dragon-ml-toolbox 19.14.0__py3-none-any.whl → 20.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. {dragon_ml_toolbox-19.14.0.dist-info → dragon_ml_toolbox-20.0.1.dist-info}/METADATA +29 -46
  2. dragon_ml_toolbox-20.0.1.dist-info/RECORD +178 -0
  3. ml_tools/{ETL_cleaning.py → ETL_cleaning/__init__.py} +13 -5
  4. ml_tools/ETL_cleaning/_basic_clean.py +351 -0
  5. ml_tools/ETL_cleaning/_clean_tools.py +128 -0
  6. ml_tools/ETL_cleaning/_dragon_cleaner.py +245 -0
  7. ml_tools/ETL_cleaning/_imprimir.py +13 -0
  8. ml_tools/{ETL_engineering.py → ETL_engineering/__init__.py} +8 -4
  9. ml_tools/ETL_engineering/_dragon_engineering.py +261 -0
  10. ml_tools/ETL_engineering/_imprimir.py +24 -0
  11. ml_tools/{_core/_ETL_engineering.py → ETL_engineering/_transforms.py} +14 -267
  12. ml_tools/{_core → GUI_tools}/_GUI_tools.py +37 -40
  13. ml_tools/{GUI_tools.py → GUI_tools/__init__.py} +7 -5
  14. ml_tools/GUI_tools/_imprimir.py +12 -0
  15. ml_tools/IO_tools/_IO_loggers.py +235 -0
  16. ml_tools/IO_tools/_IO_save_load.py +151 -0
  17. ml_tools/IO_tools/_IO_utils.py +140 -0
  18. ml_tools/{IO_tools.py → IO_tools/__init__.py} +13 -5
  19. ml_tools/IO_tools/_imprimir.py +14 -0
  20. ml_tools/MICE/_MICE_imputation.py +132 -0
  21. ml_tools/{MICE_imputation.py → MICE/__init__.py} +6 -7
  22. ml_tools/{_core/_MICE_imputation.py → MICE/_dragon_mice.py} +250 -325
  23. ml_tools/MICE/_imprimir.py +11 -0
  24. ml_tools/{ML_callbacks.py → ML_callbacks/__init__.py} +12 -4
  25. ml_tools/ML_callbacks/_base.py +101 -0
  26. ml_tools/ML_callbacks/_checkpoint.py +232 -0
  27. ml_tools/ML_callbacks/_early_stop.py +208 -0
  28. ml_tools/ML_callbacks/_imprimir.py +12 -0
  29. ml_tools/ML_callbacks/_scheduler.py +197 -0
  30. ml_tools/{ML_chaining_utilities.py → ML_chain/__init__.py} +8 -3
  31. ml_tools/{_core/_ML_chaining_utilities.py → ML_chain/_chaining_tools.py} +5 -129
  32. ml_tools/ML_chain/_dragon_chain.py +140 -0
  33. ml_tools/ML_chain/_imprimir.py +11 -0
  34. ml_tools/ML_configuration/__init__.py +90 -0
  35. ml_tools/ML_configuration/_base_model_config.py +69 -0
  36. ml_tools/ML_configuration/_finalize.py +366 -0
  37. ml_tools/ML_configuration/_imprimir.py +47 -0
  38. ml_tools/ML_configuration/_metrics.py +593 -0
  39. ml_tools/ML_configuration/_models.py +206 -0
  40. ml_tools/ML_configuration/_training.py +124 -0
  41. ml_tools/ML_datasetmaster/__init__.py +28 -0
  42. ml_tools/ML_datasetmaster/_base_datasetmaster.py +337 -0
  43. ml_tools/{_core/_ML_datasetmaster.py → ML_datasetmaster/_datasetmaster.py} +9 -329
  44. ml_tools/ML_datasetmaster/_imprimir.py +15 -0
  45. ml_tools/{_core/_ML_sequence_datasetmaster.py → ML_datasetmaster/_sequence_datasetmaster.py} +13 -15
  46. ml_tools/{_core/_ML_vision_datasetmaster.py → ML_datasetmaster/_vision_datasetmaster.py} +63 -65
  47. ml_tools/ML_evaluation/__init__.py +53 -0
  48. ml_tools/ML_evaluation/_classification.py +629 -0
  49. ml_tools/ML_evaluation/_feature_importance.py +409 -0
  50. ml_tools/ML_evaluation/_imprimir.py +25 -0
  51. ml_tools/ML_evaluation/_loss.py +92 -0
  52. ml_tools/ML_evaluation/_regression.py +273 -0
  53. ml_tools/{_core/_ML_sequence_evaluation.py → ML_evaluation/_sequence.py} +8 -11
  54. ml_tools/{_core/_ML_vision_evaluation.py → ML_evaluation/_vision.py} +12 -17
  55. ml_tools/{_core → ML_evaluation_captum}/_ML_evaluation_captum.py +11 -38
  56. ml_tools/{ML_evaluation_captum.py → ML_evaluation_captum/__init__.py} +6 -4
  57. ml_tools/ML_evaluation_captum/_imprimir.py +10 -0
  58. ml_tools/{_core → ML_finalize_handler}/_ML_finalize_handler.py +3 -7
  59. ml_tools/ML_finalize_handler/__init__.py +10 -0
  60. ml_tools/ML_finalize_handler/_imprimir.py +8 -0
  61. ml_tools/ML_inference/__init__.py +22 -0
  62. ml_tools/ML_inference/_base_inference.py +166 -0
  63. ml_tools/{_core/_ML_chaining_inference.py → ML_inference/_chain_inference.py} +14 -17
  64. ml_tools/ML_inference/_dragon_inference.py +332 -0
  65. ml_tools/ML_inference/_imprimir.py +11 -0
  66. ml_tools/ML_inference/_multi_inference.py +180 -0
  67. ml_tools/ML_inference_sequence/__init__.py +10 -0
  68. ml_tools/ML_inference_sequence/_imprimir.py +8 -0
  69. ml_tools/{_core/_ML_sequence_inference.py → ML_inference_sequence/_sequence_inference.py} +11 -15
  70. ml_tools/ML_inference_vision/__init__.py +10 -0
  71. ml_tools/ML_inference_vision/_imprimir.py +8 -0
  72. ml_tools/{_core/_ML_vision_inference.py → ML_inference_vision/_vision_inference.py} +15 -19
  73. ml_tools/ML_models/__init__.py +32 -0
  74. ml_tools/{_core/_ML_models_advanced.py → ML_models/_advanced_models.py} +22 -18
  75. ml_tools/ML_models/_base_mlp_attention.py +198 -0
