dragon-ml-toolbox 19.13.0__py3-none-any.whl → 20.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/METADATA +29 -46
- dragon_ml_toolbox-20.0.0.dist-info/RECORD +178 -0
- ml_tools/{ETL_cleaning.py → ETL_cleaning/__init__.py} +13 -5
- ml_tools/ETL_cleaning/_basic_clean.py +351 -0
- ml_tools/ETL_cleaning/_clean_tools.py +128 -0
- ml_tools/ETL_cleaning/_dragon_cleaner.py +245 -0
- ml_tools/ETL_cleaning/_imprimir.py +13 -0
- ml_tools/{ETL_engineering.py → ETL_engineering/__init__.py} +8 -4
- ml_tools/ETL_engineering/_dragon_engineering.py +261 -0
- ml_tools/ETL_engineering/_imprimir.py +24 -0
- ml_tools/{_core/_ETL_engineering.py → ETL_engineering/_transforms.py} +14 -267
- ml_tools/{_core → GUI_tools}/_GUI_tools.py +37 -40
- ml_tools/{GUI_tools.py → GUI_tools/__init__.py} +7 -5
- ml_tools/GUI_tools/_imprimir.py +12 -0
- ml_tools/IO_tools/_IO_loggers.py +235 -0
- ml_tools/IO_tools/_IO_save_load.py +151 -0
- ml_tools/IO_tools/_IO_utils.py +140 -0
- ml_tools/{IO_tools.py → IO_tools/__init__.py} +13 -5
- ml_tools/IO_tools/_imprimir.py +14 -0
- ml_tools/MICE/_MICE_imputation.py +132 -0
- ml_tools/{MICE_imputation.py → MICE/__init__.py} +6 -7
- ml_tools/{_core/_MICE_imputation.py → MICE/_dragon_mice.py} +243 -322
- ml_tools/MICE/_imprimir.py +11 -0
- ml_tools/{ML_callbacks.py → ML_callbacks/__init__.py} +12 -4
- ml_tools/ML_callbacks/_base.py +101 -0
- ml_tools/ML_callbacks/_checkpoint.py +232 -0
- ml_tools/ML_callbacks/_early_stop.py +208 -0
- ml_tools/ML_callbacks/_imprimir.py +12 -0
- ml_tools/ML_callbacks/_scheduler.py +197 -0
- ml_tools/{ML_chaining_utilities.py → ML_chain/__init__.py} +8 -3
- ml_tools/{_core/_ML_chaining_utilities.py → ML_chain/_chaining_tools.py} +5 -129
- ml_tools/ML_chain/_dragon_chain.py +140 -0
- ml_tools/ML_chain/_imprimir.py +11 -0
- ml_tools/ML_configuration/__init__.py +90 -0
- ml_tools/ML_configuration/_base_model_config.py +69 -0
- ml_tools/ML_configuration/_finalize.py +366 -0
- ml_tools/ML_configuration/_imprimir.py +47 -0
- ml_tools/ML_configuration/_metrics.py +593 -0
- ml_tools/ML_configuration/_models.py +206 -0
- ml_tools/ML_configuration/_training.py +124 -0
- ml_tools/ML_datasetmaster/__init__.py +28 -0
- ml_tools/ML_datasetmaster/_base_datasetmaster.py +337 -0
- ml_tools/{_core/_ML_datasetmaster.py → ML_datasetmaster/_datasetmaster.py} +9 -329
- ml_tools/ML_datasetmaster/_imprimir.py +15 -0
- ml_tools/{_core/_ML_sequence_datasetmaster.py → ML_datasetmaster/_sequence_datasetmaster.py} +13 -15
- ml_tools/{_core/_ML_vision_datasetmaster.py → ML_datasetmaster/_vision_datasetmaster.py} +63 -65
- ml_tools/ML_evaluation/__init__.py +53 -0
- ml_tools/ML_evaluation/_classification.py +629 -0
- ml_tools/ML_evaluation/_feature_importance.py +409 -0
- ml_tools/ML_evaluation/_imprimir.py +25 -0
- ml_tools/ML_evaluation/_loss.py +92 -0
- ml_tools/ML_evaluation/_regression.py +273 -0
- ml_tools/{_core/_ML_sequence_evaluation.py → ML_evaluation/_sequence.py} +8 -11
- ml_tools/{_core/_ML_vision_evaluation.py → ML_evaluation/_vision.py} +12 -17
- ml_tools/{_core → ML_evaluation_captum}/_ML_evaluation_captum.py +11 -38
- ml_tools/{ML_evaluation_captum.py → ML_evaluation_captum/__init__.py} +6 -4
- ml_tools/ML_evaluation_captum/_imprimir.py +10 -0
- ml_tools/{_core → ML_finalize_handler}/_ML_finalize_handler.py +3 -7
- ml_tools/ML_finalize_handler/__init__.py +10 -0
- ml_tools/ML_finalize_handler/_imprimir.py +8 -0
- ml_tools/ML_inference/__init__.py +22 -0
- ml_tools/ML_inference/_base_inference.py +166 -0
- ml_tools/{_core/_ML_chaining_inference.py → ML_inference/_chain_inference.py} +14 -17
- ml_tools/ML_inference/_dragon_inference.py +332 -0
- ml_tools/ML_inference/_imprimir.py +11 -0
- ml_tools/ML_inference/_multi_inference.py +180 -0
- ml_tools/ML_inference_sequence/__init__.py +10 -0
- ml_tools/ML_inference_sequence/_imprimir.py +8 -0
- ml_tools/{_core/_ML_sequence_inference.py → ML_inference_sequence/_sequence_inference.py} +11 -15
- ml_tools/ML_inference_vision/__init__.py +10 -0
- ml_tools/ML_inference_vision/_imprimir.py +8 -0
- ml_tools/{_core/_ML_vision_inference.py → ML_inference_vision/_vision_inference.py} +15 -19
- ml_tools/ML_models/__init__.py +32 -0
- ml_tools/{_core/_ML_models_advanced.py → ML_models/_advanced_models.py} +22 -18
- ml_tools/ML_models/_base_mlp_attention.py +198 -0
- ml_tools/{_core/_models_advanced_base.py → ML_models/_base_save_load.py} +73 -49
- ml_tools/ML_models/_dragon_tabular.py +248 -0
- ml_tools/ML_models/_imprimir.py +18 -0
- ml_tools/ML_models/_mlp_attention.py +134 -0
- ml_tools/{_core → ML_models}/_models_advanced_helpers.py +13 -13
- ml_tools/ML_models_sequence/__init__.py +10 -0
- ml_tools/ML_models_sequence/_imprimir.py +8 -0
- ml_tools/{_core/_ML_sequence_models.py → ML_models_sequence/_sequence_models.py} +5 -8
- ml_tools/ML_models_vision/__init__.py +29 -0
- ml_tools/ML_models_vision/_base_wrapper.py +254 -0
- ml_tools/ML_models_vision/_image_classification.py +182 -0
- ml_tools/ML_models_vision/_image_segmentation.py +108 -0
- ml_tools/ML_models_vision/_imprimir.py +16 -0
- ml_tools/ML_models_vision/_object_detection.py +135 -0
