dragon-ml-toolbox 19.11.0__py3-none-any.whl → 19.12.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dragon_ml_toolbox-19.11.0.dist-info → dragon_ml_toolbox-19.12.1.dist-info}/METADATA +1 -1
- {dragon_ml_toolbox-19.11.0.dist-info → dragon_ml_toolbox-19.12.1.dist-info}/RECORD +16 -16
- ml_tools/ML_callbacks.py +8 -4
- ml_tools/_core/_IO_tools.py +8 -2
- ml_tools/_core/_ML_callbacks.py +461 -171
- ml_tools/_core/_ML_configuration.py +15 -6
- ml_tools/_core/_ML_finalize_handler.py +5 -4
- ml_tools/_core/_ML_trainer.py +50 -50
- ml_tools/_core/_keys.py +32 -1
- ml_tools/_core/_path_manager.py +111 -2
- ml_tools/keys.py +2 -0
- ml_tools/path_manager.py +5 -1
- {dragon_ml_toolbox-19.11.0.dist-info → dragon_ml_toolbox-19.12.1.dist-info}/WHEEL +0 -0
- {dragon_ml_toolbox-19.11.0.dist-info → dragon_ml_toolbox-19.12.1.dist-info}/licenses/LICENSE +0 -0
- {dragon_ml_toolbox-19.11.0.dist-info → dragon_ml_toolbox-19.12.1.dist-info}/licenses/LICENSE-THIRD-PARTY.md +0 -0
- {dragon_ml_toolbox-19.11.0.dist-info → dragon_ml_toolbox-19.12.1.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: dragon-ml-toolbox
|
|
3
|
-
Version: 19.
|
|
3
|
+
Version: 19.12.1
|
|
4
4
|
Summary: Complete pipelines and helper tools for data science and machine learning projects.
|
|
5
5
|
Author-email: Karl Luigi Loza Vidaurre <luigiloza@gmail.com>
|
|
6
6
|
License-Expression: MIT
|
|
@@ -1,11 +1,11 @@
|
|
|
1
|
-
dragon_ml_toolbox-19.
|
|
2
|
-
dragon_ml_toolbox-19.
|
|
1
|
+
dragon_ml_toolbox-19.12.1.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
|
|
2
|
+
dragon_ml_toolbox-19.12.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
|
|
3
3
|
ml_tools/ETL_cleaning.py,sha256=cKXyRFaaFs_beAGDnQM54xnML671kq-yJEGjHafW-20,351
|
|
4
4
|
ml_tools/ETL_engineering.py,sha256=cwh1FhtNdUHllUDvho-x3SIVj4KwG_rFQR6VYzWUg0U,898
|
|
5
5
|
ml_tools/GUI_tools.py,sha256=O89rG8WQv6GY1DiphQjIsPzXFCQID6te7q_Sgt1iTkQ,294
|
|
6
6
|
ml_tools/IO_tools.py,sha256=UiOiXgccB06JS7__aq1OXWqYARvAQuxaTrpVJU54Suk,334
|
|
7
7
|
ml_tools/MICE_imputation.py,sha256=tpLM-rdq4sKbc2GHfj7UrkS3DmBZ3B_DlbrklWbI7gI,366
|
|
8
|
-
ml_tools/ML_callbacks.py,sha256=
|
|
8
|
