dragon-ml-toolbox 13.7.0__py3-none-any.whl → 14.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

ml_tools/ML_trainer.py CHANGED
@@ -1,4 +1,4 @@
1
- from typing import List, Literal, Union, Optional
1
+ from typing import List, Literal, Union, Optional, Callable, Dict, Any, Tuple
2
2
  from pathlib import Path
3
3
  from torch.utils.data import DataLoader, Dataset
4
4
  import torch
@@ -12,16 +12,18 @@ from ._script_info import _script_info
12
12
  from .keys import PyTorchLogKeys, PyTorchCheckpointKeys, DatasetKeys
13
13
  from ._logger import _LOGGER
14
14
  from .path_manager import make_fullpath
15
+ from .ML_vision_evaluation import segmentation_metrics, object_detection_metrics
15
16
 
16
17
 
17
18
  __all__ = [
18
- "MLTrainer"
19
+ "MLTrainer",
20
+ "ObjectDetectionTrainer"
19
21
  ]
20
22
 
21
23
 
22
24
  class MLTrainer:
23
25
  def __init__(self, model: nn.Module, train_dataset: Dataset, test_dataset: Dataset,
24
- kind: Literal["regression", "classification", "multi_target_regression", "multi_label_classification"],
26
+ kind: Literal["regression", "classification", "multi_target_regression", "multi_label_classification", "segmentation"],
25
27
  criterion: nn.Module, optimizer: torch.optim.Optimizer,
26
28
  device: Union[Literal['cuda', 'mps', 'cpu'],str], dataloader_workers: int = 2, callbacks: Optional[List[Callback]] = None):
27
29
  """
@@ -33,7 +35,7 @@ class MLTrainer:
33
35
  model (nn.Module): The PyTorch model to train.
34
36
  train_dataset (Dataset): The training dataset.
35
37
  test_dataset (Dataset): The testing/validation dataset.
36
- kind (str): Can be 'regression', 'classification', 'multi_target_regression', or 'multi_label_classification'.
38
+ kind (str): Can be 'regression', 'classification', 'multi_target_regression', 'multi_label_classification', or 'segmentation'.
37
39
  criterion (nn.Module): The loss function.
38
40
  optimizer (torch.optim.Optimizer): The optimizer.
39
41
  device (str): The device to run training on ('cpu', 'cuda', 'mps').
@@ -46,8 +48,10 @@ class MLTrainer:
46
48
  - For **single-label, multi-class classification** tasks, `nn.CrossEntropyLoss` is the standard choice.
47
49
 
48
50
  - For **multi-label, binary classification** tasks (where each label is a 0 or 1), `nn.BCEWithLogitsLoss` is the correct choice as it treats each output as an independent binary problem.
51
+
52
+ - For **segmentation** tasks, `nn.CrossEntropyLoss` (for multi-class) or `nn.BCEWithLogitsLoss` (for binary) are common.
49
53
  """
50
- if kind not in ["regression", "classification", "multi_target_regression", "multi_label_classification"]:
54
+ if kind not in ["regression", "classification", "multi_target_regression", "multi_label_classification", "segmentation"]:
51
55
  raise ValueError(f"'{kind}' is not a valid task type.")
52
56
 
53
57
  self.model = model
@@ -74,6 +78,7 @@ class MLTrainer:
74
78
  self.epochs = 0 # Total epochs for the fit run
75
79
  self.start_epoch = 1
76
80
  self.stop_training = False
81
+ self._batch_size = 10
77
82
 
78
83
  def _validate_device(self, device: str) -> torch.device:
79
84
  """Validates the selected device and returns a torch.device object."""
@@ -191,7 +196,8 @@ class MLTrainer:
191
196
  shape of `[batch_size]`.
192
197
  """
193
198
  self.epochs = epochs
194
- self._create_dataloaders(batch_size, shuffle)
199
+ self._batch_size = batch_size
200
+ self._create_dataloaders(self._batch_size, shuffle)
195
201
  self.model.to(self.device)
196
202
 
197
203
  if resume_from_checkpoint:
@@ -291,25 +297,40 @@ class MLTrainer:
291
297
  for features, target in dataloader:
292
298
  features = features.to(self.device)
293
299
  output = self.model(features).cpu()
294
- y_true_batch = target.numpy()
295
300
 
296
301
  y_pred_batch = None
297
302
  y_prob_batch = None
303
+ y_true_batch = None
298
304
 