- ml_tools/ML_optimization/__init__.py +21 -0
- ml_tools/ML_optimization/_imprimir.py +13 -0
- ml_tools/{_core/_ML_optimization_pareto.py → ML_optimization/_multi_dragon.py} +18 -24
- ml_tools/ML_optimization/_single_dragon.py +203 -0
- ml_tools/{_core/_ML_optimization.py → ML_optimization/_single_manual.py} +75 -213
- ml_tools/{_core → ML_scaler}/_ML_scaler.py +8 -11
- ml_tools/ML_scaler/__init__.py +10 -0
- ml_tools/ML_scaler/_imprimir.py +8 -0
- ml_tools/ML_trainer/__init__.py +20 -0
- ml_tools/ML_trainer/_base_trainer.py +297 -0
- ml_tools/ML_trainer/_dragon_detection_trainer.py +402 -0
- ml_tools/ML_trainer/_dragon_sequence_trainer.py +540 -0
- ml_tools/ML_trainer/_dragon_trainer.py +1160 -0
- ml_tools/ML_trainer/_imprimir.py +10 -0
- ml_tools/{ML_utilities.py → ML_utilities/__init__.py} +14 -6
- ml_tools/ML_utilities/_artifact_finder.py +382 -0
- ml_tools/ML_utilities/_imprimir.py +16 -0
- ml_tools/ML_utilities/_inspection.py +325 -0
- ml_tools/ML_utilities/_train_tools.py +205 -0
- ml_tools/{ML_vision_transformers.py → ML_vision_transformers/__init__.py} +9 -6
- ml_tools/{_core/_ML_vision_transformers.py → ML_vision_transformers/_core_transforms.py} +11 -155
- ml_tools/ML_vision_transformers/_imprimir.py +14 -0
- ml_tools/ML_vision_transformers/_offline_augmentation.py +159 -0
- ml_tools/{_core/_PSO_optimization.py → PSO_optimization/_PSO.py} +58 -15
- ml_tools/{PSO_optimization.py → PSO_optimization/__init__.py} +5 -3
- ml_tools/PSO_optimization/_imprimir.py +10 -0
- ml_tools/SQL/__init__.py +7 -0
- ml_tools/{_core/_SQL.py → SQL/_dragon_SQL.py} +7 -11
- ml_tools/SQL/_imprimir.py +8 -0
- ml_tools/{_core → VIF}/_VIF_factor.py +5 -8
- ml_tools/{VIF_factor.py → VIF/__init__.py} +4 -2
- ml_tools/VIF/_imprimir.py +10 -0
- ml_tools/_core/__init__.py +7 -1
- ml_tools/_core/_logger.py +8 -18
- ml_tools/_core/_schema_load_ops.py +43 -0
- ml_tools/_core/_script_info.py +2 -2
- ml_tools/{data_exploration.py → data_exploration/__init__.py} +32 -16
- ml_tools/data_exploration/_analysis.py +214 -0
- ml_tools/data_exploration/_cleaning.py +566 -0
- ml_tools/data_exploration/_features.py +583 -0
- ml_tools/data_exploration/_imprimir.py +32 -0
- ml_tools/data_exploration/_plotting.py +487 -0
- ml_tools/data_exploration/_schema_ops.py +176 -0
- ml_tools/{ensemble_evaluation.py → ensemble_evaluation/__init__.py} +6 -4
- ml_tools/{_core → ensemble_evaluation}/_ensemble_evaluation.py +3 -7
- ml_tools/ensemble_evaluation/_imprimir.py +14 -0
- ml_tools/{ensemble_inference.py → ensemble_inference/__init__.py} +5 -3
- ml_tools/{_core → ensemble_inference}/_ensemble_inference.py +15 -18
- ml_tools/ensemble_inference/_imprimir.py +9 -0
- ml_tools/{ensemble_learning.py → ensemble_learning/__init__.py} +4 -6
- ml_tools/{_core → ensemble_learning}/_ensemble_learning.py +7 -10
- ml_tools/ensemble_learning/_imprimir.py +10 -0
- ml_tools/{excel_handler.py → excel_handler/__init__.py} +5 -3
- ml_tools/{_core → excel_handler}/_excel_handler.py +6 -10
- ml_tools/excel_handler/_imprimir.py +13 -0
- ml_tools/{keys.py → keys/__init__.py} +4 -1
- ml_tools/keys/_imprimir.py +11 -0
- ml_tools/{_core → keys}/_keys.py +2 -0
- ml_tools/{math_utilities.py → math_utilities/__init__.py} +5 -2
- ml_tools/math_utilities/_imprimir.py +11 -0
- ml_tools/{_core → math_utilities}/_math_utilities.py +1 -5
- ml_tools/{optimization_tools.py → optimization_tools/__init__.py} +9 -4
- ml_tools/optimization_tools/_imprimir.py +13 -0
- ml_tools/optimization_tools/_optimization_bounds.py +236 -0
- ml_tools/optimization_tools/_optimization_plots.py +218 -0
- ml_tools/{path_manager.py → path_manager/__init__.py} +6 -3
- ml_tools/{_core/_path_manager.py → path_manager/_dragonmanager.py} +11 -347
- ml_tools/path_manager/_imprimir.py +15 -0
- ml_tools/path_manager/_path_tools.py +346 -0
- ml_tools/plot_fonts/__init__.py +8 -0
- ml_tools/plot_fonts/_imprimir.py +8 -0
- ml_tools/{_core → plot_fonts}/_plot_fonts.py +2 -5
- ml_tools/schema/__init__.py +15 -0
- ml_tools/schema/_feature_schema.py +223 -0
- ml_tools/schema/_gui_schema.py +191 -0
- ml_tools/schema/_imprimir.py +10 -0
- ml_tools/{serde.py → serde/__init__.py} +4 -2
- ml_tools/serde/_imprimir.py +10 -0
- ml_tools/{_core → serde}/_serde.py +3 -8
- ml_tools/{utilities.py → utilities/__init__.py} +11 -6
- ml_tools/utilities/_imprimir.py +18 -0
- ml_tools/{_core/_utilities.py → utilities/_utility_save_load.py} +13 -190
- ml_tools/utilities/_utility_tools.py +192 -0
- dragon_ml_toolbox-19.13.0.dist-info/RECORD +0 -111
- ml_tools/ML_chaining_inference.py +0 -8
- ml_tools/ML_configuration.py +0 -86
- ml_tools/ML_configuration_pytab.py +0 -14
- ml_tools/ML_datasetmaster.py +0 -10
- ml_tools/ML_evaluation.py +0 -16
- ml_tools/ML_evaluation_multi.py +0 -12
- ml_tools/ML_finalize_handler.py +0 -8
- ml_tools/ML_inference.py +0 -12
- ml_tools/ML_models.py +0 -14
- ml_tools/ML_models_advanced.py +0 -14
- ml_tools/ML_models_pytab.py +0 -14
- ml_tools/ML_optimization.py +0 -14
- ml_tools/ML_optimization_pareto.py +0 -8
- ml_tools/ML_scaler.py +0 -8
- ml_tools/ML_sequence_datasetmaster.py +0 -8
- ml_tools/ML_sequence_evaluation.py +0 -10
