dragon-ml-toolbox 20.10.0__py3-none-any.whl → 20.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 20.10.0
3
+ Version: 20.11.0
4
4
  Summary: Complete pipelines and helper tools for data science and machine learning projects.
5
5
  Author-email: Karl Luigi Loza Vidaurre <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,5 +1,5 @@
1
- dragon_ml_toolbox-20.10.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-20.10.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
1
+ dragon_ml_toolbox-20.11.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
+ dragon_ml_toolbox-20.11.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
3
3
  ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
5
5
  ml_tools/ETL_cleaning/__init__.py,sha256=gLRHF-qzwpqKTvbbn9chIQELeUDh_XGpBRX28j-5IqI,545
@@ -20,7 +20,7 @@ ml_tools/MICE/__init__.py,sha256=-IZv9V06U7BbB3ubu1vgbxtwFy0dV6E-9EDSg6-woio,385
20
20
  ml_tools/MICE/_dragon_mice.py,sha256=k82I3-f4aMuSW7LzTRnuBniEig7A9_vH-Oj7yWum6ss,17817
21
21
  ml_tools/ML_callbacks/__init__.py,sha256=xck_IdLFYCq6Lo2lQqbQd_nOeCDI8nfVyxBaBnQ-wcY,490
22
22
  ml_tools/ML_callbacks/_base.py,sha256=xLVAFOhBHjqnf8a_wKgW1F-tn2u6EqV3IHXsXKTn2NE,3269
23
- ml_tools/ML_callbacks/_checkpoint.py,sha256=Ioj9wn8XlsR_S1NnmWbyT9lkO8o2_DcHVMrFtxYJOes,9721
23
+ ml_tools/ML_callbacks/_checkpoint.py,sha256=hzFRCXJexS91lN428ztT85_db9DwaAwczODvdDMn9B4,9721
24
24
  ml_tools/ML_callbacks/_early_stop.py,sha256=qzTzxfDCDim0qj7QQ7ykJNIOBWbXtviDptMCczXXy_k,8073
25
25
  ml_tools/ML_callbacks/_scheduler.py,sha256=mn97_VH8Lp37KH3zSgmPemGQV8g-K8GfhRNHTftaNcg,7390
26
26
  ml_tools/ML_chain/__init__.py,sha256=aqSGAJnFYE_ZWbueNneg2z5welBsmGJ0XKi8Ebgw6Eg,554
@@ -83,7 +83,7 @@ ml_tools/ML_optimization/_single_manual.py,sha256=h-_k9JmRqPkjTra1nu7AyYbSyWkYZ1
83
83
  ml_tools/ML_scaler/_ML_scaler.py,sha256=P75X0Sx8N-VxC2Qy8aG7mWaZlkTfjspiZDi1YiMQD1I,8872
84
84
  ml_tools/ML_scaler/__init__.py,sha256=SHDNyLsoOLl2OtkIb3pGg-JRs3E2bYJBgnHwH3vw_Tk,172
85
85
  ml_tools/ML_trainer/__init__.py,sha256=42kueHa7Z0b_yLbywNCgIxlW6WmgLBqkTFwKH7vFLXw,379
86
- ml_tools/ML_trainer/_base_trainer.py,sha256=mflBw36SEN3pc8fOVqazrjwYk9n7Ey7dEhWgLfhD_Dw,17699
86
+ ml_tools/ML_trainer/_base_trainer.py,sha256=0ATm672NRsjJ6nv_NEl6-OEd9Bst1-s5OPxfG4qe8Lg,18075
87
87
  ml_tools/ML_trainer/_dragon_detection_trainer.py,sha256=B5F93PPnp2fYQmj1SYFRnAPVA39JwZUtJRMCdpSQF7k,16235
88
88
  ml_tools/ML_trainer/_dragon_sequence_trainer.py,sha256=Tj4YGgMrCkLnnNUlT_8wcdJFFcFhsdux308QPiqj-tw,23509
89
89
  ml_tools/ML_trainer/_dragon_trainer.py,sha256=bvSen_liut6B7gbg53MxOXKpJUkRaHtXDXW2SXBWPYQ,58553
@@ -119,7 +119,7 @@ ml_tools/ensemble_learning/_ensemble_learning.py,sha256=MHDZBR20_nStlSSeThFI3bSu
119
119
  ml_tools/excel_handler/__init__.py,sha256=AaWM3n_dqBhJLTs3OEA57ex5YykKXNOwVCyHlVsdnqI,530
120
120
  ml_tools/excel_handler/_excel_handler.py,sha256=TODudmeQgDSdxUKzLfAzizs--VL-g8WxDOfQ4sgxxLs,13965
121
121
  ml_tools/keys/__init__.py,sha256=-0c2pmrhyfROc-oQpEjJGLBMhSagA3CyFijQaaqZRqU,399
122
- ml_tools/keys/_keys.py,sha256=NAq65TqHAebs0MKxsuZfyjGJ7rfk1jaWqP3BVeInyzM,9389
122
+ ml_tools/keys/_keys.py,sha256=Kr73o9SaH5Y3DT0z0H-1eLwlBplJmjisjoO_EoUNkAg,9388
123
123
  ml_tools/math_utilities/__init__.py,sha256=K7Obkkc4rPKj4EbRZf1BsXHfiCg7FXYv_aN9Yc2Z_Vg,400
124
124
  ml_tools/math_utilities/_math_utilities.py,sha256=BYHIVcM9tuKIhVrkgLLiM5QalJ39zx7dXYy_M9aGgiM,9012
125
125
  ml_tools/optimization_tools/__init__.py,sha256=KD8JXpfGuPndO4AHnjJGu6uV1GRwhOfboD0KZV45kzw,658
@@ -143,7 +143,7 @@ ml_tools/utilities/__init__.py,sha256=h4lE3SQstg-opcQj6QSKhu-HkqSbmHExsWoM9vC5D9
143
143
  ml_tools/utilities/_translate.py,sha256=U8hRPa3PmTpIf9n9yR3gBGmp_hkcsjQLwjAHSHc0WHs,10325
144
144
  ml_tools/utilities/_utility_save_load.py,sha256=EFvFaTaHahDQWdJWZr-j7cHqRbG_Xrpc96228JhV-bs,16773
145
145
  ml_tools/utilities/_utility_tools.py,sha256=bN0J9d1S0W5wNzNntBWqDsJcEAK7-1OgQg3X2fwXns0,6918
146
- dragon_ml_toolbox-20.10.0.dist-info/METADATA,sha256=feE5UA237wpmlfb3p_6tYBD7KLlsu2fVqv-X3oj7iFE,7889
147
- dragon_ml_toolbox-20.10.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
148
- dragon_ml_toolbox-20.10.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
149
- dragon_ml_toolbox-20.10.0.dist-info/RECORD,,
146
+ dragon_ml_toolbox-20.11.0.dist-info/METADATA,sha256=KiKepG9k7M1RbCXxEutcr7EkvDPaWIRiKoSvrTR1HSw,7889
147
+ dragon_ml_toolbox-20.11.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
148
+ dragon_ml_toolbox-20.11.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
149
+ dragon_ml_toolbox-20.11.0.dist-info/RECORD,,
@@ -79,7 +79,7 @@ class DragonModelCheckpoint(_Callback):
79
79
 