299
305
  if self.kind in ["regression", "multi_target_regression"]:
300
306
  y_pred_batch = output.numpy()
307
+ y_true_batch = target.numpy()
301
308
 
302
309
  elif self.kind == "classification":
303
310
  probs = torch.softmax(output, dim=1)
304
311
  preds = torch.argmax(probs, dim=1)
305
312
  y_pred_batch = preds.numpy()
306
313
  y_prob_batch = probs.numpy()
314
+ y_true_batch = target.numpy()
307
315
 
308
316
  elif self.kind == "multi_label_classification":
309
317
  probs = torch.sigmoid(output)
310
318
  preds = (probs >= classification_threshold).int()
311
319
  y_pred_batch = preds.numpy()
312
320
  y_prob_batch = probs.numpy()
321
+ y_true_batch = target.numpy()
322
+
323
+ elif self.kind == "segmentation":
324
+ # output shape [N, C, H, W]
325
+ probs = torch.softmax(output, dim=1)
326
+ preds = torch.argmax(probs, dim=1) # shape [N, H, W]
327
+ y_pred_batch = preds.numpy()
328
+ y_prob_batch = probs.numpy() # Probs are [N, C, H, W]
329
+
330
+ # Handle target shape [N, 1, H, W] -> [N, H, W]
331
+ if target.ndim == 4 and target.shape[1] == 1:
332
+ target = target.squeeze(1)
333
+ y_true_batch = target.numpy()
313
334
 
314
335
  yield y_pred_batch, y_prob_batch, y_true_batch
315
336
 
@@ -333,7 +354,7 @@ class MLTrainer:
333
354
  elif isinstance(data, Dataset):
334
355
  # Create a new loader from the provided dataset
335
356
  eval_loader = DataLoader(data,
336
- batch_size=32,
357
+ batch_size=self._batch_size,
337
358
  shuffle=False,
338
359
  num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
339
360
  pin_memory=(self.device.type == "cuda"))
@@ -344,10 +365,11 @@ class MLTrainer:
344
365
  raise ValueError()
345
366
  # Create a fresh DataLoader from the test_dataset
346
367
  eval_loader = DataLoader(self.test_dataset,
347
- batch_size=32,
368
+ batch_size=self._batch_size,
348
369
  shuffle=False,
349
370
  num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
350
371
  pin_memory=(self.device.type == "cuda"))
372
+
351
373
  dataset_for_names = self.test_dataset
352
374
 
353
375
  if eval_loader is None:
@@ -398,7 +420,31 @@ class MLTrainer:
398
420
  _LOGGER.error("Evaluation for multi_label_classification requires probabilities (y_prob).")
399
421
  return
400
422
  multi_label_classification_metrics(y_true, y_prob, target_names, save_dir, classification_threshold)
423
+
424
+ elif self.kind == "segmentation":
425
+ class_names = None
426
+ try:
427
+ # Try to get 'classes' from VisionDatasetMaker
428
+ if hasattr(dataset_for_names, 'classes'):
429
+ class_names = dataset_for_names.classes # type: ignore
430
+ # Fallback for Subset
431
+ elif hasattr(dataset_for_names, 'dataset') and hasattr(dataset_for_names.dataset, 'classes'): # type: ignore
432
+ class_names = dataset_for_names.dataset.classes # type: ignore
433
+ except AttributeError:
434
+ pass # class_names is still None
401
435
 
436
+ if class_names is None:
437
+ try:
438
+ # Fallback to 'target_names'
439
+ class_names = dataset_for_names.target_names # type: ignore
440
+ except AttributeError:
441
+ # Fallback to inferring from labels
442
+ labels = np.unique(y_true)
443
+ class_names = [f"Class {i}" for i in labels]
444
+ _LOGGER.warning(f"Dataset has no 'classes' or 'target_names' attribute. Using generic names.")
445
+
446
+ segmentation_metrics(y_true, y_pred, save_dir, class_names=class_names)
447
+
402
448
  print("\n--- Training History ---")
403
449
  plot_losses(self.history, save_dir=save_dir)
404
450
 
@@ -569,8 +615,7 @@ class MLTrainer:
569
615
  # --- Step 1: Check if the model supports this explanation ---
570
616
  if not getattr(self.model, 'has_interpretable_attention', False):
571
617
  _LOGGER.warning(
572
- "Model is not flagged for interpretable attention analysis. "
573
- "Skipping. This is the correct behavior for models like MultiHeadAttentionMLP."
618
+ "Model is not flagged for interpretable attention analysis. Skipping. This is the correct behavior for models like MultiHeadAttentionMLP."
574
619
  )
575
620
  return
576
621
 