- ml_tools/ML_sequence_inference.py +0 -8
- ml_tools/ML_sequence_models.py +0 -8
- ml_tools/ML_trainer.py +0 -12
- ml_tools/ML_vision_datasetmaster.py +0 -12
- ml_tools/ML_vision_evaluation.py +0 -10
- ml_tools/ML_vision_inference.py +0 -8
- ml_tools/ML_vision_models.py +0 -18
- ml_tools/SQL.py +0 -8
- ml_tools/_core/_ETL_cleaning.py +0 -694
- ml_tools/_core/_IO_tools.py +0 -498
- ml_tools/_core/_ML_callbacks.py +0 -702
- ml_tools/_core/_ML_configuration.py +0 -1332
- ml_tools/_core/_ML_configuration_pytab.py +0 -102
- ml_tools/_core/_ML_evaluation.py +0 -867
- ml_tools/_core/_ML_evaluation_multi.py +0 -544
- ml_tools/_core/_ML_inference.py +0 -646
- ml_tools/_core/_ML_models.py +0 -668
- ml_tools/_core/_ML_models_pytab.py +0 -693
- ml_tools/_core/_ML_trainer.py +0 -2323
- ml_tools/_core/_ML_utilities.py +0 -886
- ml_tools/_core/_ML_vision_models.py +0 -644
- ml_tools/_core/_data_exploration.py +0 -1901
- ml_tools/_core/_optimization_tools.py +0 -493
- ml_tools/_core/_schema.py +0 -359
- ml_tools/plot_fonts.py +0 -8
- ml_tools/schema.py +0 -12
- {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/WHEEL +0 -0
- {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/licenses/LICENSE +0 -0
- {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/licenses/LICENSE-THIRD-PARTY.md +0 -0
- {dragon_ml_toolbox-19.13.0.dist-info → dragon_ml_toolbox-20.0.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,192 @@
|
|
|
1
|
+
import pandas as pd
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from typing import Literal, Union, Iterator
|
|
4
|
+
|
|
5
|
+
from ..path_manager import make_fullpath, list_csv_paths
|
|
6
|
+
from .._core import get_logger
|
|
7
|
+
|
|
8
|
+
from ._utility_save_load import load_dataframe, save_dataframe_filename
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
_LOGGER = get_logger("Utility Tools")
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
__all__ = [
|
|
15
|
+
"merge_dataframes",
|
|
16
|
+
"distribute_dataset_by_target",
|
|
17
|
+
"train_dataset_orchestrator",
|
|
18
|
+
"train_dataset_yielder"
|
|
19
|
+
]
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def merge_dataframes(
|
|
23
|
+
*dfs: pd.DataFrame,
|
|
24
|
+
reset_index: bool = False,
|
|
25
|
+
direction: Literal["horizontal", "vertical"] = "horizontal",
|
|
26
|
+
verbose: bool=True
|
|
27
|
+
) -> pd.DataFrame:
|
|
28
|
+
"""
|
|
29
|
+
Merges multiple DataFrames either horizontally or vertically.
|
|
30
|
+
|
|
31
|
+
Parameters:
|
|
32
|
+
*dfs (pd.DataFrame): Variable number of DataFrames to merge.
|
|
33
|
+
reset_index (bool): Whether to reset index in the final merged DataFrame.
|
|
34
|
+
direction (["horizontal" | "vertical"]):
|
|
35
|
+
- "horizontal": Merge on index, adding columns.
|
|
36
|
+
- "vertical": Append rows; all DataFrames must have identical columns.
|
|
37
|
+
|
|
38
|
+
Returns:
|
|
39
|
+
pd.DataFrame: A single merged DataFrame.
|
|
40
|
+
|
|
41
|
+
Raises:
|
|
42
|
+
ValueError:
|
|
43
|
+
- If fewer than 2 DataFrames are provided.
|
|
44
|
+
- If indexes do not match for horizontal merge.
|
|
45
|
+
- If column names or order differ for vertical merge.
|
|
46
|
+
"""
|
|
47
|
+
if len(dfs) < 2:
|
|
48
|
+
raise ValueError("❌ At least 2 DataFrames must be provided.")
|
|
49
|
+
|
|
50
|
+
if verbose:
|
|
51
|
+
for i, df in enumerate(dfs, start=1):
|
|
52
|
+
print(f"➡️ DataFrame {i} shape: {df.shape}")
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
if direction == "horizontal":
|
|
56
|
+
reference_index = dfs[0].index
|
|
57
|
+
for i, df in enumerate(dfs, start=1):
|
|
58
|
+
if not df.index.equals(reference_index):
|
|
59
|
+
raise ValueError(f"❌ Indexes do not match: Dataset 1 and Dataset {i}.")
|
|
60
|
+
merged_df = pd.concat(dfs, axis=1)
|
|
61
|
+
|
|
62
|
+
elif direction == "vertical":
|
|
63
|
+
reference_columns = dfs[0].columns
|
|
64
|
+
for i, df in enumerate(dfs, start=1):
|
|
65
|
+
if not df.columns.equals(reference_columns):
|
|
66
|
+
raise ValueError(f"❌ Column names/order do not match: Dataset 1 and Dataset {i}.")
|
|
67
|
+
merged_df = pd.concat(dfs, axis=0)
|
|
68
|
+
|
|
69
|
+
else:
|
|
70
|
+
_LOGGER.error(f"Invalid merge direction: {direction}")
|
|
71
|
+
raise ValueError()
|
|
72
|
+
|
|
73
|
+
if reset_index:
|
|
74
|
+
merged_df = merged_df.reset_index(drop=True)
|
|
75
|
+
|
|
76
|
+
if verbose:
|
|
77
|
+
_LOGGER.info(f"Merged DataFrame shape: {merged_df.shape}")
|
|
78
|
+
|
|
79
|
+
return merged_df
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def distribute_dataset_by_target(
|
|
83
|
+
df_or_path: Union[pd.DataFrame, str, Path],
|
|
84
|
+
target_columns: list[str],
|
|
85
|
+
verbose: bool = False
|
|
86
|
+
) -> Iterator[tuple[str, pd.DataFrame]]:
|
|
87
|
+
"""
|
|
88
|
+
Yields cleaned DataFrames for each target column, where rows with missing
|
|
89
|
+
target values are removed. The target column is placed at the end.
|
|
90
|
+
|
|
91
|
+
Parameters
|
|
92
|
+
----------
|
|
93
|
+
df_or_path : [pd.DataFrame | str | Path]
|
|
94
|
+
Dataframe or path to Dataframe with all feature and target columns ready to split and train a model.
