dragon-ml-toolbox 19.13.0__py3-none-any.whl → 20.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (219) hide show
  1. {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/METADATA +29 -46
  2. dragon_ml_toolbox-20.0.0.dist-info/RECORD +178 -0
  3. ml_tools/{ETL_cleaning.py → ETL_cleaning/__init__.py} +13 -5
  4. ml_tools/ETL_cleaning/_basic_clean.py +351 -0
  5. ml_tools/ETL_cleaning/_clean_tools.py +128 -0
  6. ml_tools/ETL_cleaning/_dragon_cleaner.py +245 -0
  7. ml_tools/ETL_cleaning/_imprimir.py +13 -0
  8. ml_tools/{ETL_engineering.py → ETL_engineering/__init__.py} +8 -4
  9. ml_tools/ETL_engineering/_dragon_engineering.py +261 -0
  10. ml_tools/ETL_engineering/_imprimir.py +24 -0
  11. ml_tools/{_core/_ETL_engineering.py → ETL_engineering/_transforms.py} +14 -267
  12. ml_tools/{_core → GUI_tools}/_GUI_tools.py +37 -40
  13. ml_tools/{GUI_tools.py → GUI_tools/__init__.py} +7 -5
  14. ml_tools/GUI_tools/_imprimir.py +12 -0
  15. ml_tools/IO_tools/_IO_loggers.py +235 -0
  16. ml_tools/IO_tools/_IO_save_load.py +151 -0
  17. ml_tools/IO_tools/_IO_utils.py +140 -0
  18. ml_tools/{IO_tools.py → IO_tools/__init__.py} +13 -5
  19. ml_tools/IO_tools/_imprimir.py +14 -0
  20. ml_tools/MICE/_MICE_imputation.py +132 -0
  21. ml_tools/{MICE_imputation.py → MICE/__init__.py} +6 -7
  22. ml_tools/{_core/_MICE_imputation.py → MICE/_dragon_mice.py} +243 -322
  23. ml_tools/MICE/_imprimir.py +11 -0
  24. ml_tools/{ML_callbacks.py → ML_callbacks/__init__.py} +12 -4
  25. ml_tools/ML_callbacks/_base.py +101 -0
  26. ml_tools/ML_callbacks/_checkpoint.py +232 -0
  27. ml_tools/ML_callbacks/_early_stop.py +208 -0
  28. ml_tools/ML_callbacks/_imprimir.py +12 -0
  29. ml_tools/ML_callbacks/_scheduler.py +197 -0
  30. ml_tools/{ML_chaining_utilities.py → ML_chain/__init__.py} +8 -3
  31. ml_tools/{_core/_ML_chaining_utilities.py → ML_chain/_chaining_tools.py} +5 -129
  32. ml_tools/ML_chain/_dragon_chain.py +140 -0
  33. ml_tools/ML_chain/_imprimir.py +11 -0
  34. ml_tools/ML_configuration/__init__.py +90 -0
  35. ml_tools/ML_configuration/_base_model_config.py +69 -0
  36. ml_tools/ML_configuration/_finalize.py +366 -0
  37. ml_tools/ML_configuration/_imprimir.py +47 -0
  38. ml_tools/ML_configuration/_metrics.py +593 -0
  39. ml_tools/ML_configuration/_models.py +206 -0
  40. ml_tools/ML_configuration/_training.py +124 -0
  41. ml_tools/ML_datasetmaster/__init__.py +28 -0
  42. ml_tools/ML_datasetmaster/_base_datasetmaster.py +337 -0
  43. ml_tools/{_core/_ML_datasetmaster.py → ML_datasetmaster/_datasetmaster.py} +9 -329
  44. ml_tools/ML_datasetmaster/_imprimir.py +15 -0
  45. ml_tools/{_core/_ML_sequence_datasetmaster.py → ML_datasetmaster/_sequence_datasetmaster.py} +13 -15
  46. ml_tools/{_core/_ML_vision_datasetmaster.py → ML_datasetmaster/_vision_datasetmaster.py} +63 -65
  47. ml_tools/ML_evaluation/__init__.py +53 -0
  48. ml_tools/ML_evaluation/_classification.py +629 -0
  49. ml_tools/ML_evaluation/_feature_importance.py +409 -0
  50. ml_tools/ML_evaluation/_imprimir.py +25 -0
  51. ml_tools/ML_evaluation/_loss.py +92 -0
  52. ml_tools/ML_evaluation/_regression.py +273 -0
  53. ml_tools/{_core/_ML_sequence_evaluation.py → ML_evaluation/_sequence.py} +8 -11
  54. ml_tools/{_core/_ML_vision_evaluation.py → ML_evaluation/_vision.py} +12 -17
  55. ml_tools/{_core → ML_evaluation_captum}/_ML_evaluation_captum.py +11 -38
  56. ml_tools/{ML_evaluation_captum.py → ML_evaluation_captum/__init__.py} +6 -4
  57. ml_tools/ML_evaluation_captum/_imprimir.py +10 -0
  58. ml_tools/{_core → ML_finalize_handler}/_ML_finalize_handler.py +3 -7
  59. ml_tools/ML_finalize_handler/__init__.py +10 -0
  60. ml_tools/ML_finalize_handler/_imprimir.py +8 -0
  61. ml_tools/ML_inference/__init__.py +22 -0
  62. ml_tools/ML_inference/_base_inference.py +166 -0
  63. ml_tools/{_core/_ML_chaining_inference.py → ML_inference/_chain_inference.py} +14 -17
  64. ml_tools/ML_inference/_dragon_inference.py +332 -0
  65. ml_tools/ML_inference/_imprimir.py +11 -0
  66. ml_tools/ML_inference/_multi_inference.py +180 -0
  67. ml_tools/ML_inference_sequence/__init__.py +10 -0
  68. ml_tools/ML_inference_sequence/_imprimir.py +8 -0
  69. ml_tools/{_core/_ML_sequence_inference.py → ML_inference_sequence/_sequence_inference.py} +11 -15
  70. ml_tools/ML_inference_vision/__init__.py +10 -0
  71. ml_tools/ML_inference_vision/_imprimir.py +8 -0
  72. ml_tools/{_core/_ML_vision_inference.py → ML_inference_vision/_vision_inference.py} +15 -19
  73. ml_tools/ML_models/__init__.py +32 -0
  74. ml_tools/{_core/_ML_models_advanced.py → ML_models/_advanced_models.py} +22 -18
  75. ml_tools/ML_models/_base_mlp_attention.py +198 -0
  76. ml_tools/{_core/_models_advanced_base.py → ML_models/_base_save_load.py} +73 -49
  77. ml_tools/ML_models/_dragon_tabular.py +248 -0
  78. ml_tools/ML_models/_imprimir.py +18 -0
  79. ml_tools/ML_models/_mlp_attention.py +134 -0
  80. ml_tools/{_core → ML_models}/_models_advanced_helpers.py +13 -13
  81. ml_tools/ML_models_sequence/__init__.py +10 -0
  82. ml_tools/ML_models_sequence/_imprimir.py +8 -0
  83. ml_tools/{_core/_ML_sequence_models.py → ML_models_sequence/_sequence_models.py} +5 -8