  76. ml_tools/{_core/_models_advanced_base.py → ML_models/_base_save_load.py} +73 -49
  77. ml_tools/ML_models/_dragon_tabular.py +248 -0
  78. ml_tools/ML_models/_imprimir.py +18 -0
  79. ml_tools/ML_models/_mlp_attention.py +134 -0
  80. ml_tools/{_core → ML_models}/_models_advanced_helpers.py +13 -13
  81. ml_tools/ML_models_sequence/__init__.py +10 -0
  82. ml_tools/ML_models_sequence/_imprimir.py +8 -0
  83. ml_tools/{_core/_ML_sequence_models.py → ML_models_sequence/_sequence_models.py} +5 -8
  84. ml_tools/ML_models_vision/__init__.py +29 -0
  85. ml_tools/ML_models_vision/_base_wrapper.py +254 -0
  86. ml_tools/ML_models_vision/_image_classification.py +182 -0
  87. ml_tools/ML_models_vision/_image_segmentation.py +108 -0
  88. ml_tools/ML_models_vision/_imprimir.py +16 -0
  89. ml_tools/ML_models_vision/_object_detection.py +135 -0
  90. ml_tools/ML_optimization/__init__.py +21 -0
  91. ml_tools/ML_optimization/_imprimir.py +13 -0
  92. ml_tools/{_core/_ML_optimization_pareto.py → ML_optimization/_multi_dragon.py} +18 -24
  93. ml_tools/ML_optimization/_single_dragon.py +203 -0
  94. ml_tools/{_core/_ML_optimization.py → ML_optimization/_single_manual.py} +75 -213
  95. ml_tools/{_core → ML_scaler}/_ML_scaler.py +8 -11
  96. ml_tools/ML_scaler/__init__.py +10 -0
  97. ml_tools/ML_scaler/_imprimir.py +8 -0
  98. ml_tools/ML_trainer/__init__.py +20 -0
  99. ml_tools/ML_trainer/_base_trainer.py +297 -0
  100. ml_tools/ML_trainer/_dragon_detection_trainer.py +402 -0
  101. ml_tools/ML_trainer/_dragon_sequence_trainer.py +540 -0
  102. ml_tools/ML_trainer/_dragon_trainer.py +1160 -0
  103. ml_tools/ML_trainer/_imprimir.py +10 -0
  104. ml_tools/{ML_utilities.py → ML_utilities/__init__.py} +14 -6
  105. ml_tools/ML_utilities/_artifact_finder.py +382 -0
  106. ml_tools/ML_utilities/_imprimir.py +16 -0
  107. ml_tools/ML_utilities/_inspection.py +325 -0
  108. ml_tools/ML_utilities/_train_tools.py +205 -0
  109. ml_tools/{ML_vision_transformers.py → ML_vision_transformers/__init__.py} +9 -6
  110. ml_tools/{_core/_ML_vision_transformers.py → ML_vision_transformers/_core_transforms.py} +11 -155
  111. ml_tools/ML_vision_transformers/_imprimir.py +14 -0
  112. ml_tools/ML_vision_transformers/_offline_augmentation.py +159 -0
  113. ml_tools/{_core/_PSO_optimization.py → PSO_optimization/_PSO.py} +58 -15
  114. ml_tools/{PSO_optimization.py → PSO_optimization/__init__.py} +5 -3
  115. ml_tools/PSO_optimization/_imprimir.py +10 -0
  116. ml_tools/SQL/__init__.py +7 -0
  117. ml_tools/{_core/_SQL.py → SQL/_dragon_SQL.py} +7 -11
  118. ml_tools/SQL/_imprimir.py +8 -0
  119. ml_tools/{_core → VIF}/_VIF_factor.py +5 -8
  120. ml_tools/{VIF_factor.py → VIF/__init__.py} +4 -2
  121. ml_tools/VIF/_imprimir.py +10 -0
  122. ml_tools/_core/__init__.py +7 -1
  123. ml_tools/_core/_logger.py +8 -18
  124. ml_tools/_core/_schema_load_ops.py +43 -0
  125. ml_tools/_core/_script_info.py +2 -2
  126. ml_tools/{data_exploration.py → data_exploration/__init__.py} +33 -17
  127. ml_tools/data_exploration/_analysis.py +214 -0
  128. ml_tools/data_exploration/_cleaning.py +566 -0
  129. ml_tools/data_exploration/_features.py +583 -0
  130. ml_tools/data_exploration/_imprimir.py +32 -0
  131. ml_tools/data_exploration/_plotting.py +487 -0
  132. ml_tools/data_exploration/_schema_ops.py +176 -0
  133. ml_tools/{ensemble_evaluation.py → ensemble_evaluation/__init__.py} +6 -4
  134. ml_tools/{_core → ensemble_evaluation}/_ensemble_evaluation.py +3 -7
  135. ml_tools/ensemble_evaluation/_imprimir.py +14 -0
  136. ml_tools/{ensemble_inference.py → ensemble_inference/__init__.py} +5 -3
  137. ml_tools/{_core → ensemble_inference}/_ensemble_inference.py +15 -18
  138. ml_tools/ensemble_inference/_imprimir.py +9 -0
  139. ml_tools/{ensemble_learning.py → ensemble_learning/__init__.py} +4 -6
  140. ml_tools/{_core → ensemble_learning}/_ensemble_learning.py +7 -10
  141. ml_tools/ensemble_learning/_imprimir.py +10 -0
  142. ml_tools/{excel_handler.py → excel_handler/__init__.py} +5 -3
  143. ml_tools/{_core → excel_handler}/_excel_handler.py +6 -10
  144. ml_tools/excel_handler/_imprimir.py +13 -0
  145. ml_tools/{keys.py → keys/__init__.py} +4 -1
  146. ml_tools/keys/_imprimir.py +11 -0
  147. ml_tools/{_core → keys}/_keys.py +2 -0
  148. ml_tools/{math_utilities.py → math_utilities/__init__.py} +5 -2
  149. ml_tools/math_utilities/_imprimir.py +11 -0
  150. ml_tools/{_core → math_utilities}/_math_utilities.py +1 -5
  151. ml_tools/{optimization_tools.py → optimization_tools/__init__.py} +9 -4
  152. ml_tools/optimization_tools/_imprimir.py +13 -0
  153. ml_tools/optimization_tools/_optimization_bounds.py +236 -0
  154. ml_tools/optimization_tools/_optimization_plots.py +218 -0
