dragon-ml-toolbox 19.10.0__py3-none-any.whl → 19.12.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 19.10.0
3
+ Version: 19.12.0
4
4
  Summary: Complete pipelines and helper tools for data science and machine learning projects.
5
5
  Author-email: Karl Luigi Loza Vidaurre <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,11 +1,11 @@
1
- dragon_ml_toolbox-19.10.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-19.10.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
1
+ dragon_ml_toolbox-19.12.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
+ dragon_ml_toolbox-19.12.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=0-HBRMMgKuwtGy6nMJZvIn1fLxhx_ksyyVB2U_iyYZU,2818
3
3
  ml_tools/ETL_cleaning.py,sha256=cKXyRFaaFs_beAGDnQM54xnML671kq-yJEGjHafW-20,351
4
4
  ml_tools/ETL_engineering.py,sha256=cwh1FhtNdUHllUDvho-x3SIVj4KwG_rFQR6VYzWUg0U,898
5
5
  ml_tools/GUI_tools.py,sha256=O89rG8WQv6GY1DiphQjIsPzXFCQID6te7q_Sgt1iTkQ,294
6
6
  ml_tools/IO_tools.py,sha256=UiOiXgccB06JS7__aq1OXWqYARvAQuxaTrpVJU54Suk,334
7
7
  ml_tools/MICE_imputation.py,sha256=tpLM-rdq4sKbc2GHfj7UrkS3DmBZ3B_DlbrklWbI7gI,366
8
- ml_tools/ML_callbacks.py,sha256=hrfsIpGkQ1G4Ucfio8JDO1TWjiluuLHCmE7r0ScqxNs,218
8
+ ml_tools/ML_callbacks.py,sha256=a5aXjrtKSgJGW8GWIVd3QR3gT5pJpQxsXFXoNO9GcgM,357
9
9
  ml_tools/ML_chaining_inference.py,sha256=-JD-LbPtFQkEEWyLUuszWvsqE6nbgkKaQBjrwmBPer0,124
10
10
  ml_tools/ML_chaining_utilities.py,sha256=TmiVea_66qfB2l3UEVua4Wb5Sg1D75bSz_-Js3DudfA,360
11
11
  ml_tools/ML_configuration.py,sha256=R8ca9q6W_Lm8lQ48qmxWfdMeHJ5o9hmcHhVdekrY_UQ,2730
@@ -43,10 +43,10 @@ ml_tools/ensemble_evaluation.py,sha256=P26vyS2fMV3Pm_4w2MN1z1eS7aVJzYagsyLmqC-Io
43
43
  ml_tools/ensemble_inference.py,sha256=sl_Dq9KaN0SrtZmyiVrrhWd6lSjdQangSIUUUIFvfj4,178
44
44
  ml_tools/ensemble_learning.py,sha256=BLPnpfJWCly-D75mkRP1FE5TExoWAAlAHR89KAzW9iU,336
45
45
  ml_tools/excel_handler.py,sha256=h35HMNnO44btxsTSfZXj2HiJtpRS4fdrJLbzru4heMs,453
46
- ml_tools/keys.py,sha256=s9HEIAJCRw4DO7ll0yjc8u5rrSI9MOmfkR_1fKpkfy8,263
46
+ ml_tools/keys.py,sha256=JCGMwU26qSKfClGCpiv6y-GmFFP56pqNn6n7z-pyYTM,312
47
47
  ml_tools/math_utilities.py,sha256=53nOXlhb5taUHj4CDHsXliArEfPkOlJD7G_dJa3_iOU,321
48
48
  ml_tools/optimization_tools.py,sha256=rPG2VJ7hk9hv5wfKPq4zPJDXFWKioROOiJWmzXlXzVA,541
49
- ml_tools/path_manager.py,sha256=ion-x2W_rQjra3ChuOHwVtgXhv7LkpXP0lkBef730tk,350
49