  84. ml_tools/ML_models_vision/__init__.py +29 -0
  85. ml_tools/ML_models_vision/_base_wrapper.py +254 -0
  86. ml_tools/ML_models_vision/_image_classification.py +182 -0
  87. ml_tools/ML_models_vision/_image_segmentation.py +108 -0
  88. ml_tools/ML_models_vision/_imprimir.py +16 -0
  89. ml_tools/ML_models_vision/_object_detection.py +135 -0
  90. ml_tools/ML_optimization/__init__.py +21 -0
  91. ml_tools/ML_optimization/_imprimir.py +13 -0
  92. ml_tools/{_core/_ML_optimization_pareto.py → ML_optimization/_multi_dragon.py} +18 -24
  93. ml_tools/ML_optimization/_single_dragon.py +203 -0
  94. ml_tools/{_core/_ML_optimization.py → ML_optimization/_single_manual.py} +75 -213
  95. ml_tools/{_core → ML_scaler}/_ML_scaler.py +8 -11
  96. ml_tools/ML_scaler/__init__.py +10 -0
  97. ml_tools/ML_scaler/_imprimir.py +8 -0
  98. ml_tools/ML_trainer/__init__.py +20 -0
  99. ml_tools/ML_trainer/_base_trainer.py +297 -0
  100. ml_tools/ML_trainer/_dragon_detection_trainer.py +402 -0
  101. ml_tools/ML_trainer/_dragon_sequence_trainer.py +540 -0
  102. ml_tools/ML_trainer/_dragon_trainer.py +1160 -0
  103. ml_tools/ML_trainer/_imprimir.py +10 -0
  104. ml_tools/{ML_utilities.py → ML_utilities/__init__.py} +14 -6
  105. ml_tools/ML_utilities/_artifact_finder.py +382 -0
  106. ml_tools/ML_utilities/_imprimir.py +16 -0
  107. ml_tools/ML_utilities/_inspection.py +325 -0
  108. ml_tools/ML_utilities/_train_tools.py +205 -0
  109. ml_tools/{ML_vision_transformers.py → ML_vision_transformers/__init__.py} +9 -6
  110. ml_tools/{_core/_ML_vision_transformers.py → ML_vision_transformers/_core_transforms.py} +11 -155
  111. ml_tools/ML_vision_transformers/_imprimir.py +14 -0
  112. ml_tools/ML_vision_transformers/_offline_augmentation.py +159 -0
  113. ml_tools/{_core/_PSO_optimization.py → PSO_optimization/_PSO.py} +58 -15
  114. ml_tools/{PSO_optimization.py → PSO_optimization/__init__.py} +5 -3
  115. ml_tools/PSO_optimization/_imprimir.py +10 -0
  116. ml_tools/SQL/__init__.py +7 -0
  117. ml_tools/{_core/_SQL.py → SQL/_dragon_SQL.py} +7 -11
  118. ml_tools/SQL/_imprimir.py +8 -0
  119. ml_tools/{_core → VIF}/_VIF_factor.py +5 -8
  120. ml_tools/{VIF_factor.py → VIF/__init__.py} +4 -2
  121. ml_tools/VIF/_imprimir.py +10 -0
  122. ml_tools/_core/__init__.py +7 -1
  123. ml_tools/_core/_logger.py +8 -18
  124. ml_tools/_core/_schema_load_ops.py +43 -0
  125. ml_tools/_core/_script_info.py +2 -2
  126. ml_tools/{data_exploration.py → data_exploration/__init__.py} +32 -16
  127. ml_tools/data_exploration/_analysis.py +214 -0
  128. ml_tools/data_exploration/_cleaning.py +566 -0
  129. ml_tools/data_exploration/_features.py +583 -0
  130. ml_tools/data_exploration/_imprimir.py +32 -0
  131. ml_tools/data_exploration/_plotting.py +487 -0
  132. ml_tools/data_exploration/_schema_ops.py +176 -0
  133. ml_tools/{ensemble_evaluation.py → ensemble_evaluation/__init__.py} +6 -4
  134. ml_tools/{_core → ensemble_evaluation}/_ensemble_evaluation.py +3 -7
  135. ml_tools/ensemble_evaluation/_imprimir.py +14 -0
  136. ml_tools/{ensemble_inference.py → ensemble_inference/__init__.py} +5 -3
  137. ml_tools/{_core → ensemble_inference}/_ensemble_inference.py +15 -18
  138. ml_tools/ensemble_inference/_imprimir.py +9 -0
  139. ml_tools/{ensemble_learning.py → ensemble_learning/__init__.py} +4 -6
  140. ml_tools/{_core → ensemble_learning}/_ensemble_learning.py +7 -10
  141. ml_tools/ensemble_learning/_imprimir.py +10 -0
  142. ml_tools/{excel_handler.py → excel_handler/__init__.py} +5 -3
  143. ml_tools/{_core → excel_handler}/_excel_handler.py +6 -10
  144. ml_tools/excel_handler/_imprimir.py +13 -0
  145. ml_tools/{keys.py → keys/__init__.py} +4 -1
  146. ml_tools/keys/_imprimir.py +11 -0
  147. ml_tools/{_core → keys}/_keys.py +2 -0
  148. ml_tools/{math_utilities.py → math_utilities/__init__.py} +5 -2
  149. ml_tools/math_utilities/_imprimir.py +11 -0
  150. ml_tools/{_core → math_utilities}/_math_utilities.py +1 -5
  151. ml_tools/{optimization_tools.py → optimization_tools/__init__.py} +9 -4
  152. ml_tools/optimization_tools/_imprimir.py +13 -0
  153. ml_tools/optimization_tools/_optimization_bounds.py +236 -0
  154. ml_tools/optimization_tools/_optimization_plots.py +218 -0
  155. ml_tools/{path_manager.py → path_manager/__init__.py} +6 -3
  156. ml_tools/{_core/_path_manager.py → path_manager/_dragonmanager.py} +11 -347
  157. ml_tools/path_manager/_imprimir.py +15 -0
  158. ml_tools/path_manager/_path_tools.py +346 -0
  159. ml_tools/plot_fonts/__init__.py +8 -0
  160. ml_tools/plot_fonts/_imprimir.py +8 -0
  161. ml_tools/{_core → plot_fonts}/_plot_fonts.py +2 -5
  162. ml_tools/schema/__init__.py +15 -0
  163. ml_tools/schema/_feature_schema.py +223 -0
  164. ml_tools/schema/_gui_schema.py +191 -0
  165. ml_tools/schema/_imprimir.py +10 -0
  166. ml_tools/{serde.py → serde/__init__.py} +4 -2
  167. ml_tools/serde/_imprimir.py +10 -0
  168. ml_tools/{_core → serde}/_serde.py +3 -8
  169. ml_tools/{utilities.py → utilities/__init__.py} +11 -6
  170. ml_tools/utilities/_imprimir.py +18 -0
  171. ml_tools/{_core/_utilities.py → utilities/_utility_save_load.py} +13 -190