  155. ml_tools/{path_manager.py → path_manager/__init__.py} +6 -3
  156. ml_tools/{_core/_path_manager.py → path_manager/_dragonmanager.py} +11 -347
  157. ml_tools/path_manager/_imprimir.py +15 -0
  158. ml_tools/path_manager/_path_tools.py +346 -0
  159. ml_tools/plot_fonts/__init__.py +8 -0
  160. ml_tools/plot_fonts/_imprimir.py +8 -0
  161. ml_tools/{_core → plot_fonts}/_plot_fonts.py +2 -5
  162. ml_tools/schema/__init__.py +15 -0
  163. ml_tools/schema/_feature_schema.py +223 -0
  164. ml_tools/schema/_gui_schema.py +191 -0
  165. ml_tools/schema/_imprimir.py +10 -0
  166. ml_tools/{serde.py → serde/__init__.py} +4 -2
  167. ml_tools/serde/_imprimir.py +10 -0
  168. ml_tools/{_core → serde}/_serde.py +3 -8
  169. ml_tools/{utilities.py → utilities/__init__.py} +11 -6
  170. ml_tools/utilities/_imprimir.py +18 -0
  171. ml_tools/{_core/_utilities.py → utilities/_utility_save_load.py} +13 -190
  172. ml_tools/utilities/_utility_tools.py +192 -0
  173. dragon_ml_toolbox-19.14.0.dist-info/RECORD +0 -111
  174. ml_tools/ML_chaining_inference.py +0 -8
  175. ml_tools/ML_configuration.py +0 -86
  176. ml_tools/ML_configuration_pytab.py +0 -14
  177. ml_tools/ML_datasetmaster.py +0 -10
  178. ml_tools/ML_evaluation.py +0 -16
  179. ml_tools/ML_evaluation_multi.py +0 -12
  180. ml_tools/ML_finalize_handler.py +0 -8
  181. ml_tools/ML_inference.py +0 -12
  182. ml_tools/ML_models.py +0 -14
  183. ml_tools/ML_models_advanced.py +0 -14
  184. ml_tools/ML_models_pytab.py +0 -14
  185. ml_tools/ML_optimization.py +0 -14
  186. ml_tools/ML_optimization_pareto.py +0 -8
  187. ml_tools/ML_scaler.py +0 -8
  188. ml_tools/ML_sequence_datasetmaster.py +0 -8
  189. ml_tools/ML_sequence_evaluation.py +0 -10
  190. ml_tools/ML_sequence_inference.py +0 -8
  191. ml_tools/ML_sequence_models.py +0 -8
  192. ml_tools/ML_trainer.py +0 -12
  193. ml_tools/ML_vision_datasetmaster.py +0 -12
  194. ml_tools/ML_vision_evaluation.py +0 -10
  195. ml_tools/ML_vision_inference.py +0 -8
  196. ml_tools/ML_vision_models.py +0 -18
  197. ml_tools/SQL.py +0 -8
  198. ml_tools/_core/_ETL_cleaning.py +0 -694
  199. ml_tools/_core/_IO_tools.py +0 -498
  200. ml_tools/_core/_ML_callbacks.py +0 -702
  201. ml_tools/_core/_ML_configuration.py +0 -1332
  202. ml_tools/_core/_ML_configuration_pytab.py +0 -102
  203. ml_tools/_core/_ML_evaluation.py +0 -867
  204. ml_tools/_core/_ML_evaluation_multi.py +0 -544
  205. ml_tools/_core/_ML_inference.py +0 -646
  206. ml_tools/_core/_ML_models.py +0 -668
  207. ml_tools/_core/_ML_models_pytab.py +0 -693
  208. ml_tools/_core/_ML_trainer.py +0 -2323
  209. ml_tools/_core/_ML_utilities.py +0 -886
  210. ml_tools/_core/_ML_vision_models.py +0 -644
  211. ml_tools/_core/_data_exploration.py +0 -1909
  212. ml_tools/_core/_optimization_tools.py +0 -493
  213. ml_tools/_core/_schema.py +0 -359
  214. ml_tools/plot_fonts.py +0 -8
  215. ml_tools/schema.py +0 -12
  216. {dragon_ml_toolbox-19.14.0.dist-info → dragon_ml_toolbox-20.0.1.dist-info}/WHEEL +0 -0
  217. {dragon_ml_toolbox-19.14.0.dist-info → dragon_ml_toolbox-20.0.1.dist-info}/licenses/LICENSE +0 -0
  218. {dragon_ml_toolbox-19.14.0.dist-info → dragon_ml_toolbox-20.0.1.dist-info}/licenses/LICENSE-THIRD-PARTY.md +0 -0
  219. {dragon_ml_toolbox-19.14.0.dist-info → dragon_ml_toolbox-20.0.1.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 19.14.0
3
+ Version: 20.0.1
4
4
  Summary: Complete pipelines and helper tools for data science and machine learning projects.
5
5
  Author-email: Karl Luigi Loza Vidaurre <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -13,6 +13,8 @@ Description-Content-Type: text/markdown
13
13
  License-File: LICENSE
14
14
  License-File: LICENSE-THIRD-PARTY.md
15
15
  Provides-Extra: ml
16
+ Requires-Dist: torch; extra == "ml"
17
+ Requires-Dist: torchvision; extra == "ml"
16
18
  Requires-Dist: numpy<2.0; extra == "ml"
17
19
  Requires-Dist: pandas; extra == "ml"
18
20
  Requires-Dist: polars>=1.0; extra == "ml"
@@ -34,9 +36,6 @@ Requires-Dist: ipykernel; extra == "ml"
34
36
  Requires-Dist: notebook; extra == "ml"
35
37
  Requires-Dist: jupyterlab; extra == "ml"
36
38
  Requires-Dist: ipywidgets; extra == "ml"
37
- Provides-Extra: py-tab
38
- Requires-Dist: omegaconf; extra == "py-tab"
39
- Requires-Dist: pytorch_tabular; extra == "py-tab"
40
39
  Provides-Extra: ensemble
41
40
  Requires-Dist: numpy; extra == "ensemble"
42
41
  Requires-Dist: numba>=0.60; extra == "ensemble"
@@ -139,7 +138,7 @@ This toolbox is designed as a collection of mutually exclusive environments due
139
138
 
140
139
  Installs a comprehensive set of tools for typical data science workflows, including data manipulation, modeling, and evaluation using PyTorch.