80
80
  def on_train_begin(self, logs=None):
81
81
  """Reset file tracking state when training starts.
82
- NOTE: Do nOT reset self.best here if it differs from the default. This allows the Trainer to restore 'best' from a checkpoint before calling train()."""
82
+ NOTE: Do not reset self.best here if it differs from the default. This allows the Trainer to restore 'best' from a checkpoint before calling train()."""
83
83
  self.best_checkpoints = []
84
84
  self.recent_checkpoints = []
85
85
 
@@ -276,6 +276,16 @@ class _BaseDragonTrainer(ABC):
276
276
  except Exception as e:
277
277
  _LOGGER.error(f"Failed to load checkpoint from '{p}': {e}")
278
278
  raise
279
+
280
+ def load_checkpoint(self, path: Union[str, Path], verbose: int = 3):
281
+ """
282
+ Loads a specific checkpoint state into the model, optimizer, and scheduler.
283
+
284
+ Args:
285
+ path (str | Path): Path to the .pth checkpoint file.
286
+ verbose (int): Verbosity level for logging.
287
+ """
288
+ self._load_checkpoint(path=path, verbose=verbose)
279
289
 
280
290
  def fit(self,
281
291
  save_dir: Union[str,Path],
@@ -366,7 +376,7 @@ class _BaseDragonTrainer(ABC):
366
376
  self.device = self._validate_device(device)
367
377
  self.model.to(self.device)
368
378
  _LOGGER.info(f"Trainer and model moved to {self.device}.")
369
-
379
+
370
380
  def _load_model_state_wrapper(self, model_checkpoint: Union[Path, Literal['best', 'current']], verbose: int = 2):
371
381
  """
372
382
  Private helper to load the correct model state_dict based on user's choice.
ml_tools/keys/_keys.py CHANGED
@@ -113,7 +113,7 @@ class PyTorchCheckpointKeys:
113
113
  EPOCH = "epoch"
114
114
  BEST_SCORE = "best_score"
115
115
  HISTORY = "history"
116
- CHECKPOINT_NAME = "PyModelCheckpoint"
116
+ CHECKPOINT_NAME = "DragonCheckpoint"
117
117
 
118
118
  ### Finalized config
119
119
  # EPOCH