  172. ml_tools/utilities/_utility_tools.py +192 -0
  173. dragon_ml_toolbox-19.13.0.dist-info/RECORD +0 -111
  174. ml_tools/ML_chaining_inference.py +0 -8
  175. ml_tools/ML_configuration.py +0 -86
  176. ml_tools/ML_configuration_pytab.py +0 -14
  177. ml_tools/ML_datasetmaster.py +0 -10
  178. ml_tools/ML_evaluation.py +0 -16
  179. ml_tools/ML_evaluation_multi.py +0 -12
  180. ml_tools/ML_finalize_handler.py +0 -8
  181. ml_tools/ML_inference.py +0 -12
  182. ml_tools/ML_models.py +0 -14
  183. ml_tools/ML_models_advanced.py +0 -14
  184. ml_tools/ML_models_pytab.py +0 -14
  185. ml_tools/ML_optimization.py +0 -14
  186. ml_tools/ML_optimization_pareto.py +0 -8
  187. ml_tools/ML_scaler.py +0 -8
  188. ml_tools/ML_sequence_datasetmaster.py +0 -8
  189. ml_tools/ML_sequence_evaluation.py +0 -10
  190. ml_tools/ML_sequence_inference.py +0 -8
  191. ml_tools/ML_sequence_models.py +0 -8
  192. ml_tools/ML_trainer.py +0 -12
  193. ml_tools/ML_vision_datasetmaster.py +0 -12
  194. ml_tools/ML_vision_evaluation.py +0 -10
  195. ml_tools/ML_vision_inference.py +0 -8
  196. ml_tools/ML_vision_models.py +0 -18
  197. ml_tools/SQL.py +0 -8
  198. ml_tools/_core/_ETL_cleaning.py +0 -694
  199. ml_tools/_core/_IO_tools.py +0 -498
  200. ml_tools/_core/_ML_callbacks.py +0 -702
  201. ml_tools/_core/_ML_configuration.py +0 -1332
  202. ml_tools/_core/_ML_configuration_pytab.py +0 -102
  203. ml_tools/_core/_ML_evaluation.py +0 -867
  204. ml_tools/_core/_ML_evaluation_multi.py +0 -544
  205. ml_tools/_core/_ML_inference.py +0 -646
  206. ml_tools/_core/_ML_models.py +0 -668
  207. ml_tools/_core/_ML_models_pytab.py +0 -693
  208. ml_tools/_core/_ML_trainer.py +0 -2323
  209. ml_tools/_core/_ML_utilities.py +0 -886
  210. ml_tools/_core/_ML_vision_models.py +0 -644
  211. ml_tools/_core/_data_exploration.py +0 -1901
  212. ml_tools/_core/_optimization_tools.py +0 -493
  213. ml_tools/_core/_schema.py +0 -359
  214. ml_tools/plot_fonts.py +0 -8
  215. ml_tools/schema.py +0 -12
  216. {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/WHEEL +0 -0
  217. {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/licenses/LICENSE +0 -0
  218. {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/licenses/LICENSE-THIRD-PARTY.md +0 -0
  219. {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,192 @@
1
+ import pandas as pd
2
+ from pathlib import Path
3
+ from typing import Literal, Union, Iterator
4
+
5
+ from ..path_manager import make_fullpath, list_csv_paths
6
+ from .._core import get_logger
7
+
8
+ from ._utility_save_load import load_dataframe, save_dataframe_filename
9
+
10
+
11
+ _LOGGER = get_logger("Utility Tools")
12
+
13
+
14
+ __all__ = [
15
+ "merge_dataframes",
16
+ "distribute_dataset_by_target",
17
+ "train_dataset_orchestrator",
18
+ "train_dataset_yielder"
19
+ ]
20
+
21
+
22
+ def merge_dataframes(
23
+ *dfs: pd.DataFrame,
24
+ reset_index: bool = False,
25
+ direction: Literal["horizontal", "vertical"] = "horizontal",
26
+ verbose: bool=True
27
+ ) -> pd.DataFrame:
28
+ """
29
+ Merges multiple DataFrames either horizontally or vertically.
30
+
31
+ Parameters:
32
+ *dfs (pd.DataFrame): Variable number of DataFrames to merge.
33
+ reset_index (bool): Whether to reset index in the final merged DataFrame.
34
+ direction (["horizontal" | "vertical"]):
35
+ - "horizontal": Merge on index, adding columns.
36
+ - "vertical": Append rows; all DataFrames must have identical columns.
37
+
38
+ Returns:
39
+ pd.DataFrame: A single merged DataFrame.
40
+
41
+ Raises:
42
+ ValueError:
43
+ - If fewer than 2 DataFrames are provided.
44
+ - If indexes do not match for horizontal merge.
45
+ - If column names or order differ for vertical merge.
46
+ """
47
+ if len(dfs) < 2:
48
+ raise ValueError("❌ At least 2 DataFrames must be provided.")
49
+
50
+ if verbose:
51
+ for i, df in enumerate(dfs, start=1):
52
+ print(f"➡️ DataFrame {i} shape: {df.shape}")
53
+
54
+
55
+ if direction == "horizontal":
56
+ reference_index = dfs[0].index
57
+ for i, df in enumerate(dfs, start=1):
58
+ if not df.index.equals(reference_index):
59
+ raise ValueError(f"❌ Indexes do not match: Dataset 1 and Dataset {i}.")
60
+ merged_df = pd.concat(dfs, axis=1)
61
+
62
+ elif direction == "vertical":
63
+ reference_columns = dfs[0].columns
64
+ for i, df in enumerate(dfs, start=1):
65
+ if not df.columns.equals(reference_columns):
66
+ raise ValueError(f"❌ Column names/order do not match: Dataset 1 and Dataset {i}.")
67
+ merged_df = pd.concat(dfs, axis=0)
68
+
69
+ else:
70
+ _LOGGER.error(f"Invalid merge direction: {direction}")
71
+ raise ValueError()
72
+
73
+ if reset_index:
74
+ merged_df = merged_df.reset_index(drop=True)
75
+
76
+ if verbose:
77
+ _LOGGER.info(f"Merged DataFrame shape: {merged_df.shape}")
78
+
79
+ return merged_df
80
+
81
+
82
+ def distribute_dataset_by_target(
83
+ df_or_path: Union[pd.DataFrame, str, Path],
84
+ target_columns: list[str],
85
+ verbose: bool = False
86
+ ) -> Iterator[tuple[str, pd.DataFrame]]:
87
+ """
88
+ Yields cleaned DataFrames for each target column, where rows with missing
89
+ target values are removed. The target column is placed at the end.