141
140
 
142
- ➡️ Prerequisite: PyTorch required. Follow the official instructions: [PyTorch website](https://pytorch.org/get-started/locally/)
141
+ ➡️ On Windows, the default installation includes the CPU version of PyTorch. Follow the official instructions to install the CUDA version: [PyTorch website](https://pytorch.org/get-started/locally/)
143
142
 
144
143
  ```Bash
145
144
  pip install "dragon-ml-toolbox[ML]"
@@ -148,7 +147,6 @@ pip install "dragon-ml-toolbox[ML]"
148
147
  #### Modules:
149
148
 
150
149
  ```Bash
151
- constants
152
150
  data_exploration
153
151
  ETL_cleaning
154
152
  ETL_engineering
@@ -156,46 +154,31 @@ IO_tools
156
154
  keys
157
155
  math_utilities
158
156
  ML_callbacks
159
- ML_chaining_inference
160
- ML_chaining_utilities
157
+ ML_chain
161
158
  ML_configuration
162
159
  ML_datasetmaster
163
- ML_evaluation_captum
164
- ML_evaluation_multi
165
160
  ML_evaluation
161
+ ML_evaluation_captum
162
+ ML_finalize_handler
166
163
  ML_inference
164
+ ML_inference_sequence
165
+ ML_inference_vision
167
166
  ML_models
168
- ML_models_advanced
169
- ML_optimization_pareto
167
+ ML_models_sequence
168
+ ML_models_vision
170
169
  ML_optimization
171
170
  ML_scaler
172
- ML_sequence_datasetmaster
173
- ML_sequence_evaluation
174
- ML_sequence_inference
175
- ML_sequence_models
176
171
  ML_trainer
177
172
  ML_utilities
178
- ML_vision_datasetmaster
179
- ML_vision_evaluation
180
- ML_vision_inference
181
- ML_vision_models
182
173
  ML_vision_transformers
183
174
  optimization_tools
184
175
  path_manager
176
+ plot_fonts
185
177
  schema
186
178
  serde
187
179
  SQL
188
180
  utilities
189
- ```
190
-
191
- Wrappers for some `pytorch_tabular` models are available:
192
-
193
- ```Bash
194
- pip install "dragon-ml-toolbox[ML,py-tab]"
195
-
196
- # Extra Modules:
197
- ML_models_pytab
198
- ML_configuration_pytab
181
+ constants
199
182
  ```
200
183
 
201
184
  ---
@@ -211,22 +194,23 @@ pip install "dragon-ml-toolbox[ensemble]"
211
194
  #### Modules:
212
195
 
213
196
  ```Bash
214
- constants
215
- IO_tools
216
197
  data_exploration
217
198
  ensemble_evaluation
218
199
  ensemble_inference
219
200
  ensemble_learning
220
201
  ETL_cleaning
221
202
  ETL_engineering
203
+ IO_tools
222
204
  math_utilities
223
205
  optimization_tools
224
206
  path_manager
207
+ plot_fonts
225
208
  PSO_optimization
226
209
  schema
227
210
  serde
228
211
  SQL
229
212
  utilities
213
+ constants
230
214
  ```
231
215
 
232
216
  ---
@@ -242,14 +226,14 @@ pip install "dragon-ml-toolbox[mice]"
242
226
  #### Modules:
243
227
 
244
228
  ```Bash
245
- constants
246
229
  IO_tools
247
230
  math_utilities
248
- MICE_imputation
249
- serde
250
- VIF_factor
231
+ MICE
251
232
  path_manager
233
+ plot_fonts
234
+ serde
252
235
  utilities
236
+ VIF
253
237
  ```
254
238
 
255
239
  ---
@@ -283,13 +267,13 @@ pip install "dragon-ml-toolbox[gui-boost]"
283
267
  #### Modules:
284
268
 
285
269
  ```Bash
286
- constants
287
- IO_tools
288
- GUI_tools
289
270
  ensemble_inference
271
+ GUI_tools
272
+ IO_tools
290
273
  path_manager
291
274
  schema
292
275
  serde
276
+ constants
293
277
  ```
294
278
 
295
279
  ---
@@ -305,21 +289,20 @@ pip install "dragon-ml-toolbox[gui-torch]"
305
289
  #### Modules:
306
290
 
307
291
  ```Bash
308
- constants
309
- IO_tools
310
292
  GUI_tools
293
+ IO_tools
311
294
  keys
312
295
  ML_models
313
- ML_models_advanced
314
- ML_sequence_models
315
- ML_vision_models # Requires: torchvision and Pillow
296
+ ML_models_sequence
297
+ ML_models_vision # Requires: torchvision and Pillow
316
298
  ML_inference
317
- ML_sequence_inference
318
- ML_vision_inference # Requires: torchvision and Pillow
299
+ ML_inference_sequence
300
+ ML_inference_vision # Requires: torchvision and Pillow
319
301
  ML_vision_transformers # Requires: torchvision and Pillow
320
302
  ML_scaler
321
303
  path_manager
322
304
  schema
305
+ constants
323
306
  ```
324
307
 
325
308
  ---
@@ -0,0 +1,178 @@
1
+ dragon_ml_toolbox-20.0.1.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
+ dragon_ml_toolbox-20.0.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
3
+ ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
+ ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
5
+ ml_tools/ETL_cleaning/__init__.py,sha256=TytE8RKmtW4KQlkaTxpYKlJAbCu-VAc82eDdHwVD3Jo,427
6