+ ml_tools/path_manager.py,sha256=uklNIuRipFnHVcWHojzluYyvhiBzKGbb4S5lM1imGYw,427
50
50
  ml_tools/plot_fonts.py,sha256=6-WevfhDjbyWbSrFM6bqW-h5NC_mAO4XzdFR-oQ3DPE,110
51
51
  ml_tools/schema.py,sha256=AddXOa4P9HinlJ6SnICksHzBqRyi7MaichwVn-z_oVE,219
52
52
  ml_tools/serde.py,sha256=aETbmTDxnCE4D7hFX92RjBJYXuMomWnxAsBt46WfCUw,214
@@ -55,8 +55,8 @@ ml_tools/_core/_ETL_cleaning.py,sha256=_pTNKuapNHgWErmxvsXW-2YzCm4BaTshKV627A38R
55
55
  ml_tools/_core/_ETL_engineering.py,sha256=JgIWrQGyNjmLrbyv5Kh0EHKBLmYlyrGKSnKRxGzxSco,57930
56
56
  ml_tools/_core/_GUI_tools.py,sha256=kpvk18Eb4vdLzo-I5mBV1yuwPXs-NJJ01rn-iCXHvIY,49079
57
57
  ml_tools/_core/_IO_tools.py,sha256=oWaYa_OVO-8ANVt_a9F1QPMvyOcI2yLbtq7LoVHlqek,16625
58
- ml_tools/_core/_MICE_imputation.py,sha256=_juIymUnNDRWjSLepL8Ee_PncoShbxjR7YtqTtYbteU,21107
59
- ml_tools/_core/_ML_callbacks.py,sha256=qtCrVFHTq-nk4NIsAdwIkfkKwFXX6I-6PoCgqZELp70,16734
58
+ ml_tools/_core/_MICE_imputation.py,sha256=64l20duGWt93Q2MbqcWqrA1s99JPRf5AJACb1CZi2xI,21149
59
+ ml_tools/_core/_ML_callbacks.py,sha256=T0PjptlpC75_Tp3bWIMPTYhxsMX-8z4YtDT4FJ3p8jg,27988
60
60
  ml_tools/_core/_ML_chaining_inference.py,sha256=vXUPZzuQ2yKU71kkvUsE0xPo0hN-Yu6gfnL0JbXoRjI,7783
61
61
  ml_tools/_core/_ML_chaining_utilities.py,sha256=nsYowgRbkIYuzRiHlqsM3tnC3c-8O73CY8DHUF14XL0,19248
62
62
  ml_tools/_core/_ML_configuration.py,sha256=hwnDCo9URsFqRCgLuFJhGTtoOqbE1XJreNY8B_3spTg,52693
@@ -77,35 +77,35 @@ ml_tools/_core/_ML_sequence_datasetmaster.py,sha256=0YVOPf-y4ZNdgUxropXUWrmInNyG
77
77
  ml_tools/_core/_ML_sequence_evaluation.py,sha256=AiPHtZ9DRpE6zL9n3Tp5eGGD9vrYRkLbZ0Nc274mL7I,8069
78
78
  ml_tools/_core/_ML_sequence_inference.py,sha256=zd3hBwOtLmjAV4JtdB2qFY9GxhysajFufATdy8fjGTE,16316
79
79
  ml_tools/_core/_ML_sequence_models.py,sha256=5qcEYLU6wDePBITnikBrj_H9mCvyJmElKa3HiWGXhZs,5639
80
- ml_tools/_core/_ML_trainer.py,sha256=hSsudWrlYWpi53DXIlKI6ovVhz7xLrQ8oKIDJOXf4Eg,117747
81
- ml_tools/_core/_ML_utilities.py,sha256=yXVKow-bgpahMChpp7iUlSxAEtgityXwC54FPReeNNA,30487
80
+ ml_tools/_core/_ML_trainer.py,sha256=EeNqZ0pCWrBxGaYgOVmDxofMBQhV56Bvsj-VuBwBgHQ,117580
81
+ ml_tools/_core/_ML_utilities.py,sha256=elLGD0QYh148_9iNLlqGe1vz-wCFspJa6CWtWTfA3jY,35594
82
82
  ml_tools/_core/_ML_vision_datasetmaster.py,sha256=8EsE7luzphVlwBXdOsOwsFfz1D4UIUSEQtqHlM0Vf-o,67084
83
83
  ml_tools/_core/_ML_vision_evaluation.py,sha256=BSLf9xrGpaR02Dhkf-fAbgxSpwRjf7DruNIcQadl7qg,11631
84
84