@@ -637,7 +682,397 @@ class MLTrainer:
637
682
  self.device = self._validate_device(device)
638
683
  self.model.to(self.device)
639
684
  _LOGGER.info(f"Trainer and model moved to {self.device}.")
685
+
686
+
687
+ # Object Detection Trainer
688
+ class ObjectDetectionTrainer:
689
+ def __init__(self, model: nn.Module, train_dataset: Dataset, test_dataset: Dataset,
690
+ collate_fn: Callable, optimizer: torch.optim.Optimizer,
691
+ device: Union[Literal['cuda', 'mps', 'cpu'],str], dataloader_workers: int = 2, callbacks: Optional[List[Callback]] = None):
692
+ """
693
+ Automates the training process of an Object Detection Model (e.g., DragonFastRCNN).
694
+
695
+ Built-in Callbacks: `History`, `TqdmProgressBar`
696
+
697
+ Args:
698
+ model (nn.Module): The PyTorch object detection model to train.
699
+ train_dataset (Dataset): The training dataset.
700
+ test_dataset (Dataset): The testing/validation dataset.
701
+ collate_fn (Callable): The collate function from `ObjectDetectionDatasetMaker.collate_fn`.
702
+ optimizer (torch.optim.Optimizer): The optimizer.
703
+ device (str): The device to run training on ('cpu', 'cuda', 'mps').
704
+ dataloader_workers (int): Subprocesses for data loading.
705
+ callbacks (List[Callback] | None): A list of callbacks to use during training.
706
+
707
+ ## Note:
708
+ This trainer is specialized. It does not take a `criterion` because object detection models like Faster R-CNN return a dictionary of losses directly from their forward pass during training.
709
+ """
710
+ self.model = model
711
+ self.train_dataset = train_dataset
712
+ self.test_dataset = test_dataset
713
+ self.kind = "object_detection"
714
+ self.collate_fn = collate_fn
715
+ self.criterion = None # Criterion is handled inside the model
716
+ self.optimizer = optimizer
717
+ self.scheduler = None
718
+ self.device = self._validate_device(device)
719
+ self.dataloader_workers = dataloader_workers
720
+
721
+ # Callback handler - History and TqdmProgressBar are added by default
722
+ default_callbacks = [History(), TqdmProgressBar()]
723
+ user_callbacks = callbacks if callbacks is not None else []
724
+ self.callbacks = default_callbacks + user_callbacks
725
+ self._set_trainer_on_callbacks()
726
+
727
+ # Internal state
728
+ self.train_loader = None
729
+ self.test_loader = None
730
+ self.history = {}
731
+ self.epoch = 0
732
+ self.epochs = 0 # Total epochs for the fit run
733
+ self.start_epoch = 1
734
+ self.stop_training = False
735
+ self._batch_size = 10
736
+
737
+ def _validate_device(self, device: str) -> torch.device:
738
+ """Validates the selected device and returns a torch.device object."""
739
+ device_lower = device.lower()
740
+ if "cuda" in device_lower and not torch.cuda.is_available():
741
+ _LOGGER.warning("CUDA not available, switching to CPU.")
742
+ device = "cpu"
743
+ elif device_lower == "mps" and not torch.backends.mps.is_available():
744
+ _LOGGER.warning("Apple Metal Performance Shaders (MPS) not available, switching to CPU.")
745
+ device = "cpu"
746
+ return torch.device(device)
747
+
748
+ def _set_trainer_on_callbacks(self):
749
+ """Gives each callback a reference to this trainer instance."""
750
+ for callback in self.callbacks:
751
+ callback.set_trainer(self)
752
+
753
+ def _create_dataloaders(self, batch_size: int, shuffle: bool):
754
+ """Initializes the DataLoaders with the object detection collate_fn."""
755
+ # Ensure stability on MPS devices by setting num_workers to 0
756
+ loader_workers = 0 if self.device.type == 'mps' else self.dataloader_workers
757
+
758
+ self.train_loader = DataLoader(
759
+ dataset=self.train_dataset,
760
+ batch_size=batch_size,
761
+ shuffle=shuffle,
762
+ num_workers=loader_workers,
763
+ pin_memory=("cuda" in self.device.type),
764
+ collate_fn=self.collate_fn # Use the provided collate function
765