+ ml_tools/ETL_cleaning/_basic_clean.py,sha256=yZUcmMdBZl06Tgq66Cjzf7U1HQOuHhdNZeJG6pZ5MSk,13881
7
+ ml_tools/ETL_cleaning/_clean_tools.py,sha256=pizTBK69zHt7HpZc_bcX9KoX2loLDcyQJddf_Kl-Ldo,5129
8
+ ml_tools/ETL_cleaning/_dragon_cleaner.py,sha256=dge7KQSO4IdeXV4pCCJCb5lhAzR8rmwZPoCscm1A9KY,10272
9
+ ml_tools/ETL_cleaning/_imprimir.py,sha256=2mYaCg5rYb-bweb1TAUdwZQadeOC92dKxlgOwq0U1tc,256
10
+ ml_tools/ETL_engineering/__init__.py,sha256=NFE0iBj_D-qjjBtR-nGbHWUUEPwOiwS3j--giGxQbik,944
11
+ ml_tools/ETL_engineering/_dragon_engineering.py,sha256=D-D6tmhyQ3I9-cXgxLVVbQBRTZoNsWaKPsvcTUaetws,10810
12
+ ml_tools/ETL_engineering/_imprimir.py,sha256=DqHwD9iidOTzSUrg95ayXiBiUjTi9L5d51vmM_3TYVU,538
13
+ ml_tools/ETL_engineering/_transforms.py,sha256=qOxa_vjh3gzS4IiGFqq_0Wnh0ilQO41jRiIp-6Ej4vw,47079
14
+ ml_tools/GUI_tools/_GUI_tools.py,sha256=vjiBbiU3qCxB4rivBWHNBnq-NhpDZZERslkmi_61WxY,48987
15
+ ml_tools/GUI_tools/__init__.py,sha256=Oisj9YTX5B3BTZqmjosGR7c4HWY84UvaUsfhdg22YYM,309
16
+ ml_tools/GUI_tools/_imprimir.py,sha256=aq-Lh5Z3Y0O5z_es8d08NsBt_PhnEhsigMuLxxQMJ54,227
17
+ ml_tools/IO_tools/_IO_loggers.py,sha256=DLxY3Oo4yvZp_jjST0txRDJ1gpwaK1IWiRkvzG7yizs,8692
18
+ ml_tools/IO_tools/_IO_save_load.py,sha256=xVeQzrd4r-L9ruFPvO8cV3bvzYHhJ0coOfZMrNWq5rs,4426
19
+ ml_tools/IO_tools/_IO_utils.py,sha256=quOqBVSi_z0AI7qznCNAcLRB_f4kaI-abANngXUBcYA,4384
20
+ ml_tools/IO_tools/__init__.py,sha256=ZeEM5bbZ5udgRXFAL51uRXzoCzPLO8TWZ4AiME7NNy0,411
21
+ ml_tools/IO_tools/_imprimir.py,sha256=eN-V60xtDNFINThuRTjXknMxtbK8Ah0MWgc8l2GTXMA,250
22
+ ml_tools/MICE/_MICE_imputation.py,sha256=N1cDwVYfoHvIZz7FLLcW-guZUo8iFKedtkfS7CU6TVE,5318
23
+ ml_tools/MICE/__init__.py,sha256=i5N_fd3rxpEgLsKKDoLbokW0rHm-ADEg8r3gBB5426E,313
24
+ ml_tools/MICE/_dragon_mice.py,sha256=qEOy9Gx1QzVBvkvGR8790TkvKw8-fp06vCDGWM6j9os,17806
25
+ ml_tools/MICE/_imprimir.py,sha256=YVhgZlUQ-NrDUVhHTK3u8s1QEbZ_jvDVF7-0FptVsxs,215
26
+ ml_tools/ML_callbacks/__init__.py,sha256=dF37KXezy6P3VArhZbm5CI6si65GA-qVY70jvZFZYkA,427
27
+ ml_tools/ML_callbacks/_base.py,sha256=xLVAFOhBHjqnf8a_wKgW1F-tn2u6EqV3IHXsXKTn2NE,3269
28
+ ml_tools/ML_callbacks/_checkpoint.py,sha256=Ioj9wn8XlsR_S1NnmWbyT9lkO8o2_DcHVMrFtxYJOes,9721
29
+ ml_tools/ML_callbacks/_early_stop.py,sha256=qzTzxfDCDim0qj7QQ7ykJNIOBWbXtviDptMCczXXy_k,8073
30
+ ml_tools/ML_callbacks/_imprimir.py,sha256=Wz6NXhiCFSJsAZh3JnQ4qt7tj2_qhu14DTwu-gkkzZs,257
31
+ ml_tools/ML_callbacks/_scheduler.py,sha256=mn97_VH8Lp37KH3zSgmPemGQV8g-K8GfhRNHTftaNcg,7390
32
+ ml_tools/ML_chain/__init__.py,sha256=rUBVwB96fAoq-Q9zY3s0fL_TFU5W2axlg7XZzrCXrSU,399
33
+ ml_tools/ML_chain/_chaining_tools.py,sha256=ASi0Zr9WBVA7wd-pYVN69VIZFOIuB4QpGlrSl9Ob-90,13788
34
+ ml_tools/ML_chain/_dragon_chain.py,sha256=wFlknv0rlL8P3K0ls8kj_oup4SvPNFqSxDmiBdPfGt4,5737
35
+ ml_tools/ML_chain/_imprimir.py,sha256=JCVslxnrmvJ_LJOmexL2u5-OYykHFe1H49EkrJPpAIg,254
36
+ ml_tools/ML_configuration/__init__.py,sha256=wSpfk8bHRSoYjcKJmjd5ivB4Fw8UFjyOZL4hct9rJT0,2637
37
+ ml_tools/ML_configuration/_base_model_config.py,sha256=95L3IfobNFMtnNr79zYpDGerC1q1v7M05tWZvTS2cwE,2247
38
+ ml_tools/ML_configuration/_finalize.py,sha256=l_n13bLu0avMdJ8hNRrH8V_wOBQZM1UGsTydKBkTysM,15047
39
+ ml_tools/ML_configuration/_imprimir.py,sha256=H3h0xYUA6y8LYtO57DIHD0GTX-9b2CaMI2T_3jp5qOo,1452
40
+ ml_tools/ML_configuration/_metrics.py,sha256=PqBGPO1Y_6ImmYI3TEBJhzipULE854vbvE0AbP5m8zQ,22888
41
+ ml_tools/ML_configuration/_models.py,sha256=lvuuqvD6DWUzOa3i06NZfrdfOi9bu2e26T_QO6BGMSw,7629
42
+ ml_tools/ML_configuration/_training.py,sha256=VJcwjkTV4Bvj21jQMnBKgfgaNNXK5yVH5TyFYAF7-N4,5307
43
+ ml_tools/ML_datasetmaster/__init__.py,sha256=30QTwpZBwZRg5M6CNSjCLNc0vnKFLw0LA7u9Wg0DGOg,517
44
+ ml_tools/ML_datasetmaster/_base_datasetmaster.py,sha256=bwP8_dcpQ-6LvW6ijU5jJCubhI2GrdxavietDC7HmR0,13948
45
+ ml_tools/ML_datasetmaster/_datasetmaster.py,sha256=9B8NdasdeFNMvEMCt5ceq2xRJrB7g6JkgD3KDYFYAJE,18383
46
+ ml_tools/ML_datasetmaster/_imprimir.py,sha256=K-EkqibbpTRWMFJevYbGkjr3KrVkFXuQe4dnlKWylxI,305
47
+ ml_tools/ML_datasetmaster/_sequence_datasetmaster.py,sha256=srzC9BbBpHJGmbUem1AAQF9XXHn7EUJljPz69O2eUUA,17788
48
+ ml_tools/ML_datasetmaster/_vision_datasetmaster.py,sha256=kvSqXYeNBN1JSRfSEEXYeIcsqy9HsJAl_EwFWClqlsw,67025
49
+ ml_tools/ML_evaluation/__init__.py,sha256=6z0buFssINnsjxjs0NQl3NzgaT30PzNqZ5ZvFMxb5i8,1059
50
+ ml_tools/ML_evaluation/_classification.py,sha256=SmhIxJy81iIFrys36LUoKrH5ey9IqzE-UxR2-tdgseI,28396
51