90
+
91
+ Parameters
92
+ ----------
93
+ df_or_path : [pd.DataFrame | str | Path]
94
+ Dataframe or path to Dataframe with all feature and target columns ready to split and train a model.
95
+ target_columns : List[str]
96
+ List of target column names to generate per-target DataFrames.
97
+ verbose: bool
98
+ Whether to print info for each yielded dataset.
99
+
100
+ Yields
101
+ ------
102
+ Tuple[str, pd.DataFrame]
103
+ * Target name.
104
+ * Pandas DataFrame.
105
+ """
106
+ # Validate path or dataframe
107
+ if isinstance(df_or_path, str) or isinstance(df_or_path, Path):
108
+ df_path = make_fullpath(df_or_path)
109
+ df, _ = load_dataframe(df_path)
110
+ else:
111
+ df = df_or_path
112
+
113
+ valid_targets = [col for col in df.columns if col in target_columns]
114
+ feature_columns = [col for col in df.columns if col not in valid_targets]
115
+
116
+ for target in valid_targets:
117
+ subset = df[feature_columns + [target]].dropna(subset=[target]) # type: ignore
118
+ if verbose:
119
+ print(f"Target: '{target}' - Dataframe shape: {subset.shape}")
120
+ yield target, subset
121
+
122
+
123
+ def train_dataset_orchestrator(list_of_dirs: list[Union[str,Path]],
124
+ target_columns: list[str],
125
+ save_dir: Union[str,Path],
126
+ safe_mode: bool=False):
127
+ """
128
+ Orchestrates the creation of single-target datasets from multiple directories each with a variable number of CSV datasets.
129
+
130
+ This function iterates through a list of directories, finds all CSV files,
131
+ and splits each dataframe based on the provided target columns. Each resulting
132
+ single-target dataframe is then saved to a specified directory.
133
+
134
+ Parameters
135
+ ----------
136
+ list_of_dirs : list[str | Path]
137
+ A list of directory paths where the source CSV files are located.
138
+ target_columns : list[str]
139
+ A list of column names to be used as targets for splitting the datasets.
140
+ save_dir : str | Path
141
+ The directory where the newly created single-target datasets will be saved.
142
+ safe_mode : bool
143
+ If True, prefixes the saved filename with the source directory name to prevent overwriting files with the same name from different sources.
144
+ """
145
+ all_dir_paths: list[Path] = list()
146
+ for dir in list_of_dirs:
147
+ dir_path = make_fullpath(dir)
148
+ if not dir_path.is_dir():
149
+ _LOGGER.error(f"'{dir}' is not a directory.")
150
+ raise IOError()
151
+ all_dir_paths.append(dir_path)
152
+
153
+ # main loop
154
+ total_saved = 0
155
+ for df_dir in all_dir_paths:
156
+ for df_name, df_path in list_csv_paths(df_dir).items():
157
+ try:
158
+ for target_name, df in distribute_dataset_by_target(df_or_path=df_path, target_columns=target_columns, verbose=False):
159
+ if safe_mode:
160
+ filename = df_dir.name + '_' + target_name + '_' + df_name
161
+ else:
162
+ filename = target_name + '_' + df_name
163
+ save_dataframe_filename(df=df, save_dir=save_dir, filename=filename)
164
+ total_saved += 1
165
+ except Exception as e:
166
+ _LOGGER.error(f"Failed to process file '{df_path}'. Reason: {e}")
167
+ continue
168
+
169
+ _LOGGER.info(f"{total_saved} single-target datasets were created.")
170
+
171
+
172
+ def train_dataset_yielder(
173
+ df: pd.DataFrame,
174
+ target_cols: list[str]
175
+ ) -> Iterator[tuple[pd.DataFrame, pd.Series, list[str], str]]:
176
+ """
177
+ Yields one tuple at a time:
178
+ (features_dataframe, target_series, feature_names, target_name)
179
+
180
+ Skips any target columns not found in the DataFrame.
181
+ """
182
+ # Determine which target columns actually exist in the DataFrame
183
+ valid_targets = [col for col in target_cols if col in df.columns]
184
+
185
+ # Features = all columns excluding valid target columns
186
+ df_features = df.drop(columns=valid_targets)
187
+ feature_names = df_features.columns.to_list()
188
+
189
+ for target_col in valid_targets:
190
+ df_target = df[target_col]
191
+ yield (df_features, df_target, feature_names, target_col)
192
+
@@ -1,111 +0,0 @@
1
- dragon_ml_toolbox-19.13.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-19.13.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
3
- ml_tools/ETL_cleaning.py,sha256=cKXyRFaaFs_beAGDnQM54xnML671kq-yJEGjHafW-20,351
4
- ml_tools/ETL_engineering.py,sha256=cwh1FhtNdUHllUDvho-x3SIVj4KwG_rFQR6VYzWUg0U,898
5
- ml_tools/GUI_tools.py,sha256=O89rG8WQv6GY1DiphQjIsPzXFCQID6te7q_Sgt1iTkQ,294
6
- ml_tools/IO_tools.py,sha256=UiOiXgccB06JS7__aq1OXWqYARvAQuxaTrpVJU54Suk,334