|
|
95
|
+
target_columns : List[str]
|
|
96
|
+
List of target column names to generate per-target DataFrames.
|
|
97
|
+
verbose: bool
|
|
98
|
+
Whether to print info for each yielded dataset.
|
|
99
|
+
|
|
100
|
+
Yields
|
|
101
|
+
------
|
|
102
|
+
Tuple[str, pd.DataFrame]
|
|
103
|
+
* Target name.
|
|
104
|
+
* Pandas DataFrame.
|
|
105
|
+
"""
|
|
106
|
+
# Validate path or dataframe
|
|
107
|
+
if isinstance(df_or_path, str) or isinstance(df_or_path, Path):
|
|
108
|
+
df_path = make_fullpath(df_or_path)
|
|
109
|
+
df, _ = load_dataframe(df_path)
|
|
110
|
+
else:
|
|
111
|
+
df = df_or_path
|
|
112
|
+
|
|
113
|
+
valid_targets = [col for col in df.columns if col in target_columns]
|
|
114
|
+
feature_columns = [col for col in df.columns if col not in valid_targets]
|
|
115
|
+
|
|
116
|
+
for target in valid_targets:
|
|
117
|
+
subset = df[feature_columns + [target]].dropna(subset=[target]) # type: ignore
|
|
118
|
+
if verbose:
|
|
119
|
+
print(f"Target: '{target}' - Dataframe shape: {subset.shape}")
|
|
120
|
+
yield target, subset
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
def train_dataset_orchestrator(list_of_dirs: list[Union[str,Path]],
|
|
124
|
+
target_columns: list[str],
|
|
125
|
+
save_dir: Union[str,Path],
|
|
126
|
+
safe_mode: bool=False):
|
|
127
|
+
"""
|
|
128
|
+
Orchestrates the creation of single-target datasets from multiple directories each with a variable number of CSV datasets.
|
|
129
|
+
|
|
130
|
+
This function iterates through a list of directories, finds all CSV files,
|
|
131
|
+
and splits each dataframe based on the provided target columns. Each resulting
|
|
132
|
+
single-target dataframe is then saved to a specified directory.
|
|
133
|
+
|
|
134
|
+
Parameters
|
|
135
|
+
----------
|
|
136
|
+
list_of_dirs : list[str | Path]
|
|
137
|
+
A list of directory paths where the source CSV files are located.
|
|
138
|
+
target_columns : list[str]
|
|
139
|
+
A list of column names to be used as targets for splitting the datasets.
|
|
140
|
+
save_dir : str | Path
|
|
141
|
+
The directory where the newly created single-target datasets will be saved.
|
|
142
|
+
safe_mode : bool
|
|
143
|
+
If True, prefixes the saved filename with the source directory name to prevent overwriting files with the same name from different sources.
|
|
144
|
+
"""
|
|
145
|
+
all_dir_paths: list[Path] = list()
|
|
146
|
+
for dir in list_of_dirs:
|
|
147
|
+
dir_path = make_fullpath(dir)
|
|
148
|
+
if not dir_path.is_dir():
|
|
149
|
+
_LOGGER.error(f"'{dir}' is not a directory.")
|
|
150
|
+
raise IOError()
|
|
151
|
+
all_dir_paths.append(dir_path)
|
|
152
|
+
|
|
153
|
+
# main loop
|
|
154
|
+
total_saved = 0
|
|
155
|
+
for df_dir in all_dir_paths:
|
|
156
|
+
for df_name, df_path in list_csv_paths(df_dir).items():
|
|
157
|
+
try:
|
|
158
|
+
for target_name, df in distribute_dataset_by_target(df_or_path=df_path, target_columns=target_columns, verbose=False):
|
|
159
|
+
if safe_mode:
|
|
160
|
+
filename = df_dir.name + '_' + target_name + '_' + df_name
|
|
161
|
+
else:
|
|
162
|
+
filename = target_name + '_' + df_name
|
|
163
|
+
save_dataframe_filename(df=df, save_dir=save_dir, filename=filename)
|
|
164
|
+
total_saved += 1
|
|
165
|
+
except Exception as e:
|
|
166
|
+
_LOGGER.error(f"Failed to process file '{df_path}'. Reason: {e}")
|
|
167
|
+
continue
|
|
168
|
+
|
|
169
|
+
_LOGGER.info(f"{total_saved} single-target datasets were created.")
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
def train_dataset_yielder(
|
|
173
|
+
df: pd.DataFrame,
|
|
174
|
+
target_cols: list[str]
|
|
175
|
+
) -> Iterator[tuple[pd.DataFrame, pd.Series, list[str], str]]:
|
|
176
|
+
"""
|
|
177
|
+
Yields one tuple at a time:
|
|
178
|
+
(features_dataframe, target_series, feature_names, target_name)
|
|
179
|
+
|
|
180
|
+
Skips any target columns not found in the DataFrame.