+ ml_tools/ML_evaluation/_feature_importance.py,sha256=mTwi3LKom_axu6UFKunELj30APDdhG9GQC2w7I9mYhI,17137
52
+ ml_tools/ML_evaluation/_imprimir.py,sha256=7Qiar5iKRRybQA3YzEsA4s9pJ79cUmYi2r_Q6LaLqRQ,588
53
+ ml_tools/ML_evaluation/_loss.py,sha256=1a4O25i3Ya_3naNZNL7ELLUL46BY86g1scA7d7q2UFM,3625
54
+ ml_tools/ML_evaluation/_regression.py,sha256=hnT2B2_6AnQ7aA7uk-X2lZL9G5JFGCduDXyZbr1gFCA,11037
55
+ ml_tools/ML_evaluation/_sequence.py,sha256=gUk9Uvmy7MrXkfrriMnfypkgJU5XERHdqekTa2gBaOM,8004
56
+ ml_tools/ML_evaluation/_vision.py,sha256=abBHQ6Z2GunHNusL3wcLgfI1FVNA6hBUBTq1eOA8FSA,11489
57
+ ml_tools/ML_evaluation_captum/_ML_evaluation_captum.py,sha256=6g3ymSxJGHXxwIN7WCD2Zi9zxKWEv-Qskd2cCGQQJ5Y,18439
58
+ ml_tools/ML_evaluation_captum/__init__.py,sha256=fMudQu8Hs8OAkLT1kWKI7WaYIQ6sgi4hPwvXRwqjv_I,270
59
+ ml_tools/ML_evaluation_captum/_imprimir.py,sha256=-macVCEmmnj8aXob1UBJrjMYHQx_6Uu2b7nIcmLxJH8,201
60
+ ml_tools/ML_finalize_handler/_ML_finalize_handler.py,sha256=g-vkHJDTGXZsKOUA-Yfg7EuA1SmaHjzesCPiAyRMg2k,7054
61
+ ml_tools/ML_finalize_handler/__init__.py,sha256=ub1KDL5r3vfEC6UskL2PhV-_2nuprlBuOteC1lc0gD0,135
62
+ ml_tools/ML_finalize_handler/_imprimir.py,sha256=36kt-mdcqgPkWN5GBXlFD5Aqr_AwWMiec7klEr20VRQ,132
63
+ ml_tools/ML_inference/__init__.py,sha256=zvNa2Bt7OqKQ2D0fAc5IVdUDWZJ8l0CM20vsuLsM73g,399
64
+ ml_tools/ML_inference/_base_inference.py,sha256=wwmGGBnSCrtVvv30TWBwc3jK8b0Sym43NAPU97a3G6w,7594
65
+ ml_tools/ML_inference/_chain_inference.py,sha256=1wdKBRqDlW5uhd0bnfpPKftAikaaTYk9brShoX49voU,7708
66
+ ml_tools/ML_inference/_dragon_inference.py,sha256=OOJhT50bQWdrmX2oggtdBzOMtVNZlmVnOujquRPbq4c,14619
67
+ ml_tools/ML_inference/_imprimir.py,sha256=pnZxz3_LGkJewXOQlwQIgAtJ-fMevgOZzRyBfx8PMDg,234
68
+ ml_tools/ML_inference/_multi_inference.py,sha256=XPVYWTOG8jiMV-iOWYTV0NTZk3fggPYI93kDlrPjtqo,8107
69
+ ml_tools/ML_inference_sequence/__init__.py,sha256=b5M4gvNrNQS8usY7RPytaraXWC6LqnN_byFJ9GBvZ3w,154
70
+ ml_tools/ML_inference_sequence/_imprimir.py,sha256=3W4QyHQ0-4bffp87yaNW6c74uE0fCDDWLeSFzbSNOgE,142
71
+ ml_tools/ML_inference_sequence/_sequence_inference.py,sha256=Fb2H-4qTdsqYxH6YO4KcbQfXfQDUUaUZ36QB_F2gl8M,16223
72
+ ml_tools/ML_inference_vision/__init__.py,sha256=v8Gsvst3ZnNqfw96JmIpGAgJpE45ufhDr-DJP0Qe8s8,149
73
+ ml_tools/ML_inference_vision/_imprimir.py,sha256=3GS_EjR-hzK0tXceowVJ06pmSV5wXvM5GU3oKe9lAVY,140
74
+ ml_tools/ML_inference_vision/_vision_inference.py,sha256=qCmKpOk0vDj1XwGeRBg4KUjLBRdiqZEx61GYmLWHj9M,20063
75
+ ml_tools/ML_models/__init__.py,sha256=OKPrMEG5SZgFUKkzM0NPv4-Yyd83_RrXKT-iwRvhgOA,599
76
+ ml_tools/ML_models/_advanced_models.py,sha256=KlFCM0vi1RLy_N3R2A9U6qOLvSlz6xDvGYVkOzaiBBU,45304
77
+ ml_tools/ML_models/_base_mlp_attention.py,sha256=bhG6qgKcnFQ6H7fKZcj_NAoR2tJfpuAY9YPKr5LlB0Q,7199
78
+ ml_tools/ML_models/_base_save_load.py,sha256=h2ymwYAz3sw31Evuv48seULwt53w_rwwm1aPiiFJtl4,5754
79
+ ml_tools/ML_models/_dragon_tabular.py,sha256=SlMR2SNpHU897GJGlBQjlKOC6Gi55f1l0pXF_Z9B2E0,10416
80
+ ml_tools/ML_models/_imprimir.py,sha256=WOa9fETpArBvMZigX9AbUi8jipuZOBpZbABPb27TW3g,387
81
+ ml_tools/ML_models/_mlp_attention.py,sha256=kmnXk-hy_zg6Fni4xsy8euYjtBjuOgCVQdZXSNR8aIY,5837
82
+ ml_tools/ML_models/_models_advanced_helpers.py,sha256=T4eeG7b42GuAeT3KG1pi10ctdveM7pNKYxeUj1HKzCE,39110
83
+ ml_tools/ML_models_sequence/__init__.py,sha256=GFLSmbc6PBtFI4xKL9gz6brEFRFNNoB53Bcm844lFf4,128
84
+ ml_tools/ML_models_sequence/_imprimir.py,sha256=XggLqpY_FmrqOHS5kvCpIste57OpGejrspobt_-d7eQ,131
85
+ ml_tools/ML_models_sequence/_sequence_models.py,sha256=c6TOyVeePN1XyIee2wcve9mx3g0QKItZli5f-c87YqY,5590
86
+ ml_tools/ML_models_vision/__init__.py,sha256=8NO-5Hjj3O6g6iyUE93-wPLbIkrDUWeNfgp_xqZt-q8,470
87
+ ml_tools/ML_models_vision/_base_wrapper.py,sha256=9GcwVw7H19xBO3d-xzyr3-5NL66imfVzw9hYDIXfcSM,10094
88
+ ml_tools/ML_models_vision/_image_classification.py,sha256=miwMNoTXpmmZSiqeXvDKpx06oaBYpyBRIGVdg646tWw,6897
89
+ ml_tools/ML_models_vision/_image_segmentation.py,sha256=NRjn91bDD2OJWSJFrrNW9s41qgg5w7pw68Q61-kg-As,4157
90
+ ml_tools/ML_models_vision/_imprimir.py,sha256=pfcMOyy0rKuD1jTNij5i8f-HQwpIWWNj06gwHd3nxls,305
91
+ ml_tools/ML_models_vision/_object_detection.py,sha256=AOGER5bx0REc-FfBtspJmyLJxn3GdwDSPwFGveobR94,5608
92
+ ml_tools/ML_optimization/__init__.py,sha256=6cf5z4xnDSt00hnRIOzRsprsurE164bPFZrwYgEh1b8,406
93
+ ml_tools/ML_optimization/_imprimir.py,sha256=bCxJyUU-Kxc-duKo3kbZD7j7fjaQ51F0ketn1fq_i3M,267
94