7
- ml_tools/MICE_imputation.py,sha256=tpLM-rdq4sKbc2GHfj7UrkS3DmBZ3B_DlbrklWbI7gI,366
8
- ml_tools/ML_callbacks.py,sha256=a5aXjrtKSgJGW8GWIVd3QR3gT5pJpQxsXFXoNO9GcgM,357
9
- ml_tools/ML_chaining_inference.py,sha256=-JD-LbPtFQkEEWyLUuszWvsqE6nbgkKaQBjrwmBPer0,124
10
- ml_tools/ML_chaining_utilities.py,sha256=TmiVea_66qfB2l3UEVua4Wb5Sg1D75bSz_-Js3DudfA,360
11
- ml_tools/ML_configuration.py,sha256=R8ca9q6W_Lm8lQ48qmxWfdMeHJ5o9hmcHhVdekrY_UQ,2730
12
- ml_tools/ML_configuration_pytab.py,sha256=6BdyL8sdAp6SDCM1DQrKZKo3yXnEgPX8mWXOaYVMhp0,257
13
- ml_tools/ML_datasetmaster.py,sha256=bbT29BOGjUThcYctd2eA9K4Y6wKU6sewFMZ7tjVgpqo,154
14
- ml_tools/ML_evaluation.py,sha256=My7W2IDPca7cMgmJoGyqqVzFL36ssaXA5f4MqKtvWBA,319
15
- ml_tools/ML_evaluation_captum.py,sha256=ai_Vw_RsdcW6UerWVRmp_a2EmwPiepA_epV4T6b0Kd8,255
16
- ml_tools/ML_evaluation_multi.py,sha256=-t6-OcXfL8q2-yssX3ixw6r1WHyNToAlVjXXlD_iLpE,300
17
- ml_tools/ML_finalize_handler.py,sha256=kVayo_zBOrm-zxyMbZoC-v4QyeLMSS3I3Sovzkc7wFI,121
18
- ml_tools/ML_inference.py,sha256=3xDljJcyRnB_S4EarQKKWOKplKukmn4iqMqbRa7kymE,258
19
- ml_tools/ML_models.py,sha256=s3ENLmeO4aYSAbQYTeaEg96_4yu46slawH9lkwBAwC0,269
20
- ml_tools/ML_models_advanced.py,sha256=aygR0uBXDszYX6FDKoySymJXuzkhN2UdeaIqJyZhwzw,232
21
- ml_tools/ML_models_pytab.py,sha256=CcrUvjLGKRb4U4dsxLqjDqTpWDg5d83DvzbcZupVA5E,221
22
- ml_tools/ML_optimization.py,sha256=eZbpcuOc1w8NGGCD-7YZiK0PXFAZBwmh1pqi9DrbAUQ,257
23
- ml_tools/ML_optimization_pareto.py,sha256=fUgq0qzeaQBm7lWNqebqBF-6zeGH_5uDMFLL9c-QR-Q,126
24
- ml_tools/ML_scaler.py,sha256=7iL3AYP5iMedpb7bQ_Qr7EKxT3OJZdEaxsEdV4owp1g,95
25
- ml_tools/ML_sequence_datasetmaster.py,sha256=cRVaZJZi6h9_qgzA7buyoZpzm6qrXvMPv3Rkgegm3FE,129
26
- ml_tools/ML_sequence_evaluation.py,sha256=DQamUxg79g4cYObD5ceQMI1o2yl6s9rGu-OEglHW8-w,205
27
- ml_tools/ML_sequence_inference.py,sha256=xxzb9Pf-iDgFVqW61ipfWPymIWKwrxQNGE7A9FAEqRY,143
28
- ml_tools/ML_sequence_models.py,sha256=m2bqDHWFyHIpCyyvBKgRYTdCSg8Olp4XX9joen4Grzc,116
29
- ml_tools/ML_trainer.py,sha256=x40gff7i0M-4pQNt9M9jQFX-TMR8ntEw204Jg35KGSI,212
30
- ml_tools/ML_utilities.py,sha256=n-3BITe1h5oNVaJukoqWZJX5uP4Pu2Mxv5DIXb3U-to,586
31
- ml_tools/ML_vision_datasetmaster.py,sha256=DAAV7u7Uf5ZlnoR50QHlgCznOROFaCucNJFhOw3eaUc,257
32
- ml_tools/ML_vision_evaluation.py,sha256=R3sw3m3rK3FI28MSB8muc6QFa0MIuKfo4QWGWXkOBZs,184
33
- ml_tools/ML_vision_inference.py,sha256=k43gPqshyGwV5_SrMbfJQ9Bx26OLkVwZ7SEO6M_vlGU,137
34
- ml_tools/ML_vision_models.py,sha256=_jK4z3s1DaCC672G6JmXxqjoq7wZpfLps-Ovh6aMTP8,303
35
- ml_tools/ML_vision_transformers.py,sha256=BmfizCOWTpUrgpt4FJVsGhQ8wY2D0rb38XPo6ZPUlB4,404
36
- ml_tools/PSO_optimization.py,sha256=xAPZWM9SZF6vSs-Kk_Qc2_9XPNjM5ZYV_qmsV5XZkck,228
37
- ml_tools/SQL.py,sha256=ZYlY5L-k2mkDckOhNPtJEof2L7ePe_KBpgx55WG5NKs,84
38
- ml_tools/VIF_factor.py,sha256=xGUbnfhh1eqUiHX-tIpJBn_3Y_h3SOuNfVKkpsQXc7w,184
39
- ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
- ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
41
- ml_tools/data_exploration.py,sha256=vwCgOHhpPku2uuRVscrco6sXwkjc3ruOlfO002OQ74M,1468
42
- ml_tools/ensemble_evaluation.py,sha256=P26vyS2fMV3Pm_4w2MN1z1eS7aVJzYagsyLmqC-Io6Q,468
43
- ml_tools/ensemble_inference.py,sha256=sl_Dq9KaN0SrtZmyiVrrhWd6lSjdQangSIUUUIFvfj4,178
44
- ml_tools/ensemble_learning.py,sha256=BLPnpfJWCly-D75mkRP1FE5TExoWAAlAHR89KAzW9iU,336
45
- ml_tools/excel_handler.py,sha256=h35HMNnO44btxsTSfZXj2HiJtpRS4fdrJLbzru4heMs,453
46
- ml_tools/keys.py,sha256=JCGMwU26qSKfClGCpiv6y-GmFFP56pqNn6n7z-pyYTM,312
47
- ml_tools/math_utilities.py,sha256=53nOXlhb5taUHj4CDHsXliArEfPkOlJD7G_dJa3_iOU,321
48
- ml_tools/optimization_tools.py,sha256=rPG2VJ7hk9hv5wfKPq4zPJDXFWKioROOiJWmzXlXzVA,541
49
- ml_tools/path_manager.py,sha256=uklNIuRipFnHVcWHojzluYyvhiBzKGbb4S5lM1imGYw,427
50
- ml_tools/plot_fonts.py,sha256=6-WevfhDjbyWbSrFM6bqW-h5NC_mAO4XzdFR-oQ3DPE,110
51
- ml_tools/schema.py,sha256=AddXOa4P9HinlJ6SnICksHzBqRyi7MaichwVn-z_oVE,219
52
- ml_tools/serde.py,sha256=aETbmTDxnCE4D7hFX92RjBJYXuMomWnxAsBt46WfCUw,214
53
- ml_tools/utilities.py,sha256=dHNjGPH3Ck9V41IRFbRojE_RW6lACdxrNZz0FxI5SQY,691
54
- ml_tools/_core/_ETL_cleaning.py,sha256=_pTNKuapNHgWErmxvsXW-2YzCm4BaTshKV627A38RuA,28748
55
- ml_tools/_core/_ETL_engineering.py,sha256=JgIWrQGyNjmLrbyv5Kh0EHKBLmYlyrGKSnKRxGzxSco,57930
56
- ml_tools/_core/_GUI_tools.py,sha256=kpvk18Eb4vdLzo-I5mBV1yuwPXs-NJJ01rn-iCXHvIY,49079
57
- ml_tools/_core/_IO_tools.py,sha256=sEbtzDHkc9GNkXvsFS9ic038LzAW-rxXPuLwtoHXzGw,17107
58