|
|
181
|
+
"""
|
|
182
|
+
# Determine which target columns actually exist in the DataFrame
|
|
183
|
+
valid_targets = [col for col in target_cols if col in df.columns]
|
|
184
|
+
|
|
185
|
+
# Features = all columns excluding valid target columns
|
|
186
|
+
df_features = df.drop(columns=valid_targets)
|
|
187
|
+
feature_names = df_features.columns.to_list()
|
|
188
|
+
|
|
189
|
+
for target_col in valid_targets:
|
|
190
|
+
df_target = df[target_col]
|
|
191
|
+
yield (df_features, df_target, feature_names, target_col)
|
|
192
|
+
|
|
@@ -1,111 +0,0 @@
|
|
|
1
|
-
dragon_ml_toolbox-19.13.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
|
|
2
|
-
dragon_ml_toolbox-19.13.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
|
|
3
|
-
ml_tools/ETL_cleaning.py,sha256=cKXyRFaaFs_beAGDnQM54xnML671kq-yJEGjHafW-20,351
|
|
4
|
-
ml_tools/ETL_engineering.py,sha256=cwh1FhtNdUHllUDvho-x3SIVj4KwG_rFQR6VYzWUg0U,898
|
|
5
|
-
ml_tools/GUI_tools.py,sha256=O89rG8WQv6GY1DiphQjIsPzXFCQID6te7q_Sgt1iTkQ,294
|
|
6
|
-
ml_tools/IO_tools.py,sha256=UiOiXgccB06JS7__aq1OXWqYARvAQuxaTrpVJU54Suk,334
|
|
7
|
-
ml_tools/MICE_imputation.py,sha256=tpLM-rdq4sKbc2GHfj7UrkS3DmBZ3B_DlbrklWbI7gI,366
|
|
8
|
-
ml_tools/ML_callbacks.py,sha256=a5aXjrtKSgJGW8GWIVd3QR3gT5pJpQxsXFXoNO9GcgM,357
|
|
9
|
-
ml_tools/ML_chaining_inference.py,sha256=-JD-LbPtFQkEEWyLUuszWvsqE6nbgkKaQBjrwmBPer0,124
|
|
10
|
-
ml_tools/ML_chaining_utilities.py,sha256=TmiVea_66qfB2l3UEVua4Wb5Sg1D75bSz_-Js3DudfA,360
|
|
11
|
-
ml_tools/ML_configuration.py,sha256=R8ca9q6W_Lm8lQ48qmxWfdMeHJ5o9hmcHhVdekrY_UQ,2730
|
|
12
|
-
ml_tools/ML_configuration_pytab.py,sha256=6BdyL8sdAp6SDCM1DQrKZKo3yXnEgPX8mWXOaYVMhp0,257
|
|
13
|
-
ml_tools/ML_datasetmaster.py,sha256=bbT29BOGjUThcYctd2eA9K4Y6wKU6sewFMZ7tjVgpqo,154
|
|
14
|
-
ml_tools/ML_evaluation.py,sha256=My7W2IDPca7cMgmJoGyqqVzFL36ssaXA5f4MqKtvWBA,319
|
|
15
|
-
ml_tools/ML_evaluation_captum.py,sha256=ai_Vw_RsdcW6UerWVRmp_a2EmwPiepA_epV4T6b0Kd8,255
|
|
16
|
-
ml_tools/ML_evaluation_multi.py,sha256=-t6-OcXfL8q2-yssX3ixw6r1WHyNToAlVjXXlD_iLpE,300
|
|
17
|
-
ml_tools/ML_finalize_handler.py,sha256=kVayo_zBOrm-zxyMbZoC-v4QyeLMSS3I3Sovzkc7wFI,121
|
|
18
|
-
ml_tools/ML_inference.py,sha256=3xDljJcyRnB_S4EarQKKWOKplKukmn4iqMqbRa7kymE,258
|
|
19
|
-
ml_tools/ML_models.py,sha256=s3ENLmeO4aYSAbQYTeaEg96_4yu46slawH9lkwBAwC0,269
|
|
20
|
-
ml_tools/ML_models_advanced.py,sha256=aygR0uBXDszYX6FDKoySymJXuzkhN2UdeaIqJyZhwzw,232
|
|
21
|
-
ml_tools/ML_models_pytab.py,sha256=CcrUvjLGKRb4U4dsxLqjDqTpWDg5d83DvzbcZupVA5E,221
|
|
22
|
-
ml_tools/ML_optimization.py,sha256=eZbpcuOc1w8NGGCD-7YZiK0PXFAZBwmh1pqi9DrbAUQ,257
|
|
23
|
-
ml_tools/ML_optimization_pareto.py,sha256=fUgq0qzeaQBm7lWNqebqBF-6zeGH_5uDMFLL9c-QR-Q,126
|
|
24
|
-
ml_tools/ML_scaler.py,sha256=7iL3AYP5iMedpb7bQ_Qr7EKxT3OJZdEaxsEdV4owp1g,95
|
|
25
|
-
ml_tools/ML_sequence_datasetmaster.py,sha256=cRVaZJZi6h9_qgzA7buyoZpzm6qrXvMPv3Rkgegm3FE,129
|
|
26
|
-
ml_tools/ML_sequence_evaluation.py,sha256=DQamUxg79g4cYObD5ceQMI1o2yl6s9rGu-OEglHW8-w,205
|
|
27
|
-
ml_tools/ML_sequence_inference.py,sha256=xxzb9Pf-iDgFVqW61ipfWPymIWKwrxQNGE7A9FAEqRY,143
|
|
28
|
-
ml_tools/ML_sequence_models.py,sha256=m2bqDHWFyHIpCyyvBKgRYTdCSg8Olp4XX9joen4Grzc,116
|
|
29
|
-
ml_tools/ML_trainer.py,sha256=x40gff7i0M-4pQNt9M9jQFX-TMR8ntEw204Jg35KGSI,212
|
|
30
|
-
ml_tools/ML_utilities.py,sha256=n-3BITe1h5oNVaJukoqWZJX5uP4Pu2Mxv5DIXb3U-to,586
|
|
31
|
-
ml_tools/ML_vision_datasetmaster.py,sha256=DAAV7u7Uf5ZlnoR50QHlgCznOROFaCucNJFhOw3eaUc,257
|
|
32
|
-
ml_tools/ML_vision_evaluation.py,sha256=R3sw3m3rK3FI28MSB8muc6QFa0MIuKfo4QWGWXkOBZs,184
|
|
33
|
-
ml_tools/ML_vision_inference.py,sha256=k43gPqshyGwV5_SrMbfJQ9Bx26OLkVwZ7SEO6M_vlGU,137
|
|
34
|
-
ml_tools/ML_vision_models.py,sha256=_jK4z3s1DaCC672G6JmXxqjoq7wZpfLps-Ovh6aMTP8,303
|
|
35
|
-
ml_tools/ML_vision_transformers.py,sha256=BmfizCOWTpUrgpt4FJVsGhQ8wY2D0rb38XPo6ZPUlB4,404
|
|
36
|
-
ml_tools/PSO_optimization.py,sha256=xAPZWM9SZF6vSs-Kk_Qc2_9XPNjM5ZYV_qmsV5XZkck,228
|
|
37
|
-
ml_tools/SQL.py,sha256=ZYlY5L-k2mkDckOhNPtJEof2L7ePe_KBpgx55WG5NKs,84
|
|
38
|
-
ml_tools/VIF_factor.py,sha256=xGUbnfhh1eqUiHX-tIpJBn_3Y_h3SOuNfVKkpsQXc7w,184
|
|
39
|
-
ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
40
|
-
ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
|
|
41
|
-
ml_tools/data_exploration.py,sha256=vwCgOHhpPku2uuRVscrco6sXwkjc3ruOlfO002OQ74M,1468
|
|
42
|
-
ml_tools/ensemble_evaluation.py,sha256=P26vyS2fMV3Pm_4w2MN1z1eS7aVJzYagsyLmqC-Io6Q,468
|
|
43
|
-
ml_tools/ensemble_inference.py,sha256=sl_Dq9KaN0SrtZmyiVrrhWd6lSjdQangSIUUUIFvfj4,178
|
|
44
|
-
ml_tools/ensemble_learning.py,sha256=BLPnpfJWCly-D75mkRP1FE5TExoWAAlAHR89KAzW9iU,336
|
|
45
|
-
ml_tools/excel_handler.py,sha256=h35HMNnO44btxsTSfZXj2HiJtpRS4fdrJLbzru4heMs,453
|
|
46
|
-
ml_tools/keys.py,sha256=JCGMwU26qSKfClGCpiv6y-GmFFP56pqNn6n7z-pyYTM,312
|
|
47
|
-
ml_tools/math_utilities.py,sha256=53nOXlhb5taUHj4CDHsXliArEfPkOlJD7G_dJa3_iOU,321
|
|
48
|
-
ml_tools/optimization_tools.py,sha256=rPG2VJ7hk9hv5wfKPq4zPJDXFWKioROOiJWmzXlXzVA,541
|
|
49
|
-
ml_tools/path_manager.py,sha256=uklNIuRipFnHVcWHojzluYyvhiBzKGbb4S5lM1imGYw,427
|
|
50
|
-
ml_tools/plot_fonts.py,sha256=6-WevfhDjbyWbSrFM6bqW-h5NC_mAO4XzdFR-oQ3DPE,110
|
|
51
|
-
ml_tools/schema.py,sha256=AddXOa4P9HinlJ6SnICksHzBqRyi7MaichwVn-z_oVE,219
|
|
52
|
-
ml_tools/serde.py,sha256=aETbmTDxnCE4D7hFX92RjBJYXuMomWnxAsBt46WfCUw,214
|
|
53
|
-
ml_tools/utilities.py,sha256=dHNjGPH3Ck9V41IRFbRojE_RW6lACdxrNZz0FxI5SQY,691
|
|
54
|
-
ml_tools/_core/_ETL_cleaning.py,sha256=_pTNKuapNHgWErmxvsXW-2YzCm4BaTshKV627A38RuA,28748
|
|
55
|
-
ml_tools/_core/_ETL_engineering.py,sha256=JgIWrQGyNjmLrbyv5Kh0EHKBLmYlyrGKSnKRxGzxSco,57930
|
|
56
|
-
ml_tools/_core/_GUI_tools.py,sha256=kpvk18Eb4vdLzo-I5mBV1yuwPXs-NJJ01rn-iCXHvIY,49079
|
|
57
|
-
ml_tools/_core/_IO_tools.py,sha256=sEbtzDHkc9GNkXvsFS9ic038LzAW-rxXPuLwtoHXzGw,17107
|
|
58
|
-
ml_tools/_core/_MICE_imputation.py,sha256=64l20duGWt93Q2MbqcWqrA1s99JPRf5AJACb1CZi2xI,21149
|
|
59
|
-
ml_tools/_core/_ML_callbacks.py,sha256=T0PjptlpC75_Tp3bWIMPTYhxsMX-8z4YtDT4FJ3p8jg,27988
|
|
60
|
-
ml_tools/_core/_ML_chaining_inference.py,sha256=vXUPZzuQ2yKU71kkvUsE0xPo0hN-Yu6gfnL0JbXoRjI,7783
|
|
61
|
-
ml_tools/_core/_ML_chaining_utilities.py,sha256=nsYowgRbkIYuzRiHlqsM3tnC3c-8O73CY8DHUF14XL0,19248
|
|
62
|
-
ml_tools/_core/_ML_configuration.py,sha256=olRcam2s-Y5oUr8BAcmhwIBQDmaQZm2RHTv5sK2HeOU,53151
|
|
63
|
-
ml_tools/_core/_ML_configuration_pytab.py,sha256=C3e4iScqdRePVDoqnic6xXMOW7DNYqpgTCeaFDyMdL4,3286
|
|
64
|
-
ml_tools/_core/_ML_datasetmaster.py,sha256=yU1BMtzz6XumMWCetVACrRLk7WJQwmYhaQ-VAWu9Ots,32043
|
|
65
|
-
ml_tools/_core/_ML_evaluation.py,sha256=bu8qlYzhWSC1B7wNfCC5TSF-oed-uP8EF7TV45VTiBM,37325
|
|
66
|
-
ml_tools/_core/_ML_evaluation_captum.py,sha256=a69jnghIzE9qppuw2vzTBMdTErnZkDkTA3MPUUYjsS4,19212
|
|
67
|
-
ml_tools/_core/_ML_evaluation_multi.py,sha256=n_AJbKF58DMUrYqJutwPFV5z6sNssDPA1Gl05IfPG5s,23647
|
|
68
|
-
ml_tools/_core/_ML_finalize_handler.py,sha256=1__wG3Jcr9h1a99F-CmHezhEw1_Ojxh3aDHNyJN2S5w,7127
|
|
69
|
-
ml_tools/_core/_ML_inference.py,sha256=5swm2lnsrDLalBnCm7gZPlDucX4yNCq5vn7ck3SW_4Q,29791
|
|
70
|
-
ml_tools/_core/_ML_models.py,sha256=8FUx4-TVghlBF9srh1_5UxovrWPU7YEZ6XXLqwJei88,27974
|
|
71
|
-
ml_tools/_core/_ML_models_advanced.py,sha256=oU6M5FEBMQ9yPp32cziWh3bz8SXRho07vFMC8ZDVcuU,45002
|
|
72
|
-
ml_tools/_core/_ML_models_pytab.py,sha256=EHHnDG02ghcJORy2gipm3NcrlzL0qygD44o7QGmT1Zs,26297
|
|
73
|
-
ml_tools/_core/_ML_optimization.py,sha256=mvG1joVS3U67lmSwzMgLgNGzh4H3Py3ttKeaTM3EUnU,28126
|
|
74
|
-
ml_tools/_core/_ML_optimization_pareto.py,sha256=1PA8o5qbI13x5QusWhRIJMiPz3cMA2dUT1ZwU9NIZQM,37609
|
|
75
|
-
ml_tools/_core/_ML_scaler.py,sha256=Nhu6qli_QezHQi5NKhRb8Z51bBJgzk2nEp_yW4B9H4U,8134
|
|
76
|
-
ml_tools/_core/_ML_sequence_datasetmaster.py,sha256=0YVOPf-y4ZNdgUxropXUWrmInNyGYaUYprYvXf31n9U,17811
|
|
77
|
-
ml_tools/_core/_ML_sequence_evaluation.py,sha256=AiPHtZ9DRpE6zL9n3Tp5eGGD9vrYRkLbZ0Nc274mL7I,8069
|
|
78
|
-
ml_tools/_core/_ML_sequence_inference.py,sha256=zd3hBwOtLmjAV4JtdB2qFY9GxhysajFufATdy8fjGTE,16316
|
|
79
|
-
ml_tools/_core/_ML_sequence_models.py,sha256=5qcEYLU6wDePBITnikBrj_H9mCvyJmElKa3HiWGXhZs,5639
|
|
80
|
-
ml_tools/_core/_ML_trainer.py,sha256=ZYDH-P8GJhFe0vpeMtgLS0O3Fz0d4qr8zcTm-C30T1I,117595
|
|
81
|
-
ml_tools/_core/_ML_utilities.py,sha256=elLGD0QYh148_9iNLlqGe1vz-wCFspJa6CWtWTfA3jY,35594
|
|
82
|
-
ml_tools/_core/_ML_vision_datasetmaster.py,sha256=8EsE7luzphVlwBXdOsOwsFfz1D4UIUSEQtqHlM0Vf-o,67084
|
|
83
|
-