+ ml_tools/ML_optimization/_multi_dragon.py,sha256=kfMr252VSTeTakXf6ISFQFPtw81k8OTkbB9ctqeg71M,37456
95
+ ml_tools/ML_optimization/_single_dragon.py,sha256=9OvqMi-HC8Ek1ATUsX2C7tt8ssrW_VSpeFnq2Ij0-bY,8542
96
+ ml_tools/ML_optimization/_single_manual.py,sha256=vh3_rXiqdwLg1SPLKR1HuJ_njYF3wfMADdRuxJns07w,21798
97
+ ml_tools/ML_scaler/_ML_scaler.py,sha256=8Hr_qxo4MJb08N2q3_8ca62WjjgWRO4ScuWv4LM391E,8086
98
+ ml_tools/ML_scaler/__init__.py,sha256=s5L7FD1Sbg8VwdyM8Ef722vHX_a1TNVfgCAIUC40D5I,109
99
+ ml_tools/ML_scaler/_imprimir.py,sha256=QAVN_fR5g25SmYX-XBIVi_A9XA4E36yJFy7tfzFaut8,124
100
+ ml_tools/ML_trainer/__init__.py,sha256=f3vR157OplYFom4U4X_ciULcGKvEYkwVZFN66So0kEg,316
101
+ ml_tools/ML_trainer/_base_trainer.py,sha256=QOaPBOdkmchlMDOoOI7M1aaTdmH2BQ5iqjcbLSfTuC4,12533
102
+ ml_tools/ML_trainer/_dragon_detection_trainer.py,sha256=vkRBY-Z9Sybv9RCnEw-IsQc0yIBHc_7RzG3ma-MipFM,19276
103
+ ml_tools/ML_trainer/_dragon_sequence_trainer.py,sha256=ffkdld6w6A2Gr0iT45aGvvVoWRW3RU1P_BAQ9158_LI,26165
104
+ ml_tools/ML_trainer/_dragon_trainer.py,sha256=B97tNSPFmAcJGZLHXf5_rlJ989Ix-G4DurxSNoudQnw,61670
105
+ ml_tools/ML_trainer/_imprimir.py,sha256=t8Dhz4Tdllr8hGewUpxErRWditHUXYQXSbEHeZDxaeg,185
106
+ ml_tools/ML_utilities/__init__.py,sha256=1nMc3wEmz4eF4lZwkPyub6Nry1mgmsTmUMK6bZUNjiU,676
107
+ ml_tools/ML_utilities/_artifact_finder.py,sha256=X4xz_rmi0jVan8Sun_6431TcQiNM-GDHm-DHLA1zYms,15816
108
+ ml_tools/ML_utilities/_imprimir.py,sha256=T7N1BVtHpja-pqyQ_Ctt6z4R2onm3uypDzlU-KcEE_o,382
109
+ ml_tools/ML_utilities/_inspection.py,sha256=_UMkxaqjsx8QhJMnf_ik-MvDND6h8rQvJt8ZxojWr8Q,12640
110
+ ml_tools/ML_utilities/_train_tools.py,sha256=3pg2JLV2SHmpzD1xjlPBQVsoXeqXDmiwcM8kr2V0jh8,7488
111
+ ml_tools/ML_vision_transformers/__init__.py,sha256=Eoaxf2AhvQvAXxPVuc_1uhd3DzKlsHisT8T-Xhj-wQM,445
112
+ ml_tools/ML_vision_transformers/_core_transforms.py,sha256=mxMBmRtg0Jw1s4f8ExAOkzMYE1zYJKosZb14eWUyHlw,9420
113
+ ml_tools/ML_vision_transformers/_imprimir.py,sha256=JRC1MgRp2Y0OTYRjC6n2ON_FvVnq7WKs1ClBZtJQgsk,303
114
+ ml_tools/ML_vision_transformers/_offline_augmentation.py,sha256=f1-GPjt-8jCdJWIlurmD00rhVrhpPpFri-xusoiEwZY,6210
115
+ ml_tools/PSO_optimization/_PSO.py,sha256=kEeCD1azTzdyqIdHgwjjkx-WJlpuHSICYv5j0mfG030,24828
116
+ ml_tools/PSO_optimization/__init__.py,sha256=8Db7MYRX0jrmzlfKWx5KJinp4AkAywEHAACEmAU32w8,229
117
+ ml_tools/PSO_optimization/_imprimir.py,sha256=diQpMNaJyqFASGmzF7qUOZyx-DUV-Q1ucSAf9gnmTcQ,189
118
+ ml_tools/SQL/__init__.py,sha256=p34n311n8PdE-5ql91O1qJZIffayP1t9cYTYIXp2H78,96
119
+ ml_tools/SQL/_dragon_SQL.py,sha256=SxiDoGbt1HODpqvmMz6a2TZyQ0ZpPnjfI71vMfv5DZI,11465
120
+ ml_tools/SQL/_imprimir.py,sha256=1EJeYL9Otizx-uB0FFG_fTEiBFj2UfQHYw9mBJHvaec,122
121
+ ml_tools/VIF/_VIF_factor.py,sha256=0xeMhaReG2vpBhPkOz0qaqnGmMXCz24frBTQdl6cTLk,10380
122
+ ml_tools/VIF/__init__.py,sha256=7TN78X4PZ_ApScYU6fNOK-7YfeiI49NBoroaK-Xpcr0,199
123
+ ml_tools/VIF/_imprimir.py,sha256=l-b47s6wPri7iYtt9D5rRq5AtNFfCydivQ2Bp5JBLKw,170
124
+ ml_tools/_core/__init__.py,sha256=m-VP0RW0tOTm9N5NI3kFNcpM7WtVgs0RK9pK3ZJRZQQ,141
125
+ ml_tools/_core/_logger.py,sha256=xzhn_FouMDRVNwXGBGlPC9Ruq6i5uCrmNaS5jesguMU,4972
126
+ ml_tools/_core/_schema_load_ops.py,sha256=KLs9vBzANz5ESe2wlP-C41N4VlgGil-ywcfvWKSOGss,1551
127
+ ml_tools/_core/_script_info.py,sha256=LtFGt10gEvCnhIRMKJPi2yXkiGLcdr7lE-oIP2XGHzQ,234
128
+ ml_tools/data_exploration/__init__.py,sha256=w9dM6wjmxfbEXQCWGFVL_cIuLHtYVP364aQvzRwfZXY,1674
129
+ ml_tools/data_exploration/_analysis.py,sha256=H6LryV56FFCHWjvQdkhZbtprZy6aP8EqU_hC2Cf9CLE,7832
130
+ ml_tools/data_exploration/_cleaning.py,sha256=LpoOHOB6HVtdObZExg-B8SxZW-JUc51tblnkCFDZxKg,20846
131
+ ml_tools/data_exploration/_features.py,sha256=wW-M8n2aLIy05DR2z4fI8wjpPjn3mOAnm9aSGYbMKwI,23363
132
+ ml_tools/data_exploration/_imprimir.py,sha256=0nXu60HpeJZ8s83mpVoRtdKILK3t8EHRFVk7d9vRVUo,876
133
+ ml_tools/data_exploration/_plotting.py,sha256=zH1dPcIoAlOuww23xIoBCsQOAshPPv9OyGposOA2RvI,19883
134
+ ml_tools/data_exploration/_schema_ops.py,sha256=PoFeHaS9dXI9gfL0SRD-8uSP4owqmbQFbtfA-HxkLnY,7108
135
+ ml_tools/ensemble_evaluation/__init__.py,sha256=Xxx-F-_TvSVzMaocKXOo_tEXLibMJtf_YY85Ac3U0EI,483
136
+ ml_tools/ensemble_evaluation/_ensemble_evaluation.py,sha256=-sX9cLMaa0FOQDikmVv2lsCYtQ56Kftd3tILnNej0Hg,28346
137
+ ml_tools/ensemble_evaluation/_imprimir.py,sha256=PIyQyG0LEw3yOnNYJoz8ALLhj4M0gk0LQVgSlmTgVG4,312
138
+ ml_tools/ensemble_inference/__init__.py,sha256=00cdImE1KThgULsCjghOuQdzhIR8aT22_0rvTEMXQaU,192