- ml_tools/_core/_MICE_imputation.py,sha256=64l20duGWt93Q2MbqcWqrA1s99JPRf5AJACb1CZi2xI,21149
59
- ml_tools/_core/_ML_callbacks.py,sha256=T0PjptlpC75_Tp3bWIMPTYhxsMX-8z4YtDT4FJ3p8jg,27988
60
- ml_tools/_core/_ML_chaining_inference.py,sha256=vXUPZzuQ2yKU71kkvUsE0xPo0hN-Yu6gfnL0JbXoRjI,7783
61
- ml_tools/_core/_ML_chaining_utilities.py,sha256=nsYowgRbkIYuzRiHlqsM3tnC3c-8O73CY8DHUF14XL0,19248
62
- ml_tools/_core/_ML_configuration.py,sha256=olRcam2s-Y5oUr8BAcmhwIBQDmaQZm2RHTv5sK2HeOU,53151
63
- ml_tools/_core/_ML_configuration_pytab.py,sha256=C3e4iScqdRePVDoqnic6xXMOW7DNYqpgTCeaFDyMdL4,3286
64
- ml_tools/_core/_ML_datasetmaster.py,sha256=yU1BMtzz6XumMWCetVACrRLk7WJQwmYhaQ-VAWu9Ots,32043
65
- ml_tools/_core/_ML_evaluation.py,sha256=bu8qlYzhWSC1B7wNfCC5TSF-oed-uP8EF7TV45VTiBM,37325
66
- ml_tools/_core/_ML_evaluation_captum.py,sha256=a69jnghIzE9qppuw2vzTBMdTErnZkDkTA3MPUUYjsS4,19212
67
- ml_tools/_core/_ML_evaluation_multi.py,sha256=n_AJbKF58DMUrYqJutwPFV5z6sNssDPA1Gl05IfPG5s,23647
68
- ml_tools/_core/_ML_finalize_handler.py,sha256=1__wG3Jcr9h1a99F-CmHezhEw1_Ojxh3aDHNyJN2S5w,7127
69
- ml_tools/_core/_ML_inference.py,sha256=5swm2lnsrDLalBnCm7gZPlDucX4yNCq5vn7ck3SW_4Q,29791
70
- ml_tools/_core/_ML_models.py,sha256=8FUx4-TVghlBF9srh1_5UxovrWPU7YEZ6XXLqwJei88,27974
71
- ml_tools/_core/_ML_models_advanced.py,sha256=oU6M5FEBMQ9yPp32cziWh3bz8SXRho07vFMC8ZDVcuU,45002
72
- ml_tools/_core/_ML_models_pytab.py,sha256=EHHnDG02ghcJORy2gipm3NcrlzL0qygD44o7QGmT1Zs,26297
73
- ml_tools/_core/_ML_optimization.py,sha256=mvG1joVS3U67lmSwzMgLgNGzh4H3Py3ttKeaTM3EUnU,28126
74
- ml_tools/_core/_ML_optimization_pareto.py,sha256=1PA8o5qbI13x5QusWhRIJMiPz3cMA2dUT1ZwU9NIZQM,37609
75
- ml_tools/_core/_ML_scaler.py,sha256=Nhu6qli_QezHQi5NKhRb8Z51bBJgzk2nEp_yW4B9H4U,8134
76
- ml_tools/_core/_ML_sequence_datasetmaster.py,sha256=0YVOPf-y4ZNdgUxropXUWrmInNyGYaUYprYvXf31n9U,17811
77
- ml_tools/_core/_ML_sequence_evaluation.py,sha256=AiPHtZ9DRpE6zL9n3Tp5eGGD9vrYRkLbZ0Nc274mL7I,8069
78
- ml_tools/_core/_ML_sequence_inference.py,sha256=zd3hBwOtLmjAV4JtdB2qFY9GxhysajFufATdy8fjGTE,16316
79
- ml_tools/_core/_ML_sequence_models.py,sha256=5qcEYLU6wDePBITnikBrj_H9mCvyJmElKa3HiWGXhZs,5639
80
- ml_tools/_core/_ML_trainer.py,sha256=ZYDH-P8GJhFe0vpeMtgLS0O3Fz0d4qr8zcTm-C30T1I,117595
81
- ml_tools/_core/_ML_utilities.py,sha256=elLGD0QYh148_9iNLlqGe1vz-wCFspJa6CWtWTfA3jY,35594
82
- ml_tools/_core/_ML_vision_datasetmaster.py,sha256=8EsE7luzphVlwBXdOsOwsFfz1D4UIUSEQtqHlM0Vf-o,67084
83
- ml_tools/_core/_ML_vision_evaluation.py,sha256=BSLf9xrGpaR02Dhkf-fAbgxSpwRjf7DruNIcQadl7qg,11631
84
- ml_tools/_core/_ML_vision_inference.py,sha256=6K9gMFjAAZKfLAIQlOkm_I9hvCPmO--9-1vnskQRk0I,20190
85
- ml_tools/_core/_ML_vision_models.py,sha256=oUik-RLxFvZFZCtFztjkSfFYgJuRx4QzfwHVY1ny4Sc,26217
86
- ml_tools/_core/_ML_vision_transformers.py,sha256=imjL9h5kwpfuRn9rBelNpgtrdU-EecBEcHMFZMXTeZA,15303
87
- ml_tools/_core/_PSO_optimization.py,sha256=W3g5xw2v2eOUQadv8KHFkt5HNm9AiY3ZUk-TeyVuZjw,22991
88
- ml_tools/_core/_SQL.py,sha256=zX_8EgYfmLmvvrnL851KMkI4w9kdkjHJ997BTvS5aig,11556
89
- ml_tools/_core/_VIF_factor.py,sha256=BM0mTowBqt45PXFy9oJLhT9C-CTWWo0TQhgCyWYLHtQ,10457
90
- ml_tools/_core/__init__.py,sha256=d4IG0OxUXj2HffepzQcYixHlZeuuuDMAFa09H_6LtmU,12
91
- ml_tools/_core/_data_exploration.py,sha256=VPSqTo8IPLDOGcVDAcdyxgzO0Fw224pbivzbli_aad0,76159
92
- ml_tools/_core/_ensemble_evaluation.py,sha256=17lWl4bWLT1BAMv_fhGf2D3wy-F4jx0HgnJ79lYkRuE,28419
93
- ml_tools/_core/_ensemble_inference.py,sha256=9UpARSETzmqPdQmxqizD768tjkqldxHw1ER_hM9Kx9M,8631
94
- ml_tools/_core/_ensemble_learning.py,sha256=X8ghbjDOLMENCWdISXLhDlHQtR3C6SW1tkTBAcfRRPY,22016
95
- ml_tools/_core/_excel_handler.py,sha256=gV4rSIsiowb0xllpEJxzUKaYDDVpmP_lxs9wZA76-cc,14050
96
- ml_tools/_core/_keys.py,sha256=OCpO4blAY12px3T3bGHUDcs_YIgEiLq7ppeazDbZlvQ,8739
97
- ml_tools/_core/_logger.py,sha256=86Ge0sDE_WgwsZBglQRYPyFYX3lcsIo0NzszNPzlxuk,5254
98
- ml_tools/_core/_math_utilities.py,sha256=IlXAiZgTcLtus03jJOBOyF9ZCQDf8qLGjrCHu9Mrgak,9091
99
- ml_tools/_core/_models_advanced_base.py,sha256=ceW0V_CcfOnSFqHlxUhVU8-5mtQq4tFyo8TX-xVexrY,4982
100
- ml_tools/_core/_models_advanced_helpers.py,sha256=yrAVgYdBsNYD6Vy-pYL5__wI9Z7inOvNUngMgyuypjo,38973
101
- ml_tools/_core/_optimization_tools.py,sha256=WdQkkknbErk4p1cCj2l5CLImK2oRAzhmR3QFR50Hbzk,20098
102
- ml_tools/_core/_path_manager.py,sha256=tAXmf0CNfNGU2j8WngVkgBIDhdFGv1o8kFHwynvru_A,24915
103
- ml_tools/_core/_plot_fonts.py,sha256=CjYXW2gZ9AUaGkyX8_WOXXNYs6d1PTK-nEJBrv_Zb2o,2287
104