+
ml_tools/ML_callbacks.py,sha256=a5aXjrtKSgJGW8GWIVd3QR3gT5pJpQxsXFXoNO9GcgM,357
|
|
9
9
|
ml_tools/ML_chaining_inference.py,sha256=-JD-LbPtFQkEEWyLUuszWvsqE6nbgkKaQBjrwmBPer0,124
|
|
10
10
|
ml_tools/ML_chaining_utilities.py,sha256=TmiVea_66qfB2l3UEVua4Wb5Sg1D75bSz_-Js3DudfA,360
|
|
11
11
|
ml_tools/ML_configuration.py,sha256=R8ca9q6W_Lm8lQ48qmxWfdMeHJ5o9hmcHhVdekrY_UQ,2730
|
|
@@ -43,10 +43,10 @@ ml_tools/ensemble_evaluation.py,sha256=P26vyS2fMV3Pm_4w2MN1z1eS7aVJzYagsyLmqC-Io
|
|
|
43
43
|
ml_tools/ensemble_inference.py,sha256=sl_Dq9KaN0SrtZmyiVrrhWd6lSjdQangSIUUUIFvfj4,178
|
|
44
44
|
ml_tools/ensemble_learning.py,sha256=BLPnpfJWCly-D75mkRP1FE5TExoWAAlAHR89KAzW9iU,336
|
|
45
45
|
ml_tools/excel_handler.py,sha256=h35HMNnO44btxsTSfZXj2HiJtpRS4fdrJLbzru4heMs,453
|
|
46
|
-
ml_tools/keys.py,sha256=
|
|
46
|
+
ml_tools/keys.py,sha256=JCGMwU26qSKfClGCpiv6y-GmFFP56pqNn6n7z-pyYTM,312
|
|
47
47
|
ml_tools/math_utilities.py,sha256=53nOXlhb5taUHj4CDHsXliArEfPkOlJD7G_dJa3_iOU,321
|
|
48
48
|
ml_tools/optimization_tools.py,sha256=rPG2VJ7hk9hv5wfKPq4zPJDXFWKioROOiJWmzXlXzVA,541
|
|
49
|
-
ml_tools/path_manager.py,sha256=
|
|
49
|
+
ml_tools/path_manager.py,sha256=uklNIuRipFnHVcWHojzluYyvhiBzKGbb4S5lM1imGYw,427
|
|
50
50
|
ml_tools/plot_fonts.py,sha256=6-WevfhDjbyWbSrFM6bqW-h5NC_mAO4XzdFR-oQ3DPE,110
|
|
51
51
|
ml_tools/schema.py,sha256=AddXOa4P9HinlJ6SnICksHzBqRyi7MaichwVn-z_oVE,219
|
|
52
52
|
ml_tools/serde.py,sha256=aETbmTDxnCE4D7hFX92RjBJYXuMomWnxAsBt46WfCUw,214
|
|
@@ -54,18 +54,18 @@ ml_tools/utilities.py,sha256=dHNjGPH3Ck9V41IRFbRojE_RW6lACdxrNZz0FxI5SQY,691
|
|
|
54
54
|
ml_tools/_core/_ETL_cleaning.py,sha256=_pTNKuapNHgWErmxvsXW-2YzCm4BaTshKV627A38RuA,28748
|
|
55
55
|
ml_tools/_core/_ETL_engineering.py,sha256=JgIWrQGyNjmLrbyv5Kh0EHKBLmYlyrGKSnKRxGzxSco,57930
|
|
56
56
|
ml_tools/_core/_GUI_tools.py,sha256=kpvk18Eb4vdLzo-I5mBV1yuwPXs-NJJ01rn-iCXHvIY,49079
|
|
57
|
-
ml_tools/_core/_IO_tools.py,sha256=
|
|
57
|
+
ml_tools/_core/_IO_tools.py,sha256=sEbtzDHkc9GNkXvsFS9ic038LzAW-rxXPuLwtoHXzGw,17107
|
|
58
58
|
ml_tools/_core/_MICE_imputation.py,sha256=64l20duGWt93Q2MbqcWqrA1s99JPRf5AJACb1CZi2xI,21149
|
|