139
+ ml_tools/ensemble_inference/_ensemble_inference.py,sha256=Nu4GZRQuJuw5cDqUH2VEjFF8E2QkW3neVPcphicaPLk,8547
140
+ ml_tools/ensemble_inference/_imprimir.py,sha256=h8VV5p1S6Hb6htsys38ZeBDInPS618YUdfMgYZqcmr4,162
141
+ ml_tools/ensemble_learning/__init__.py,sha256=MU73TyYdnduQdgnTpb-1jbxFf16feZN4J3lBVOCVEtU,253
142
+ ml_tools/ensemble_learning/_ensemble_learning.py,sha256=MHDZBR20_nStlSSeThFI3bSujz3dTLAcRSXEiJldgzQ,21944
143
+ ml_tools/ensemble_learning/_imprimir.py,sha256=6J4531cMFdncqUYZPru0cEIpXC9vzMygO8iVqA2_wT0,194
144
+ ml_tools/excel_handler/__init__.py,sha256=gIodwm7rStEgfhvmx99FNyRT51N4iBVzAwM8r1_dx6o,467
145
+ ml_tools/excel_handler/_excel_handler.py,sha256=TODudmeQgDSdxUKzLfAzizs--VL-g8WxDOfQ4sgxxLs,13965
146
+ ml_tools/excel_handler/_imprimir.py,sha256=QHazgqjRMzthRbDt33EVpvR7GqufSzng6jHw7IVCdtI,306
147
+ ml_tools/keys/__init__.py,sha256=DV52KLOY5GfpLwJdDAHlFVz0qAmyh-KWg3gZorFdMSk,336
148
+ ml_tools/keys/_imprimir.py,sha256=4qmwdia16DPq3OtlWGMkgLPT5R3lcM-ka3tQdCLx5qk,197
149
+ ml_tools/keys/_keys.py,sha256=wyUpNY7iZIGIqvnT2BSahnkkNkK_vvZALOtRWZ7h50A,8800
150
+ ml_tools/math_utilities/__init__.py,sha256=NuTcb_Ogdwx5x-oDieBt1EAqCoZRnXbkZbUrwB6ItH0,337
151
+ ml_tools/math_utilities/_imprimir.py,sha256=kk5DQb_BV9g767uTdXQiRjEEHgQwJpEXU3jxO3QV2Fw,238
152
+ ml_tools/math_utilities/_math_utilities.py,sha256=BYHIVcM9tuKIhVrkgLLiM5QalJ39zx7dXYy_M9aGgiM,9012
153
+ ml_tools/optimization_tools/__init__.py,sha256=ja2z1ThwOr1yq6bxQYeU8WhtUIvk_VNzpNN_Ay_gjJw,595
154
+ ml_tools/optimization_tools/_imprimir.py,sha256=D4dBxRG-gH-pArnjg_YSPStW7_0f3iscTvuKW04qAGE,348
155
+ ml_tools/optimization_tools/_optimization_bounds.py,sha256=vZgFMO5rTM4ijeJ5wFbq0tp4GCPCIfJejH5DkINa3qk,9230
156
+ ml_tools/optimization_tools/_optimization_plots.py,sha256=GlxWvk5K2l7sgArKah8zchTMvWNuUqzWhUJCq1AsTgI,8986
157
+ ml_tools/path_manager/__init__.py,sha256=n5GfDMRjTDrujUBeS0xJsApHCeswhTEiiUF2gc7Jo-c,464
158
+ ml_tools/path_manager/_dragonmanager.py,sha256=q9wHTKPmdzywEz6N14ipUoeR3MmW0bzB4RePz-Wn4uA,13111
159
+ ml_tools/path_manager/_imprimir.py,sha256=PaeXfU3Hja0X7K1IlH3JstXg1mnxNJCwLfmwAbW4WLs,296
160
+ ml_tools/path_manager/_path_tools.py,sha256=LcZE31QlkzZWUR8g1MW_N_mPY2DpKBJLA45VJz7ZYsw,11905
161
+ ml_tools/plot_fonts/__init__.py,sha256=l-vSSpjZb6IeWjjgPTcNmEs7M-vbw0lqgEKD5jhtX4Y,116
162
+ ml_tools/plot_fonts/_imprimir.py,sha256=zNi6naa5eWBFfa_yV569MhUtSAL44H0xDjMcgrJSlXk,131
163
+ ml_tools/plot_fonts/_plot_fonts.py,sha256=mfjXNT9P59ymHoTI85Q8CcvfxfK5BIFBWtTZH-hNIC4,2209
164
+ ml_tools/schema/__init__.py,sha256=9LQtKz3OO9wm-1piUgAhCJZVZT-F-YSg5QLus9pxfgA,263
165
+ ml_tools/schema/_feature_schema.py,sha256=ICymTIL05n1qs61TvyY7rapDOJ9PlaOHi0F86N4tNlU,8547
166
+ ml_tools/schema/_gui_schema.py,sha256=IVwN4THAdFrvh2TpV4SFd_zlzMX3eioF-w-qcSVTndE,7245
167
+ ml_tools/schema/_imprimir.py,sha256=waNHozZmkCKKNFWSw0HFf9489FkSXogl6KuT5cn5V74,190
168
+ ml_tools/serde/__init__.py,sha256=Gj6B8Sgf0-ad72jFXq2W_k5pXOT2iNx5Dvzwrd7Tj1U,229
169
+ ml_tools/serde/_imprimir.py,sha256=cgbYp0BjfRlC7R1CcmciBJrWJHE0dLW6b_1SBpC5hLA,188
170
+ ml_tools/serde/_serde.py,sha256=8QnYK8ZG21zdNaC0v63iSz2bhgwOKRKAWxTVQvMV0A8,5525
171
+ ml_tools/utilities/__init__.py,sha256=pkR2HxUIlKZMDderP2awYXVIFxkU2Xt3FkJmcmuRIpA,745
172
+ ml_tools/utilities/_imprimir.py,sha256=sV3ASBOsTdVYvGojOTIpZYFyrnd4panS5h_4HcMzob4,432
173
+ ml_tools/utilities/_utility_save_load.py,sha256=7skiiuYGVLVMK_nU9uLfUZw16ePvF3i9ub7G7LMyUgs,16085
174
+ ml_tools/utilities/_utility_tools.py,sha256=bN0J9d1S0W5wNzNntBWqDsJcEAK7-1OgQg3X2fwXns0,6918
175
+ dragon_ml_toolbox-20.0.1.dist-info/METADATA,sha256=ApSFj2vI7jdgUYtlYgjBpAXFQw9OKcd6em0ssSVZvGg,7866
176
+ dragon_ml_toolbox-20.0.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
177
+ dragon_ml_toolbox-20.0.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
178
+ dragon_ml_toolbox-20.0.1.dist-info/RECORD,,
@@ -1,13 +1,21 @@
1
- from ._core._ETL_cleaning import (
2
- save_unique_values,
1
+ from ._basic_clean import (
3
2
  basic_clean,
4
3
  basic_clean_drop,
5
- drop_macro_polars,
4
+ drop_macro_polars
5
+ )
6
+
7
+ from ._dragon_cleaner import (
6
8
  DragonColumnCleaner,
7
- DragonDataFrameCleaner,
8
- info
9
+ DragonDataFrameCleaner
10
+ )
11
+
12
+ from ._clean_tools import (
13
+ save_unique_values
9
14
  )
10
15
 
16
+ from ._imprimir import info
17
+
18
+
11
19
  __all__ = [
12
20
  "DragonColumnCleaner",
13
21
  "DragonDataFrameCleaner",