  ml_tools/_core/_ML_vision_inference.py,sha256=6K9gMFjAAZKfLAIQlOkm_I9hvCPmO--9-1vnskQRk0I,20190
85
85
  ml_tools/_core/_ML_vision_models.py,sha256=oUik-RLxFvZFZCtFztjkSfFYgJuRx4QzfwHVY1ny4Sc,26217
86
86
  ml_tools/_core/_ML_vision_transformers.py,sha256=imjL9h5kwpfuRn9rBelNpgtrdU-EecBEcHMFZMXTeZA,15303
87
- ml_tools/_core/_PSO_optimization.py,sha256=Dg76d7t2ixPCXqQ-KceG9nzuLajHGN0s5RiawRGzsT4,22970
87
+ ml_tools/_core/_PSO_optimization.py,sha256=W3g5xw2v2eOUQadv8KHFkt5HNm9AiY3ZUk-TeyVuZjw,22991
88
88
  ml_tools/_core/_SQL.py,sha256=zX_8EgYfmLmvvrnL851KMkI4w9kdkjHJ997BTvS5aig,11556
89
89
  ml_tools/_core/_VIF_factor.py,sha256=BM0mTowBqt45PXFy9oJLhT9C-CTWWo0TQhgCyWYLHtQ,10457
90
90
  ml_tools/_core/__init__.py,sha256=d4IG0OxUXj2HffepzQcYixHlZeuuuDMAFa09H_6LtmU,12
91
91
  ml_tools/_core/_data_exploration.py,sha256=-g_e4Lox4LN8c2AfhpcPmnI9TNIZGl84O8hWEVH5asA,77438
92
92
  ml_tools/_core/_ensemble_evaluation.py,sha256=17lWl4bWLT1BAMv_fhGf2D3wy-F4jx0HgnJ79lYkRuE,28419
93
- ml_tools/_core/_ensemble_inference.py,sha256=PfZG-r65Vw3IAmBJZg9W0zYGEe-QbhfUh_rd2ho-rr8,8610
93
+ ml_tools/_core/_ensemble_inference.py,sha256=9UpARSETzmqPdQmxqizD768tjkqldxHw1ER_hM9Kx9M,8631
94
94
  ml_tools/_core/_ensemble_learning.py,sha256=X8ghbjDOLMENCWdISXLhDlHQtR3C6SW1tkTBAcfRRPY,22016
95
95
  ml_tools/_core/_excel_handler.py,sha256=gV4rSIsiowb0xllpEJxzUKaYDDVpmP_lxs9wZA76-cc,14050
96
- ml_tools/_core/_keys.py,sha256=pOqxhEFcDuAeuQveJNykdQfB6gVEg8ZY7L7MYQmtY_o,7551
96
+ ml_tools/_core/_keys.py,sha256=OCpO4blAY12px3T3bGHUDcs_YIgEiLq7ppeazDbZlvQ,8739
97
97
  ml_tools/_core/_logger.py,sha256=86Ge0sDE_WgwsZBglQRYPyFYX3lcsIo0NzszNPzlxuk,5254
98
98
  ml_tools/_core/_math_utilities.py,sha256=IlXAiZgTcLtus03jJOBOyF9ZCQDf8qLGjrCHu9Mrgak,9091
99
99
  ml_tools/_core/_models_advanced_base.py,sha256=ceW0V_CcfOnSFqHlxUhVU8-5mtQq4tFyo8TX-xVexrY,4982
100
100
  ml_tools/_core/_models_advanced_helpers.py,sha256=yrAVgYdBsNYD6Vy-pYL5__wI9Z7inOvNUngMgyuypjo,38973
101
- ml_tools/_core/_optimization_tools.py,sha256=2LkntNRc19uGur9u0yI-KnNX56tc63sxaRNj6W440Og,20077
102
- ml_tools/_core/_path_manager.py,sha256=z4zqYqppKhgOj3ArfkKo4tieO8oNaHWUoshCQRNbd1w,20284
101
+ ml_tools/_core/_optimization_tools.py,sha256=WdQkkknbErk4p1cCj2l5CLImK2oRAzhmR3QFR50Hbzk,20098
102
+ ml_tools/_core/_path_manager.py,sha256=tAXmf0CNfNGU2j8WngVkgBIDhdFGv1o8kFHwynvru_A,24915
103
103
  ml_tools/_core/_plot_fonts.py,sha256=CjYXW2gZ9AUaGkyX8_WOXXNYs6d1PTK-nEJBrv_Zb2o,2287