59
|
-
ml_tools/_core/_ML_callbacks.py,sha256=
|
|
59
|
+
ml_tools/_core/_ML_callbacks.py,sha256=T0PjptlpC75_Tp3bWIMPTYhxsMX-8z4YtDT4FJ3p8jg,27988
|
|
60
60
|
ml_tools/_core/_ML_chaining_inference.py,sha256=vXUPZzuQ2yKU71kkvUsE0xPo0hN-Yu6gfnL0JbXoRjI,7783
|
|
61
61
|
ml_tools/_core/_ML_chaining_utilities.py,sha256=nsYowgRbkIYuzRiHlqsM3tnC3c-8O73CY8DHUF14XL0,19248
|
|
62
|
-
ml_tools/_core/_ML_configuration.py,sha256=
|
|
62
|
+
ml_tools/_core/_ML_configuration.py,sha256=olRcam2s-Y5oUr8BAcmhwIBQDmaQZm2RHTv5sK2HeOU,53151
|
|
63
63
|
ml_tools/_core/_ML_configuration_pytab.py,sha256=C3e4iScqdRePVDoqnic6xXMOW7DNYqpgTCeaFDyMdL4,3286
|
|
64
64
|
ml_tools/_core/_ML_datasetmaster.py,sha256=yU1BMtzz6XumMWCetVACrRLk7WJQwmYhaQ-VAWu9Ots,32043
|
|
65
65
|
ml_tools/_core/_ML_evaluation.py,sha256=bu8qlYzhWSC1B7wNfCC5TSF-oed-uP8EF7TV45VTiBM,37325
|
|
66
66
|
ml_tools/_core/_ML_evaluation_captum.py,sha256=a69jnghIzE9qppuw2vzTBMdTErnZkDkTA3MPUUYjsS4,19212
|
|
67
67
|
ml_tools/_core/_ML_evaluation_multi.py,sha256=n_AJbKF58DMUrYqJutwPFV5z6sNssDPA1Gl05IfPG5s,23647
|
|
68
|
-
ml_tools/_core/_ML_finalize_handler.py,sha256=
|
|
68
|
+
ml_tools/_core/_ML_finalize_handler.py,sha256=1__wG3Jcr9h1a99F-CmHezhEw1_Ojxh3aDHNyJN2S5w,7127
|
|
69
69
|
ml_tools/_core/_ML_inference.py,sha256=5swm2lnsrDLalBnCm7gZPlDucX4yNCq5vn7ck3SW_4Q,29791
|
|
70
70
|
ml_tools/_core/_ML_models.py,sha256=8FUx4-TVghlBF9srh1_5UxovrWPU7YEZ6XXLqwJei88,27974
|
|
71
71
|
ml_tools/_core/_ML_models_advanced.py,sha256=oU6M5FEBMQ9yPp32cziWh3bz8SXRho07vFMC8ZDVcuU,45002
|
|
@@ -77,7 +77,7 @@ ml_tools/_core/_ML_sequence_datasetmaster.py,sha256=0YVOPf-y4ZNdgUxropXUWrmInNyG
|
|
|
77
77
|
ml_tools/_core/_ML_sequence_evaluation.py,sha256=AiPHtZ9DRpE6zL9n3Tp5eGGD9vrYRkLbZ0Nc274mL7I,8069
|
|
78
78
|
ml_tools/_core/_ML_sequence_inference.py,sha256=zd3hBwOtLmjAV4JtdB2qFY9GxhysajFufATdy8fjGTE,16316
|
|
79
79
|
ml_tools/_core/_ML_sequence_models.py,sha256=5qcEYLU6wDePBITnikBrj_H9mCvyJmElKa3HiWGXhZs,5639
|
|
80
|
-
ml_tools/_core/_ML_trainer.py,sha256=
|
|
80
|
+
ml_tools/_core/_ML_trainer.py,sha256=EeNqZ0pCWrBxGaYgOVmDxofMBQhV56Bvsj-VuBwBgHQ,117580
|
|
81
81
|