ml_tools/_core/_ML_vision_evaluation.py,sha256=BSLf9xrGpaR02Dhkf-fAbgxSpwRjf7DruNIcQadl7qg,11631
|
|
84
|
-
ml_tools/_core/_ML_vision_inference.py,sha256=6K9gMFjAAZKfLAIQlOkm_I9hvCPmO--9-1vnskQRk0I,20190
|
|
85
|
-
ml_tools/_core/_ML_vision_models.py,sha256=oUik-RLxFvZFZCtFztjkSfFYgJuRx4QzfwHVY1ny4Sc,26217
|
|
86
|
-
ml_tools/_core/_ML_vision_transformers.py,sha256=imjL9h5kwpfuRn9rBelNpgtrdU-EecBEcHMFZMXTeZA,15303
|
|
87
|
-
ml_tools/_core/_PSO_optimization.py,sha256=W3g5xw2v2eOUQadv8KHFkt5HNm9AiY3ZUk-TeyVuZjw,22991
|
|
88
|
-
ml_tools/_core/_SQL.py,sha256=zX_8EgYfmLmvvrnL851KMkI4w9kdkjHJ997BTvS5aig,11556
|
|
89
|
-
ml_tools/_core/_VIF_factor.py,sha256=BM0mTowBqt45PXFy9oJLhT9C-CTWWo0TQhgCyWYLHtQ,10457
|
|
90
|
-
ml_tools/_core/__init__.py,sha256=d4IG0OxUXj2HffepzQcYixHlZeuuuDMAFa09H_6LtmU,12
|
|
91
|
-
ml_tools/_core/_data_exploration.py,sha256=VPSqTo8IPLDOGcVDAcdyxgzO0Fw224pbivzbli_aad0,76159
|
|
92
|
-
ml_tools/_core/_ensemble_evaluation.py,sha256=17lWl4bWLT1BAMv_fhGf2D3wy-F4jx0HgnJ79lYkRuE,28419
|
|
93
|
-
ml_tools/_core/_ensemble_inference.py,sha256=9UpARSETzmqPdQmxqizD768tjkqldxHw1ER_hM9Kx9M,8631
|
|
94
|
-
ml_tools/_core/_ensemble_learning.py,sha256=X8ghbjDOLMENCWdISXLhDlHQtR3C6SW1tkTBAcfRRPY,22016
|
|
95
|
-
ml_tools/_core/_excel_handler.py,sha256=gV4rSIsiowb0xllpEJxzUKaYDDVpmP_lxs9wZA76-cc,14050
|
|
96
|
-
ml_tools/_core/_keys.py,sha256=OCpO4blAY12px3T3bGHUDcs_YIgEiLq7ppeazDbZlvQ,8739
|
|
97
|
-
ml_tools/_core/_logger.py,sha256=86Ge0sDE_WgwsZBglQRYPyFYX3lcsIo0NzszNPzlxuk,5254
|
|
98
|
-
ml_tools/_core/_math_utilities.py,sha256=IlXAiZgTcLtus03jJOBOyF9ZCQDf8qLGjrCHu9Mrgak,9091
|
|
99
|
-
ml_tools/_core/_models_advanced_base.py,sha256=ceW0V_CcfOnSFqHlxUhVU8-5mtQq4tFyo8TX-xVexrY,4982
|
|
100
|
-
ml_tools/_core/_models_advanced_helpers.py,sha256=yrAVgYdBsNYD6Vy-pYL5__wI9Z7inOvNUngMgyuypjo,38973
|
|
101
|
-
ml_tools/_core/_optimization_tools.py,sha256=WdQkkknbErk4p1cCj2l5CLImK2oRAzhmR3QFR50Hbzk,20098
|
|
102
|
-
ml_tools/_core/_path_manager.py,sha256=tAXmf0CNfNGU2j8WngVkgBIDhdFGv1o8kFHwynvru_A,24915
|
|
103
|
-
ml_tools/_core/_plot_fonts.py,sha256=CjYXW2gZ9AUaGkyX8_WOXXNYs6d1PTK-nEJBrv_Zb2o,2287
|
|
104
|
-
ml_tools/_core/_schema.py,sha256=TM5WVVMoKOvr_Bc2z34sU_gzKlM465PRKTgdZaEOkGY,14076
|
|
105
|
-
ml_tools/_core/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
|
|
106
|
-
ml_tools/_core/_serde.py,sha256=tsI4EO2Y7jrBMmbQ1pinDsPOrOg-SaPuB-Dt40q0taE,5609
|
|
107
|
-
ml_tools/_core/_utilities.py,sha256=oU-0hBipE96bXox66NG-hFuEMMNkKa9MkAy1yJGCSIA,22779
|
|
108
|
-
dragon_ml_toolbox-19.13.0.dist-info/METADATA,sha256=349zn3DuPgY4UmlKJ7YuI1lNhGCXnYFYe4zo63mDkbE,8193
|
|
109
|
-
dragon_ml_toolbox-19.13.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
110
|
-
dragon_ml_toolbox-19.13.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
|
|
111
|
-
dragon_ml_toolbox-19.13.0.dist-info/RECORD,,
|
ml_tools/ML_configuration.py
DELETED
|
@@ -1,86 +0,0 @@
|
|
|
1
|
-
from ._core._ML_configuration import (
|
|
2
|
-
# --- Metrics Formats ---
|
|
3
|
-
RegressionMetricsFormat,
|
|
4
|
-
MultiTargetRegressionMetricsFormat,
|
|
5
|
-
BinaryClassificationMetricsFormat,
|
|
6
|
-
MultiClassClassificationMetricsFormat,
|
|
7
|
-
BinaryImageClassificationMetricsFormat,
|
|
8
|
-
MultiClassImageClassificationMetricsFormat,
|
|
9
|
-
MultiLabelBinaryClassificationMetricsFormat,
|
|
10
|
-
BinarySegmentationMetricsFormat,
|
|
11
|
-
MultiClassSegmentationMetricsFormat,
|
|
12
|
-
SequenceValueMetricsFormat,
|
|
13
|
-
SequenceSequenceMetricsFormat,
|
|
14
|
-
|
|
15
|
-
# --- Finalize Configs ---
|
|
16
|
-
FinalizeBinaryClassification,
|
|
17
|
-
FinalizeBinarySegmentation,
|
|
18
|
-
FinalizeBinaryImageClassification,
|
|
19
|
-
FinalizeMultiClassClassification,
|
|
20
|
-
FinalizeMultiClassImageClassification,
|
|
21
|
-
FinalizeMultiClassSegmentation,
|
|
22
|
-
FinalizeMultiLabelBinaryClassification,
|
|
23
|
-
FinalizeMultiTargetRegression,
|
|
24
|
-
FinalizeRegression,
|
|
25
|
-
FinalizeObjectDetection,
|
|
26
|
-
FinalizeSequenceSequencePrediction,
|
|
27
|
-
FinalizeSequenceValuePrediction,
|
|
28
|
-
|
|
29
|
-
# --- Model Parameter Configs ---
|
|
30
|
-
DragonMLPParams,
|
|
31
|
-
DragonAttentionMLPParams,
|
|
32
|
-
DragonMultiHeadAttentionNetParams,
|
|
33
|
-
DragonTabularTransformerParams,
