dragon-ml-toolbox 14.8.0__py3-none-any.whl → 16.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

Files changed (44) hide show
  1. {dragon_ml_toolbox-14.8.0.dist-info → dragon_ml_toolbox-16.0.0.dist-info}/METADATA +9 -5
  2. dragon_ml_toolbox-16.0.0.dist-info/RECORD +51 -0
  3. ml_tools/ETL_cleaning.py +20 -20
  4. ml_tools/ETL_engineering.py +23 -25
  5. ml_tools/GUI_tools.py +20 -20
  6. ml_tools/MICE_imputation.py +3 -3
  7. ml_tools/ML_callbacks.py +43 -26
  8. ml_tools/ML_configuration.py +204 -11
  9. ml_tools/ML_datasetmaster.py +198 -280
  10. ml_tools/ML_evaluation.py +132 -41
  11. ml_tools/ML_evaluation_multi.py +96 -35
  12. ml_tools/ML_inference.py +249 -207
  13. ml_tools/ML_models.py +13 -102
  14. ml_tools/ML_models_advanced.py +1 -1
  15. ml_tools/ML_optimization.py +12 -12
  16. ml_tools/ML_scaler.py +11 -11
  17. ml_tools/ML_sequence_datasetmaster.py +341 -0
  18. ml_tools/ML_sequence_evaluation.py +215 -0
  19. ml_tools/ML_sequence_inference.py +391 -0
  20. ml_tools/ML_sequence_models.py +139 -0
  21. ml_tools/ML_trainer.py +1237 -354
  22. ml_tools/ML_utilities.py +1 -1
  23. ml_tools/ML_vision_datasetmaster.py +73 -67
  24. ml_tools/ML_vision_evaluation.py +26 -6
  25. ml_tools/ML_vision_inference.py +117 -140
  26. ml_tools/ML_vision_models.py +1 -1
  27. ml_tools/ML_vision_transformers.py +121 -40
  28. ml_tools/PSO_optimization.py +6 -6
  29. ml_tools/SQL.py +4 -4
  30. ml_tools/{keys.py → _keys.py} +43 -0
  31. ml_tools/_schema.py +1 -1
  32. ml_tools/ensemble_evaluation.py +1 -1
  33. ml_tools/ensemble_inference.py +7 -33
  34. ml_tools/ensemble_learning.py +1 -1
  35. ml_tools/optimization_tools.py +2 -2
  36. ml_tools/path_manager.py +5 -5
  37. ml_tools/utilities.py +1 -2
  38. dragon_ml_toolbox-14.8.0.dist-info/RECORD +0 -49
  39. ml_tools/RNN_forecast.py +0 -56
  40. ml_tools/_ML_vision_recipe.py +0 -88
  41. {dragon_ml_toolbox-14.8.0.dist-info → dragon_ml_toolbox-16.0.0.dist-info}/WHEEL +0 -0
  42. {dragon_ml_toolbox-14.8.0.dist-info → dragon_ml_toolbox-16.0.0.dist-info}/licenses/LICENSE +0 -0
  43. {dragon_ml_toolbox-14.8.0.dist-info → dragon_ml_toolbox-16.0.0.dist-info}/licenses/LICENSE-THIRD-PARTY.md +0 -0
  44. {dragon_ml_toolbox-14.8.0.dist-info → dragon_ml_toolbox-16.0.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,139 @@
1
+ import torch
2
+ from torch import nn
3
+ from typing import Literal
4
+
5
+ from ._logger import _LOGGER
6
+ from ._script_info import _script_info
7
+ from ._keys import MLTaskKeys
8
+ from .ML_models import _ArchitectureHandlerMixin
9
+
10
+
11
+ __all__ = [
12
+ "DragonSequenceLSTM"
13
+ ]
14
+
15
+
16
+ class DragonSequenceLSTM(nn.Module, _ArchitectureHandlerMixin):
17
+ """
18
+ An LSTM-based network for single-feature (univariate) sequence prediction tasks.
19
+ It can be configured for:
20
+ 1. 'sequence-to-sequence': Predicts a full sequence.
21
+ 2. 'sequence-to-value': Predicts a single value from the last time step.
22
+ """
23
+ def __init__(self,
24
+ prediction_mode: Literal["sequence-to-sequence", "sequence-to-value"],
25
+ hidden_size: int = 100,
26
+ recurrent_layers: int = 1,
27
+ dropout: float = 0.1):
28
+ """
29
+ Args:
30
+ hidden_size (int): The number of features in the LSTM's hidden state.
31
+ recurrent_layers (int): The number of recurrent LSTM layers.
32
+ prediction_mode (str): Determines the model's output behavior.
33
+ - 'sequence-to-sequence': Returns a full sequence.