104
104
  ml_tools/_core/_schema.py,sha256=TM5WVVMoKOvr_Bc2z34sU_gzKlM465PRKTgdZaEOkGY,14076
105
105
  ml_tools/_core/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
106
106
  ml_tools/_core/_serde.py,sha256=tsI4EO2Y7jrBMmbQ1pinDsPOrOg-SaPuB-Dt40q0taE,5609
107
- ml_tools/_core/_utilities.py,sha256=iA8fLWdhsIx4ut2Dp8M_OyU0Y3PPLgGdIklyl17x6xk,22560
108
- dragon_ml_toolbox-19.10.0.dist-info/METADATA,sha256=HNycos2k-C6KCjfj1g1pprR6APPYcst7HkoKylfgeR8,8193
109
- dragon_ml_toolbox-19.10.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
110
- dragon_ml_toolbox-19.10.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
111
- dragon_ml_toolbox-19.10.0.dist-info/RECORD,,
107
+ ml_tools/_core/_utilities.py,sha256=D7FGyEszcMHxGkMW4aqN7JUwabTICCcQz9qsGtOj97o,22787
108
+ dragon_ml_toolbox-19.12.0.dist-info/METADATA,sha256=MoUoxvRMHfPhedd87f68yWWlPJFEGVFCOa1OpgKwpHE,8193
109
+ dragon_ml_toolbox-19.12.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
110
+ dragon_ml_toolbox-19.12.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
111
+ dragon_ml_toolbox-19.12.0.dist-info/RECORD,,
ml_tools/ML_callbacks.py CHANGED
@@ -1,12 +1,16 @@
1
1
  from ._core._ML_callbacks import (
2
- DragonEarlyStopping,
2
+ DragonPatienceEarlyStopping,
3
+ DragonPrecheltEarlyStopping,
3
4
  DragonModelCheckpoint,
4
- DragonLRScheduler,
5
+ DragonScheduler,
6
+ DragonReduceLROnPlateau,
5
7
  info
6
8
  )
7
9
 
8
10
  __all__ = [
9
- "DragonEarlyStopping",
11
+ "DragonPatienceEarlyStopping",
12
+ "DragonPrecheltEarlyStopping",
10
13
  "DragonModelCheckpoint",
11
- "DragonLRScheduler"
14
+ "DragonScheduler",
15
+ "DragonReduceLROnPlateau",
12
16
  ]
@@ -256,7 +256,7 @@ def run_mice_pipeline(df_path_or_dir: Union[str,Path], target_columns: list[str]
256
256
  if input_path.is_file():
257
257
  all_file_paths = [input_path]
258
258
  else:
259
- all_file_paths = list(list_csv_paths(input_path).values())
259
+ all_file_paths = list(list_csv_paths(input_path, raise_on_empty=True).values())
260
260
 
261
261
  for df_path in all_file_paths:
262
262
  df: pd.DataFrame
@@ -461,7 +461,7 @@ class DragonMICE:
461
461
  if input_path.is_file():
462
462
  all_file_paths = [input_path]
463
463
  else:
464
- all_file_paths = list(list_csv_paths(input_path).values())
464
+ all_file_paths = list(list_csv_paths(input_path, raise_on_empty=True).values())
465
465
 
466
466
  for df_path in all_file_paths:
467
467