ml_tools/_core/_ML_utilities.py,sha256=elLGD0QYh148_9iNLlqGe1vz-wCFspJa6CWtWTfA3jY,35594
|
|
82
82
|
ml_tools/_core/_ML_vision_datasetmaster.py,sha256=8EsE7luzphVlwBXdOsOwsFfz1D4UIUSEQtqHlM0Vf-o,67084
|
|
83
83
|
ml_tools/_core/_ML_vision_evaluation.py,sha256=BSLf9xrGpaR02Dhkf-fAbgxSpwRjf7DruNIcQadl7qg,11631
|
|
@@ -93,19 +93,19 @@ ml_tools/_core/_ensemble_evaluation.py,sha256=17lWl4bWLT1BAMv_fhGf2D3wy-F4jx0Hgn
|
|
|
93
93
|
ml_tools/_core/_ensemble_inference.py,sha256=9UpARSETzmqPdQmxqizD768tjkqldxHw1ER_hM9Kx9M,8631
|
|
94
94
|
ml_tools/_core/_ensemble_learning.py,sha256=X8ghbjDOLMENCWdISXLhDlHQtR3C6SW1tkTBAcfRRPY,22016
|
|
95
95
|
ml_tools/_core/_excel_handler.py,sha256=gV4rSIsiowb0xllpEJxzUKaYDDVpmP_lxs9wZA76-cc,14050
|
|
96
|
-
ml_tools/_core/_keys.py,sha256=
|
|
96
|
+
ml_tools/_core/_keys.py,sha256=OCpO4blAY12px3T3bGHUDcs_YIgEiLq7ppeazDbZlvQ,8739
|
|
97
97
|
ml_tools/_core/_logger.py,sha256=86Ge0sDE_WgwsZBglQRYPyFYX3lcsIo0NzszNPzlxuk,5254
|
|
98
98
|
ml_tools/_core/_math_utilities.py,sha256=IlXAiZgTcLtus03jJOBOyF9ZCQDf8qLGjrCHu9Mrgak,9091
|
|
99
99
|
ml_tools/_core/_models_advanced_base.py,sha256=ceW0V_CcfOnSFqHlxUhVU8-5mtQq4tFyo8TX-xVexrY,4982
|
|
100
100
|
ml_tools/_core/_models_advanced_helpers.py,sha256=yrAVgYdBsNYD6Vy-pYL5__wI9Z7inOvNUngMgyuypjo,38973
|
|
101
101
|
ml_tools/_core/_optimization_tools.py,sha256=WdQkkknbErk4p1cCj2l5CLImK2oRAzhmR3QFR50Hbzk,20098
|
|
102
|
-
ml_tools/_core/_path_manager.py,sha256
|
|
102
|
+
ml_tools/_core/_path_manager.py,sha256=tAXmf0CNfNGU2j8WngVkgBIDhdFGv1o8kFHwynvru_A,24915
|
|
103
103
|
ml_tools/_core/_plot_fonts.py,sha256=CjYXW2gZ9AUaGkyX8_WOXXNYs6d1PTK-nEJBrv_Zb2o,2287
|
|
104
104
|
ml_tools/_core/_schema.py,sha256=TM5WVVMoKOvr_Bc2z34sU_gzKlM465PRKTgdZaEOkGY,14076
|
|
105
105
|
ml_tools/_core/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
|
|
106
106
|
ml_tools/_core/_serde.py,sha256=tsI4EO2Y7jrBMmbQ1pinDsPOrOg-SaPuB-Dt40q0taE,5609
|
|
107
107
|
ml_tools/_core/_utilities.py,sha256=D7FGyEszcMHxGkMW4aqN7JUwabTICCcQz9qsGtOj97o,22787
|
|
108
|
-
dragon_ml_toolbox-19.
|
|
109
|
-
dragon_ml_toolbox-19.
|
|
110
|
-
dragon_ml_toolbox-19.
|
|
111
|
-
dragon_ml_toolbox-19.