34
+ - 'sequence-to-value': Returns a single prediction based on the last time step.
35
+ dropout (float): The dropout probability for all but the last LSTM layer.
36
+ """
37
+ super().__init__()
38
+
39
+ # --- Validation ---
40
+ if not prediction_mode in [MLTaskKeys.SEQUENCE_SEQUENCE, MLTaskKeys.SEQUENCE_VALUE]:
41
+ _LOGGER.error(f"Unrecognized prediction mode: '{prediction_mode}'.")
42
+ raise ValueError()
43
+ else:
44
+ self.prediction_mode = prediction_mode
45
+
46
+ if not isinstance(hidden_size, int) or hidden_size < 1:
47
+ _LOGGER.error("hidden_size must be a positive integer.")
48
+ raise ValueError()
49
+ if not isinstance(recurrent_layers, int) or recurrent_layers < 1:
50
+ _LOGGER.error("recurrent_layers must be a positive integer.")
51
+ raise ValueError()
52
+ if not (0.0 <= dropout < 1.0):
53
+ _LOGGER.error("dropout must be a float between 0.0 and 1.0.")
54
+ raise ValueError()
55
+
56
+ # --- Save configuration ---
57
+ self.features = 1 # Univariate
58
+ self.hidden_size = hidden_size
59
+ self.recurrent_layers = recurrent_layers
60
+ self.dropout = dropout
61
+
62
+ # Build model
63
+ self.lstm = nn.LSTM(
64
+ input_size=self.features,
65
+ hidden_size=hidden_size,
66
+ num_layers=recurrent_layers,
67
+ dropout=dropout,
68
+ batch_first=True # This is crucial for (batch, seq, feature) input
69
+ )
70
+ self.linear = nn.Linear(in_features=hidden_size, out_features=self.features)
71
+
72
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
73
+ """
74
+ Defines the forward pass.
75
+
76
+ Args:
77
+ x (torch.Tensor): The input tensor. Can be 2D (batch_size, sequence_length)
78
+ or 3D (batch_size, sequence_length, features).
79
+ The model will automatically handle 2D inputs
80
+ by assuming a feature size of 1.
81
+
82
+ Returns:
83
+ torch.Tensor: The output tensor.
84
+ - (batch_size, sequence_length, features) if 'sequence-to-sequence'
85
+ - (batch_size, features) if 'sequence-to-value'
86
+ """
87
+ # --- Handle Input Shape ---
88
+ if x.ndim == 2:
89
+ # Check if this 2D input is compatible with the model's expected features
90
+ if self.features != 1:
91
+ _LOGGER.error(f"Received 2D input (shape {x.shape}), but model was initialized with features={self.features}.")
92
+ raise ValueError()
93
+
94
+ # Add the feature dimension: (batch_size, seq_len) -> (batch_size, seq_len, 1)
95
+ x = x.unsqueeze(-1)
96
+
97
+ # x is guaranteed to be 3D: (batch_size, seq_len, features)
98
+ # The LSTM returns the full output sequence and the final hidden/cell states
99
+ lstm_out, _ = self.lstm(x)
100
+
101
+ # --- Handle Output Shape based on mode ---
102
+ if self.prediction_mode == MLTaskKeys.SEQUENCE_SEQUENCE:
103
+ # Use the full sequence
104
+ # output shape: (batch_size, seq_len, 1)
105
+ predictions = self.linear(lstm_out)
106
+ # Squeeze to (batch_size, seq_len) to match target
107
+ predictions = predictions.squeeze(-1)
108
+
109
+ elif self.prediction_mode == MLTaskKeys.SEQUENCE_VALUE:
110
+ # Isolate only the last time step's output
111
+ # last_step shape: (batch_size, hidden_size)
112
+ last_step = lstm_out[:, -1, :]
113
+ predictions = self.linear(last_step)
114
+
115
+ # Squeeze the 'features' dim to match label shape
116
+ predictions = predictions.squeeze(-1)
117
+
118
+ return predictions
119
+
120
+ def get_architecture_config(self) -> dict:
121
+ """Returns the configuration of the model."""
122
+ return {
123
+ 'hidden_size': self.hidden_size,
124
+ 'recurrent_layers': self.recurrent_layers,
125
+ 'prediction_mode': self.prediction_mode,
126
+ 'dropout': self.dropout
127
+ }
128
+
129
+ def __repr__(self) -> str:
130
+ """Returns the developer-friendly string representation of the model."""
131
+ return (
132
+ f"DragonSequenceLSTM(features={self.lstm.input_size}, "
133
+ f"hidden_size={self.lstm.hidden_size}, "
134
+ f"recurrent_layers={self.lstm.num_layers}), "
135
+ f"mode='{self.prediction_mode}')")
136
+
137
+
138
+ def info():
139
+ _script_info(__all__)