- ml_tools/_core/_schema.py,sha256=TM5WVVMoKOvr_Bc2z34sU_gzKlM465PRKTgdZaEOkGY,14076
105
- ml_tools/_core/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
106
- ml_tools/_core/_serde.py,sha256=tsI4EO2Y7jrBMmbQ1pinDsPOrOg-SaPuB-Dt40q0taE,5609
107
- ml_tools/_core/_utilities.py,sha256=oU-0hBipE96bXox66NG-hFuEMMNkKa9MkAy1yJGCSIA,22779
108
- dragon_ml_toolbox-19.13.0.dist-info/METADATA,sha256=349zn3DuPgY4UmlKJ7YuI1lNhGCXnYFYe4zo63mDkbE,8193
109
- dragon_ml_toolbox-19.13.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
110
- dragon_ml_toolbox-19.13.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
111
- dragon_ml_toolbox-19.13.0.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- from ._core._ML_chaining_inference import (
2
- DragonChainInference,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "DragonChainInference",
8
- ]
@@ -1,86 +0,0 @@
1
- from ._core._ML_configuration import (
2
- # --- Metrics Formats ---
3
- RegressionMetricsFormat,
4
- MultiTargetRegressionMetricsFormat,
5
- BinaryClassificationMetricsFormat,
6
- MultiClassClassificationMetricsFormat,
7
- BinaryImageClassificationMetricsFormat,
8
- MultiClassImageClassificationMetricsFormat,
9
- MultiLabelBinaryClassificationMetricsFormat,
10
- BinarySegmentationMetricsFormat,
11
- MultiClassSegmentationMetricsFormat,
12
- SequenceValueMetricsFormat,
13
- SequenceSequenceMetricsFormat,
14
-
15
- # --- Finalize Configs ---
16
- FinalizeBinaryClassification,
17
- FinalizeBinarySegmentation,
18
- FinalizeBinaryImageClassification,
19
- FinalizeMultiClassClassification,
20
- FinalizeMultiClassImageClassification,
21
- FinalizeMultiClassSegmentation,
22
- FinalizeMultiLabelBinaryClassification,
23
- FinalizeMultiTargetRegression,
24
- FinalizeRegression,
25
- FinalizeObjectDetection,
26
- FinalizeSequenceSequencePrediction,
27
- FinalizeSequenceValuePrediction,
28
-
29
- # --- Model Parameter Configs ---
30
- DragonMLPParams,
31
- DragonAttentionMLPParams,
32
- DragonMultiHeadAttentionNetParams,
33
- DragonTabularTransformerParams,
34
- DragonGateParams,
35
- DragonNodeParams,
36
- DragonTabNetParams,
37
- DragonAutoIntParams,
38
-
39
- # --- Training Config ---
40
- DragonTrainingConfig,
41
- DragonParetoConfig,
42
- info
43
- )
44
-
45
- __all__ = [
46
- # --- Metrics Formats ---
47
- "RegressionMetricsFormat",
48
- "MultiTargetRegressionMetricsFormat",
49
- "BinaryClassificationMetricsFormat",
50
- "MultiClassClassificationMetricsFormat",
51
- "BinaryImageClassificationMetricsFormat",
52
- "MultiClassImageClassificationMetricsFormat",
53
- "MultiLabelBinaryClassificationMetricsFormat",
54
- "BinarySegmentationMetricsFormat",
55
- "MultiClassSegmentationMetricsFormat",
56
- "SequenceValueMetricsFormat",
57
- "SequenceSequenceMetricsFormat",
58
-
59
- # --- Finalize Configs ---
60
- "FinalizeBinaryClassification",
61
- "FinalizeBinarySegmentation",
62
- "FinalizeBinaryImageClassification",
63
- "FinalizeMultiClassClassification",
64
- "FinalizeMultiClassImageClassification",
65
- "FinalizeMultiClassSegmentation",
66
- "FinalizeMultiLabelBinaryClassification",
67
- "FinalizeMultiTargetRegression",
68
- "FinalizeRegression",
69
- "FinalizeObjectDetection",
70
- "FinalizeSequenceSequencePrediction",
71
- "FinalizeSequenceValuePrediction",
72
-
73
- # --- Model Parameter Configs ---
74
- "DragonMLPParams",
75
- "DragonAttentionMLPParams",
76
- "DragonMultiHeadAttentionNetParams",
77
- "DragonTabularTransformerParams",
78
- "DragonGateParams",
79
- "DragonNodeParams",
80
- "DragonTabNetParams",
81
- "DragonAutoIntParams",
82
-
83
- # --- Training Config ---
84
- "DragonTrainingConfig",
85
- "DragonParetoConfig",
86
- ]
@@ -1,14 +0,0 @@
1
- from ._core._ML_configuration_pytab import (
2
- PyTabGateParams,
3
- PyTabNodeParams,
4
- PyTabTabNetParams,
5
- PyTabAutoIntParams,
6
- info
7
- )
8
-
9
- __all__ = [
10
- "PyTabGateParams",
11
- "PyTabNodeParams",
12
- "PyTabTabNetParams",
13
- "PyTabAutoIntParams",
14
- ]
@@ -1,10 +0,0 @@
1
- from ._core._ML_datasetmaster import (
2
- DragonDataset,
3
- DragonDatasetMulti,
4
- info
5
- )
6
-
7
- __all__ = [
8
- "DragonDataset",
9
- "DragonDatasetMulti"
10
- ]
ml_tools/ML_evaluation.py DELETED
@@ -1,16 +0,0 @@
1
- from ._core._ML_evaluation import (
2
- plot_losses,
3
- classification_metrics,
4
- regression_metrics,
5
- shap_summary_plot,
6
- plot_attention_importance,
7
- info
8
- )
9
-
10
- __all__ = [
11
- "plot_losses",
12
- "classification_metrics",
13
- "regression_metrics",
14
- "shap_summary_plot",
15
