml_tools/ensemble_evaluation/_imprimir.py,sha256=PIyQyG0LEw3yOnNYJoz8ALLhj4M0gk0LQVgSlmTgVG4,312
139
- ml_tools/ensemble_inference/__init__.py,sha256=00cdImE1KThgULsCjghOuQdzhIR8aT22_0rvTEMXQaU,192
140
- ml_tools/ensemble_inference/_ensemble_inference.py,sha256=Nu4GZRQuJuw5cDqUH2VEjFF8E2QkW3neVPcphicaPLk,8547
141
- ml_tools/ensemble_inference/_imprimir.py,sha256=h8VV5p1S6Hb6htsys38ZeBDInPS618YUdfMgYZqcmr4,162
142
- ml_tools/ensemble_learning/__init__.py,sha256=MU73TyYdnduQdgnTpb-1jbxFf16feZN4J3lBVOCVEtU,253
143
- ml_tools/ensemble_learning/_ensemble_learning.py,sha256=MHDZBR20_nStlSSeThFI3bSujz3dTLAcRSXEiJldgzQ,21944
144
- ml_tools/ensemble_learning/_imprimir.py,sha256=6J4531cMFdncqUYZPru0cEIpXC9vzMygO8iVqA2_wT0,194
145
- ml_tools/excel_handler/__init__.py,sha256=gIodwm7rStEgfhvmx99FNyRT51N4iBVzAwM8r1_dx6o,467
146
- ml_tools/excel_handler/_excel_handler.py,sha256=TODudmeQgDSdxUKzLfAzizs--VL-g8WxDOfQ4sgxxLs,13965
147
- ml_tools/excel_handler/_imprimir.py,sha256=QHazgqjRMzthRbDt33EVpvR7GqufSzng6jHw7IVCdtI,306
148
- ml_tools/keys/__init__.py,sha256=DV52KLOY5GfpLwJdDAHlFVz0qAmyh-KWg3gZorFdMSk,336
149
- ml_tools/keys/_imprimir.py,sha256=4qmwdia16DPq3OtlWGMkgLPT5R3lcM-ka3tQdCLx5qk,197
150
- ml_tools/keys/_keys.py,sha256=DLP0BYibRueM_8Dz9pSbWUpKypcimFL5kmXUl4wSwdU,9292
151
- ml_tools/math_utilities/__init__.py,sha256=NuTcb_Ogdwx5x-oDieBt1EAqCoZRnXbkZbUrwB6ItH0,337
152
- ml_tools/math_utilities/_imprimir.py,sha256=kk5DQb_BV9g767uTdXQiRjEEHgQwJpEXU3jxO3QV2Fw,238
153
- ml_tools/math_utilities/_math_utilities.py,sha256=BYHIVcM9tuKIhVrkgLLiM5QalJ39zx7dXYy_M9aGgiM,9012
154
- ml_tools/optimization_tools/__init__.py,sha256=ja2z1ThwOr1yq6bxQYeU8WhtUIvk_VNzpNN_Ay_gjJw,595
155
- ml_tools/optimization_tools/_imprimir.py,sha256=D4dBxRG-gH-pArnjg_YSPStW7_0f3iscTvuKW04qAGE,348
156
- ml_tools/optimization_tools/_optimization_bounds.py,sha256=vZgFMO5rTM4ijeJ5wFbq0tp4GCPCIfJejH5DkINa3qk,9230
157
- ml_tools/optimization_tools/_optimization_plots.py,sha256=GlxWvk5K2l7sgArKah8zchTMvWNuUqzWhUJCq1AsTgI,8986
158
- ml_tools/path_manager/__init__.py,sha256=n5GfDMRjTDrujUBeS0xJsApHCeswhTEiiUF2gc7Jo-c,464
159
- ml_tools/path_manager/_dragonmanager.py,sha256=q9wHTKPmdzywEz6N14ipUoeR3MmW0bzB4RePz-Wn4uA,13111
160
- ml_tools/path_manager/_imprimir.py,sha256=PaeXfU3Hja0X7K1IlH3JstXg1mnxNJCwLfmwAbW4WLs,296
161
- ml_tools/path_manager/_path_tools.py,sha256=LcZE31QlkzZWUR8g1MW_N_mPY2DpKBJLA45VJz7ZYsw,11905
162
- ml_tools/plot_fonts/__init__.py,sha256=l-vSSpjZb6IeWjjgPTcNmEs7M-vbw0lqgEKD5jhtX4Y,116
163
- ml_tools/plot_fonts/_imprimir.py,sha256=zNi6naa5eWBFfa_yV569MhUtSAL44H0xDjMcgrJSlXk,131
164
- ml_tools/plot_fonts/_plot_fonts.py,sha256=mfjXNT9P59ymHoTI85Q8CcvfxfK5BIFBWtTZH-hNIC4,2209
165
- ml_tools/schema/__init__.py,sha256=9LQtKz3OO9wm-1piUgAhCJZVZT-F-YSg5QLus9pxfgA,263
166
- ml_tools/schema/_feature_schema.py,sha256=ICymTIL05n1qs61TvyY7rapDOJ9PlaOHi0F86N4tNlU,8547
167
- ml_tools/schema/_gui_schema.py,sha256=IVwN4THAdFrvh2TpV4SFd_zlzMX3eioF-w-qcSVTndE,7245
168
- ml_tools/schema/_imprimir.py,sha256=waNHozZmkCKKNFWSw0HFf9489FkSXogl6KuT5cn5V74,190
169
- ml_tools/serde/__init__.py,sha256=Gj6B8Sgf0-ad72jFXq2W_k5pXOT2iNx5Dvzwrd7Tj1U,229
170