|
|
34
|
-
DragonGateParams,
|
|
35
|
-
DragonNodeParams,
|
|
36
|
-
DragonTabNetParams,
|
|
37
|
-
DragonAutoIntParams,
|
|
38
|
-
|
|
39
|
-
# --- Training Config ---
|
|
40
|
-
DragonTrainingConfig,
|
|
41
|
-
DragonParetoConfig,
|
|
42
|
-
info
|
|
43
|
-
)
|
|
44
|
-
|
|
45
|
-
__all__ = [
|
|
46
|
-
# --- Metrics Formats ---
|
|
47
|
-
"RegressionMetricsFormat",
|
|
48
|
-
"MultiTargetRegressionMetricsFormat",
|
|
49
|
-
"BinaryClassificationMetricsFormat",
|
|
50
|
-
"MultiClassClassificationMetricsFormat",
|
|
51
|
-
"BinaryImageClassificationMetricsFormat",
|
|
52
|
-
"MultiClassImageClassificationMetricsFormat",
|
|
53
|
-
"MultiLabelBinaryClassificationMetricsFormat",
|
|
54
|
-
"BinarySegmentationMetricsFormat",
|
|
55
|
-
"MultiClassSegmentationMetricsFormat",
|
|
56
|
-
"SequenceValueMetricsFormat",
|
|
57
|
-
"SequenceSequenceMetricsFormat",
|
|
58
|
-
|
|
59
|
-
# --- Finalize Configs ---
|
|
60
|
-
"FinalizeBinaryClassification",
|
|
61
|
-
"FinalizeBinarySegmentation",
|
|
62
|
-
"FinalizeBinaryImageClassification",
|
|
63
|
-
"FinalizeMultiClassClassification",
|
|
64
|
-
"FinalizeMultiClassImageClassification",
|
|
65
|
-
"FinalizeMultiClassSegmentation",
|
|
66
|
-
"FinalizeMultiLabelBinaryClassification",
|
|
67
|
-
"FinalizeMultiTargetRegression",
|
|
68
|
-
"FinalizeRegression",
|
|
69
|
-
"FinalizeObjectDetection",
|
|
70
|
-
"FinalizeSequenceSequencePrediction",
|
|
71
|
-
"FinalizeSequenceValuePrediction",
|
|
72
|
-
|
|
73
|
-
# --- Model Parameter Configs ---
|
|
74
|
-
"DragonMLPParams",
|
|
75
|
-
"DragonAttentionMLPParams",
|
|
76
|
-
"DragonMultiHeadAttentionNetParams",
|
|
77
|
-
"DragonTabularTransformerParams",
|
|
78
|
-
"DragonGateParams",
|
|
79
|
-
"DragonNodeParams",
|
|
80
|
-
"DragonTabNetParams",
|
|
81
|
-
"DragonAutoIntParams",
|
|
82
|
-
|
|
83
|
-
# --- Training Config ---
|
|
84
|
-
"DragonTrainingConfig",
|
|
85
|
-
"DragonParetoConfig",
|
|
86
|
-
]
|
ml_tools/ML_datasetmaster.py
DELETED
ml_tools/ML_evaluation.py
DELETED
|
@@ -1,16 +0,0 @@
|
|
|
1
|
-
from ._core._ML_evaluation import (
|
|
2
|
-
plot_losses,
|
|
3
|
-
classification_metrics,
|
|
4
|
-
regression_metrics,
|
|
5
|
-
shap_summary_plot,
|
|
6
|
-
plot_attention_importance,
|
|
7
|
-
info
|
|
8
|
-
)
|
|
9
|
-
|
|
10
|
-
__all__ = [
|
|
11
|
-
"plot_losses",
|
|
12
|
-
"classification_metrics",
|
|
13
|
-
"regression_metrics",
|
|
14
|
-
"shap_summary_plot",
|
|
15
|
-
"plot_attention_importance"
|
|
16
|
-
]
|
ml_tools/ML_evaluation_multi.py
DELETED
|
@@ -1,12 +0,0 @@
|
|
|
1
|
-
from ._core._ML_evaluation_multi import (
|
|
2
|
-
multi_target_regression_metrics,
|
|
3
|
-
multi_label_classification_metrics,
|
|
4
|
-
multi_target_shap_summary_plot,
|
|
5
|
-
info
|
|
6
|
-
)
|
|
7
|
-
|
|
8
|
-
__all__ = [
|
|
9
|
-
"multi_target_regression_metrics",
|
|
10
|
-
"multi_label_classification_metrics",
|
|
11
|
-
"multi_target_shap_summary_plot",
|
|
12
|
-
]
|
ml_tools/ML_finalize_handler.py
DELETED
ml_tools/ML_inference.py
DELETED
ml_tools/ML_models.py
DELETED
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
from ._core._ML_models import (
|
|
2
|
-
DragonMLP,
|
|
3
|
-
DragonAttentionMLP,
|
|
4
|
-
DragonMultiHeadAttentionNet,
|
|
5
|
-
DragonTabularTransformer,
|
|
6
|
-
info
|
|
7
|
-
)
|
|
8
|
-
|
|
9
|
-
__all__ = [
|
|
10
|
-
"DragonMLP",
|
|
11
|
-
"DragonAttentionMLP",
|
|
12
|
-
"DragonMultiHeadAttentionNet",
|
|
13
|
-
"DragonTabularTransformer"
|
|
14
|
-
]
|
ml_tools/ML_models_advanced.py
DELETED
ml_tools/ML_models_pytab.py
DELETED
ml_tools/ML_optimization.py
DELETED
ml_tools/ML_scaler.py
DELETED
ml_tools/ML_sequence_models.py
DELETED
ml_tools/ML_trainer.py
DELETED
ml_tools/ML_vision_evaluation.py
DELETED
ml_tools/ML_vision_inference.py
DELETED
ml_tools/ML_vision_models.py
DELETED
|
@@ -1,18 +0,0 @@
|
|
|
1
|
-
from ._core._ML_vision_models import (
|
|
2
|
-
DragonResNet,
|
|
3
|
-
DragonEfficientNet,
|
|
4
|
-
DragonVGG,
|
|
5
|
-
DragonFCN,
|
|
6
|
-
DragonDeepLabv3,
|
|
7
|
-
DragonFastRCNN,
|
|
8
|
-
info
|
|
9
|
-
)
|
|
10
|
-
|
|
11
|
-
__all__ = [
|
|
12
|
-
"DragonResNet",
|
|
13
|
-
"DragonEfficientNet",
|
|
14
|
-
"DragonVGG",
|
|
15
|
-
"DragonFCN",
|
|
16
|
-
"DragonDeepLabv3",
|
|
17
|
-
"DragonFastRCNN",
|
|
18
|
-
]
|