dragon-ml-toolbox 14.3.1__py3-none-any.whl → 14.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -112,7 +112,7 @@ def evaluate_model_classification(
112
112
  report_df = pd.DataFrame(report_dict).iloc[:-1, :].T
113
113
  plt.figure(figsize=figsize)
114
114
  sns.heatmap(report_df, annot=True, cmap=heatmap_cmap, fmt='.2f',
115
- annot_kws={"size": base_fontsize - 4})
115
+ annot_kws={"size": base_fontsize - 4}, vmin=0.0, vmax=1.0)
116
116
  plt.title(f"{model_name} - {target_name}", fontsize=base_fontsize)
117
117
  plt.xticks(fontsize=base_fontsize - 2)
118
118
  plt.yticks(fontsize=base_fontsize - 2)
@@ -133,6 +133,7 @@ def evaluate_model_classification(
133
133
  normalize="true",
134
134
  ax=ax
135
135
  )
136
+ disp.im_.set_clim(vmin=0.0, vmax=1.0)
136
137
 
137
138
  ax.set_title(f"{model_name} - {target_name}", fontsize=base_fontsize)
138
139
  ax.tick_params(axis='both', labelsize=base_fontsize)
@@ -327,7 +328,8 @@ def plot_calibration_curve(
327
328
  target_name: str,
328
329
  figure_size: tuple = (10, 10),
329
330
  base_fontsize: int = 24,
330
- n_bins: int = 15
331
+ n_bins: int = 15,
332
+ line_color: str = 'darkorange'
331
333
  ) -> plt.Figure: # type: ignore
332
334
  """
333
335
  Plots the calibration curve (reliability diagram) for a classifier.
@@ -348,22 +350,63 @@ def plot_calibration_curve(
348
350
  """
349
351
  fig, ax = plt.subplots(figsize=figure_size)
350
352
 
351
- disp = CalibrationDisplay.from_estimator(
352
- model,
353
- x_test,
354
- y_test,
355
- n_bins=n_bins,
356
- ax=ax
353
+ # --- Step 1: Get probabilities from the estimator ---
354
+ # We do this manually so we can pass them to from_predictions
355
+ try:
356
+ y_prob = model.predict_proba(x_test)
357
+ # Use probabilities for the positive class (assuming binary)
358
+ y_score = y_prob[:, 1]
359
+ except Exception as e:
360
+ _LOGGER.error(f"Could not get probabilities from model: {e}")
361
+ plt.close(fig)
362
+ return fig # Return empty figure
363
+
364
+ # --- Step 2: Get binned data *without* plotting ---
365
+ with plt.ioff():
366
+ fig_temp, ax_temp = plt.subplots()
367
+ cal_display_temp = CalibrationDisplay.from_predictions(
368
+ y_test,
369
+ y_score,
370
+ n_bins=n_bins,
371
+ ax=ax_temp,
372
+ name="temp"
373
+ )
374
+ line_x, line_y = cal_display_temp.line_.get_data() # type: ignore
375
+ plt.close(fig_temp)
376
+
377
+ # --- Step 3: Build the plot from scratch on ax ---
378
+
379
+ # 3a. Plot the ideal diagonal line
380
+ ax.plot([0, 1], [0, 1], 'k--', label='Perfectly calibrated')
381
+
382
+ # 3b. Use regplot for the regression line and its CI
383
+ sns.regplot(
384
+ x=line_x,
385
+ y=line_y,
386
+ ax=ax,
387
+ scatter=False, # No scatter dots
388
+ label=f"Calibration Curve ({n_bins} bins)",
389
+ line_kws={
390
+ 'color': line_color,
391
+ 'linestyle': '--',
392
+ 'linewidth': 2
393
+ }
357
394
  )
358
395
 
396
+ # --- Step 4: Apply original formatting ---
359
397
  ax.set_title(f"{model_name} - Reliability Curve for {target_name}", fontsize=base_fontsize)
360
398
  ax.tick_params(axis='both', labelsize=base_fontsize - 2)
361
399
  ax.set_xlabel("Mean Predicted Probability", fontsize=base_fontsize)
362
400
  ax.set_ylabel("Fraction of Positives", fontsize=base_fontsize)
363
- ax.legend(fontsize=base_fontsize - 4)
401
+
402
+ # Set limits
403
+ ax.set_ylim(0.0, 1.0)
404
+ ax.set_xlim(0.0, 1.0)
405
+
406
+ ax.legend(fontsize=base_fontsize - 4, loc='lower right')
364
407
  fig.tight_layout()
365
408
 
366
- # Save figure
409
+ # --- Step 5: Save figure (using original logic) ---
367
410
  save_path = make_fullpath(save_dir, make=True)
368
411
  sanitized_target_name = sanitize_filename(target_name)
369
412
  full_save_path = save_path / f"Calibration_Plot_{sanitized_target_name}.svg"
ml_tools/keys.py CHANGED
@@ -104,8 +104,9 @@ class VisionTransformRecipeKeys:
104
104
  TASK = "task"
105
105
  PIPELINE = "pipeline"
106
106
  NAME = "name"
107
- KWARGS = "_kwargs"
107
+ KWARGS = "kwargs"
108
108
  PRE_TRANSFORMS = "pre_transforms"
109
+
109
110
  RESIZE_SIZE = "resize_size"
110
111
  CROP_SIZE = "crop_size"
111
112
  MEAN = "mean"