- ml_tools/serde/_imprimir.py,sha256=cgbYp0BjfRlC7R1CcmciBJrWJHE0dLW6b_1SBpC5hLA,188
171
- ml_tools/serde/_serde.py,sha256=8QnYK8ZG21zdNaC0v63iSz2bhgwOKRKAWxTVQvMV0A8,5525
172
- ml_tools/utilities/__init__.py,sha256=pkR2HxUIlKZMDderP2awYXVIFxkU2Xt3FkJmcmuRIpA,745
173
- ml_tools/utilities/_imprimir.py,sha256=sV3ASBOsTdVYvGojOTIpZYFyrnd4panS5h_4HcMzob4,432
174
- ml_tools/utilities/_utility_save_load.py,sha256=7skiiuYGVLVMK_nU9uLfUZw16ePvF3i9ub7G7LMyUgs,16085
175
- ml_tools/utilities/_utility_tools.py,sha256=bN0J9d1S0W5wNzNntBWqDsJcEAK7-1OgQg3X2fwXns0,6918
176
- dragon_ml_toolbox-20.2.0.dist-info/METADATA,sha256=UIHNTVykZBpohUtCdzsiPd33ilhKQDLSKNvURIWmrh0,7866
177
- dragon_ml_toolbox-20.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
178
- dragon_ml_toolbox-20.2.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
179
- dragon_ml_toolbox-20.2.0.dist-info/RECORD,,
@@ -1,13 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonColumnCleaner",
5
- "DragonDataFrameCleaner",
6
- "save_unique_values",
7
- "basic_clean",
8
- "basic_clean_drop",
9
- "drop_macro_polars",
10
- ]
11
-
12
- def info():
13
- _imprimir_disponibles(_GRUPOS)
@@ -1,24 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonTransformRecipe",
5
- "DragonProcessor",
6
- "BinaryTransformer",
7
- "MultiBinaryDummifier",
8
- "AutoDummifier",
9
- "KeywordDummifier",
10
- "NumberExtractor",
11
- "MultiNumberExtractor",
12
- "TemperatureExtractor",
13
- "MultiTemperatureExtractor",
14
- "RatioCalculator",
15
- "TriRatioCalculator",
16
- "CategoryMapper",
17
- "RegexMapper",
18
- "ValueBinner",
19
- "DateFeatureExtractor",
20
- "MolecularFormulaTransformer"
21
- ]
22
-
23
- def info():
24
- _imprimir_disponibles(_GRUPOS)
@@ -1,12 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonGUIConfig",
5
- "DragonGUIFactory",
6
- "DragonFeatureMaster",
7
- "DragonGUIHandler",
8
- "catch_exceptions"
9
- ]
10
-
11
- def info():
12
- _imprimir_disponibles(_GRUPOS)
@@ -1,14 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "custom_logger",
5
- "train_logger",
6
- "save_json",
7
- "load_json",
8
- "save_list_strings",
9
- "load_list_strings",
10
- "compare_lists"
11
- ]
12
-
13
- def info():
14
- _imprimir_disponibles(_GRUPOS)
@@ -1,11 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonMICE",
5
- "get_convergence_diagnostic",
6
- "get_imputed_distributions",
7
- "run_mice_pipeline",
8
- ]
9
-
10
- def info():
11
- _imprimir_disponibles(_GRUPOS)
@@ -1,12 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonPatienceEarlyStopping",
5
- "DragonPrecheltEarlyStopping",
6
- "DragonModelCheckpoint",
7
- "DragonScheduler",
8
- "DragonPlateauScheduler",
9
- ]
10
-
11
- def info():
12
- _imprimir_disponibles(_GRUPOS)
@@ -1,12 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonChainOrchestrator",
5
- "derive_next_step_schema",
6
- "augment_dataset_with_predictions",
7
- "augment_dataset_with_predictions_multi",
8
- "prepare_chaining_dataset",
9
- ]
10
-
11
- def info():
12
- _imprimir_disponibles(_GRUPOS)
@@ -1,47 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- # --- Metrics Formats ---
5
- "FormatRegressionMetrics",
6
- "FormatMultiTargetRegressionMetrics",
7
- "FormatBinaryClassificationMetrics",