- "plot_attention_importance"
16
- ]
@@ -1,12 +0,0 @@
1
- from ._core._ML_evaluation_multi import (
2
- multi_target_regression_metrics,
3
- multi_label_classification_metrics,
4
- multi_target_shap_summary_plot,
5
- info
6
- )
7
-
8
- __all__ = [
9
- "multi_target_regression_metrics",
10
- "multi_label_classification_metrics",
11
- "multi_target_shap_summary_plot",
12
- ]
@@ -1,8 +0,0 @@
1
- from ._core._ML_finalize_handler import (
2
- FinalizedFileHandler,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "FinalizedFileHandler"
8
- ]
ml_tools/ML_inference.py DELETED
@@ -1,12 +0,0 @@
1
- from ._core._ML_inference import (
2
- DragonInferenceHandler,
3
- multi_inference_regression,
4
- multi_inference_classification,
5
- info
6
- )
7
-
8
- __all__ = [
9
- "DragonInferenceHandler",
10
- "multi_inference_regression",
11
- "multi_inference_classification"
12
- ]
ml_tools/ML_models.py DELETED
@@ -1,14 +0,0 @@
1
- from ._core._ML_models import (
2
- DragonMLP,
3
- DragonAttentionMLP,
4
- DragonMultiHeadAttentionNet,
5
- DragonTabularTransformer,
6
- info
7
- )
8
-
9
- __all__ = [
10
- "DragonMLP",
11
- "DragonAttentionMLP",
12
- "DragonMultiHeadAttentionNet",
13
- "DragonTabularTransformer"
14
- ]
@@ -1,14 +0,0 @@
1
- from ._core._ML_models_advanced import (
2
- DragonGateModel,
3
- DragonNodeModel,
4
- DragonAutoInt,
5
- DragonTabNet,
6
- info
7
- )
8
-
9
- __all__ = [
10
- "DragonGateModel",
11
- "DragonNodeModel",
12
- "DragonAutoInt",
13
- "DragonTabNet"
14
- ]
@@ -1,14 +0,0 @@
1
- from ._core._ML_models_pytab import (
2
- PyTabGateModel,
3
- PyTabTabNet,
4
- PyTabAutoInt,
5
- PyTabNodeModel,
6
- info
7
- )
8
-
9
- __all__ = [
10
- "PyTabGateModel",
11
- "PyTabTabNet",
12
- "PyTabAutoInt",
13
- "PyTabNodeModel"
14
- ]
@@ -1,14 +0,0 @@
1
- from ._core._ML_optimization import (
2
- DragonOptimizer,
3
- FitnessEvaluator,
4
- create_pytorch_problem,
5
- run_optimization,
6
- info
7
- )
8
-
9
- __all__ = [
10
- "DragonOptimizer",
11
- "FitnessEvaluator",
12
- "create_pytorch_problem",
13
- "run_optimization"
14
- ]
@@ -1,8 +0,0 @@
1
- from ._core._ML_optimization_pareto import (
2
- DragonParetoOptimizer,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "DragonParetoOptimizer"
8
- ]
ml_tools/ML_scaler.py DELETED
@@ -1,8 +0,0 @@
1
- from ._core._ML_scaler import (
2
- DragonScaler,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "DragonScaler"
8
- ]
@@ -1,8 +0,0 @@
1
- from ._core._ML_sequence_datasetmaster import (
2
- DragonDatasetSequence,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "DragonDatasetSequence"
8
- ]
@@ -1,10 +0,0 @@
1
- from ._core._ML_sequence_evaluation import (
2
- sequence_to_value_metrics,
3
- sequence_to_sequence_metrics,
4
- info
5
- )
6
-
7
- __all__ = [
8
- "sequence_to_value_metrics",
9
- "sequence_to_sequence_metrics"
10
- ]
@@ -1,8 +0,0 @@
1
- from ._core._ML_sequence_inference import (
2
- DragonSequenceInferenceHandler,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "DragonSequenceInferenceHandler"
8
- ]
@@ -1,8 +0,0 @@
1
- from ._core._ML_sequence_models import (
2
- DragonSequenceLSTM,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "DragonSequenceLSTM"
8
- ]
ml_tools/ML_trainer.py DELETED
@@ -1,12 +0,0 @@
1
- from ._core._ML_trainer import (
2
- DragonTrainer,
3
- DragonDetectionTrainer,
4
- DragonSequenceTrainer,
5
- info
6
- )
7
-
8
- __all__ = [
9
- "DragonTrainer",
10
- "DragonDetectionTrainer",
11
- "DragonSequenceTrainer"
12
- ]
@@ -1,12 +0,0 @@
1
- from ._core._ML_vision_datasetmaster import (
2
- DragonDatasetVision,
3
- DragonDatasetSegmentation,
4
- DragonDatasetObjectDetection,
5
- info
6
- )
7
-
8
- __all__ = [
9
- "DragonDatasetVision",
10
- "DragonDatasetSegmentation",
11
- "DragonDatasetObjectDetection"
12
- ]
@@ -1,10 +0,0 @@
1
- from ._core._ML_vision_evaluation import (
2
- segmentation_metrics,
3
- object_detection_metrics,
4
- info
5
- )
6
-
7
- __all__ = [
8
- "segmentation_metrics",
9
- "object_detection_metrics"
10
- ]
@@ -1,8 +0,0 @@
1
- from ._core._ML_vision_inference import (
2
- DragonVisionInferenceHandler,
3
- info
4
- )
5
-
6
- __all__ = [
7
- "DragonVisionInferenceHandler"
8
- ]
@@ -1,18 +0,0 @@
1
- from ._core._ML_vision_models import (
2
- DragonResNet,
3
- DragonEfficientNet,
4
- DragonVGG,
5
- DragonFCN,
6
- DragonDeepLabv3,
7
- DragonFastRCNN,
8
- info
9
- )
10
-
11
- __all__ = [
12
- "DragonResNet",
13
- "DragonEfficientNet",
14
- "DragonVGG",
15
- "DragonFCN",
16
- "DragonDeepLabv3",
17
- "DragonFastRCNN",
18
- ]