|
|
108
|
+
dragon_ml_toolbox-19.12.1.dist-info/METADATA,sha256=fG-Wysq1R7U4y_3OhOux_d61Gd_g857Jh009JPQKXcM,8193
|
|
109
|
+
dragon_ml_toolbox-19.12.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
110
|
+
dragon_ml_toolbox-19.12.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
|
|
111
|
+
dragon_ml_toolbox-19.12.1.dist-info/RECORD,,
|
ml_tools/ML_callbacks.py
CHANGED
|
@@ -1,12 +1,16 @@
|
|
|
1
1
|
from ._core._ML_callbacks import (
|
|
2
|
-
|
|
2
|
+
DragonPatienceEarlyStopping,
|
|
3
|
+
DragonPrecheltEarlyStopping,
|
|
3
4
|
DragonModelCheckpoint,
|
|
4
|
-
|
|
5
|
+
DragonScheduler,
|
|
6
|
+
DragonReduceLROnPlateau,
|
|
5
7
|
info
|
|
6
8
|
)
|
|
7
9
|
|
|
8
10
|
__all__ = [
|
|
9
|
-
"
|
|
11
|
+
"DragonPatienceEarlyStopping",
|
|
12
|
+
"DragonPrecheltEarlyStopping",
|
|
10
13
|
"DragonModelCheckpoint",
|
|
11
|
-
"
|
|
14
|
+
"DragonScheduler",
|
|
15
|
+
"DragonReduceLROnPlateau",
|
|
12
16
|
]
|
ml_tools/_core/_IO_tools.py
CHANGED
|
@@ -434,8 +434,8 @@ def train_logger(train_config: Union[dict, Any],
|
|
|
434
434
|
Logs training data to JSON, adding a timestamp to the filename.
|
|
435
435
|
|
|
436
436
|
Args:
|
|
437
|
-
train_config (dict | Any): Training configuration parameters.
|
|
438
|
-
model_parameters (dict | Any): Model parameters.
|
|
437
|
+
train_config (dict | Any): Training configuration parameters. If object, must have a `.to_log()` method returning a dict.
|
|
438
|
+
model_parameters (dict | Any): Model parameters. If object, must have a `.to_log()` method returning a dict.
|
|
439
439
|
train_history (dict | None): Training history log.
|
|
440
440
|
save_directory (str | Path): Directory to save the log file.
|
|
441
441
|
"""
|
|
@@ -443,6 +443,9 @@ def train_logger(train_config: Union[dict, Any],
|
|
|
443
443
|
if not isinstance(train_config, dict):
|
|
444
444
|
if hasattr(train_config, "to_log") and callable(getattr(train_config, "to_log")):
|
|
445
445
|
train_config_dict: dict = train_config.to_log()
|
|
446
|
+
if not isinstance(train_config_dict, dict):
|
|
447
|
+
_LOGGER.error("'train_config.to_log()' did not return a dictionary.")
|
|
448
|
+
raise ValueError()
|
|
446
449
|
else:
|
|
447
450
|
_LOGGER.error("'train_config' must be a dict or an object with a 'to_log()' method.")
|
|
448
451
|
raise ValueError()
|
|
@@ -458,6 +461,9 @@ def train_logger(train_config: Union[dict, Any],
|
|
|
458
461
|
if not isinstance(model_parameters, dict):
|
|
459
462
|
if hasattr(model_parameters, "to_log") and callable(getattr(model_parameters, "to_log")):
|
|
460
463
|
model_parameters_dict: dict = model_parameters.to_log()
|
|
464
|
+
if not isinstance(model_parameters_dict, dict):
|
|
465
|
+
_LOGGER.error("'model_parameters.to_log()' did not return a dictionary.")
|
|
466
|
+
raise ValueError()
|
|
461
467
|
else:
|
|
462
468
|
_LOGGER.error("'model_parameters' must be a dict or an object with a 'to_log()' method.")
|
|
463
469
|
raise ValueError()
|