8
- "FormatMultiClassClassificationMetrics",
9
- "FormatBinaryImageClassificationMetrics",
10
- "FormatMultiClassImageClassificationMetrics",
11
- "FormatMultiLabelBinaryClassificationMetrics",
12
- "FormatBinarySegmentationMetrics",
13
- "FormatMultiClassSegmentationMetrics",
14
- "FormatSequenceValueMetrics",
15
- "FormatSequenceSequenceMetrics",
16
-
17
- # --- Finalize Configs ---
18
- "FinalizeBinaryClassification",
19
- "FinalizeBinarySegmentation",
20
- "FinalizeBinaryImageClassification",
21
- "FinalizeMultiClassClassification",
22
- "FinalizeMultiClassImageClassification",
23
- "FinalizeMultiClassSegmentation",
24
- "FinalizeMultiLabelBinaryClassification",
25
- "FinalizeMultiTargetRegression",
26
- "FinalizeRegression",
27
- "FinalizeObjectDetection",
28
- "FinalizeSequenceSequencePrediction",
29
- "FinalizeSequenceValuePrediction",
30
-
31
- # --- Model Parameter Configs ---
32
- "DragonMLPParams",
33
- "DragonAttentionMLPParams",
34
- "DragonMultiHeadAttentionNetParams",
35
- "DragonTabularTransformerParams",
36
- "DragonGateParams",
37
- "DragonNodeParams",
38
- "DragonTabNetParams",
39
- "DragonAutoIntParams",
40
-
41
- # --- Training Config ---
42
- "DragonTrainingConfig",
43
- "DragonParetoConfig",
44
- ]
45
-
46
- def info():
47
- _imprimir_disponibles(_GRUPOS)
@@ -1,15 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonDataset",
5
- "DragonDatasetMulti",
6
- # sequence
7
- "DragonDatasetSequence",
8
- # vision
9
- "DragonDatasetVision",
10
- "DragonDatasetSegmentation",
11
- "DragonDatasetObjectDetection",
12
- ]
13
-
14
- def info():
15
- _imprimir_disponibles(_GRUPOS)
@@ -1,25 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- # regression
5
- "regression_metrics",
6
- "multi_target_regression_metrics",
7
- # classification
8
- "classification_metrics",
9
- "multi_label_classification_metrics",
10
- # loss
11
- "plot_losses",
12
- # feature importance
13
- "shap_summary_plot",
14
- "multi_target_shap_summary_plot",
15
- "plot_attention_importance",
16
- # sequence
17
- "sequence_to_value_metrics",
18
- "sequence_to_sequence_metrics",
19
- # vision
20
- "segmentation_metrics",
21
- "object_detection_metrics",
22
- ]
23
-
24
- def info():
25
- _imprimir_disponibles(_GRUPOS)
@@ -1,10 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "captum_feature_importance",
5
- "captum_image_heatmap",
6
- "captum_segmentation_heatmap"
7
- ]
8
-
9
- def info():
10
- _imprimir_disponibles(_GRUPOS)
@@ -1,8 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "FinalizedFileHandler"
5
- ]
6
-
7
- def info():
8
- _imprimir_disponibles(_GRUPOS)
@@ -1,11 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonInferenceHandler",
5
- "DragonChainInference",
6
- "multi_inference_regression",
7
- "multi_inference_classification"
8
- ]
9
-
10
- def info():
11
- _imprimir_disponibles(_GRUPOS)
@@ -1,8 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonSequenceInferenceHandler"
5
- ]
6
-
7
- def info():
8
- _imprimir_disponibles(_GRUPOS)
@@ -1,8 +0,0 @@
1
- from .._core import _imprimir_disponibles
2
-
3
- _GRUPOS = [
4
- "DragonVisionInferenceHandler"
5
- ]
6
-
7
- def info():
8
- _imprimir_disponibles(_GRUPOS)