+ )
766
+
767
+ self.test_loader = DataLoader(
768
+ dataset=self.test_dataset,
769
+ batch_size=batch_size,
770
+ shuffle=False,
771
+ num_workers=loader_workers,
772
+ pin_memory=("cuda" in self.device.type),
773
+ collate_fn=self.collate_fn # Use the provided collate function
774
+ )
775
+
776
+ def _load_checkpoint(self, path: Union[str, Path]):
777
+ """Loads a training checkpoint to resume training."""
778
+ p = make_fullpath(path, enforce="file")
779
+ _LOGGER.info(f"Loading checkpoint from '{p.name}' to resume training...")
780
+
781
+ try:
782
+ checkpoint = torch.load(p, map_location=self.device)
783
+
784
+ if PyTorchCheckpointKeys.MODEL_STATE not in checkpoint or PyTorchCheckpointKeys.OPTIMIZER_STATE not in checkpoint:
785
+ _LOGGER.error(f"Checkpoint file '{p.name}' is invalid. Missing 'model_state_dict' or 'optimizer_state_dict'.")
786
+ raise KeyError()
787
+
788
+ self.model.load_state_dict(checkpoint[PyTorchCheckpointKeys.MODEL_STATE])
789
+ self.optimizer.load_state_dict(checkpoint[PyTorchCheckpointKeys.OPTIMIZER_STATE])
790
+ self.start_epoch = checkpoint.get(PyTorchCheckpointKeys.EPOCH, 0) + 1 # Resume on the *next* epoch
791
+
792
+ # --- Scheduler State Loading Logic ---
793
+ scheduler_state_exists = PyTorchCheckpointKeys.SCHEDULER_STATE in checkpoint
794
+ scheduler_object_exists = self.scheduler is not None
795
+
796
+ if scheduler_object_exists and scheduler_state_exists:
797
+ # Case 1: Both exist. Attempt to load.
798
+ try:
799
+ self.scheduler.load_state_dict(checkpoint[PyTorchCheckpointKeys.SCHEDULER_STATE]) # type: ignore
800
+ scheduler_name = self.scheduler.__class__.__name__
801
+ _LOGGER.info(f"Restored LR scheduler state for: {scheduler_name}")
802
+ except Exception as e:
803
+ # Loading failed, likely a mismatch
804
+ scheduler_name = self.scheduler.__class__.__name__
805
+ _LOGGER.error(f"Failed to load scheduler state for '{scheduler_name}'. A different scheduler type might have been used.")
806
+ raise e
807
+
808
+ elif scheduler_object_exists and not scheduler_state_exists:
809
+ # Case 2: Scheduler provided, but no state in checkpoint.
810
+ scheduler_name = self.scheduler.__class__.__name__
811
+ _LOGGER.warning(f"'{scheduler_name}' was provided, but no scheduler state was found in the checkpoint. The scheduler will start from its initial state.")
812
+
813
+ elif not scheduler_object_exists and scheduler_state_exists:
814
+ # Case 3: State in checkpoint, but no scheduler provided.
815
+ _LOGGER.error("Checkpoint contains an LR scheduler state, but no LRScheduler callback was provided.")
816
+ raise ValueError()
817
+
818
+ # Restore callback states
819
+ for cb in self.callbacks:
820
+ if isinstance(cb, ModelCheckpoint) and PyTorchCheckpointKeys.BEST_SCORE in checkpoint:
821
+ cb.best = checkpoint[PyTorchCheckpointKeys.BEST_SCORE]
822
+ _LOGGER.info(f"Restored {cb.__class__.__name__} 'best' score to: {cb.best:.4f}")
823
+
824
+ _LOGGER.info(f"Checkpoint loaded. Resuming training from epoch {self.start_epoch}.")
825
+
826
+ except Exception as e:
827
+ _LOGGER.error(f"Failed to load checkpoint from '{p}': {e}")
828
+ raise
829
+
830
+ def fit(self,
831
+ epochs: int = 10,
832
+ batch_size: int = 10,
833
+ shuffle: bool = True,
834
+ resume_from_checkpoint: Optional[Union[str, Path]] = None):
835
+ """
836
+ Starts the training-validation process of the model.
837
+
838
+ Returns the "History" callback dictionary.
839
+
840
+ Args:
841
+ epochs (int): The total number of epochs to train for.
842
+ batch_size (int): The number of samples per batch.
843
+ shuffle (bool): Whether to shuffle the training data at each epoch.
844
+ resume_from_checkpoint (str | Path | None): Optional path to a checkpoint to resume training.
845
+ """
846
+ self.epochs = epochs
847
+ self._batch_size = batch_size
848
+ self._create_dataloaders(self._batch_size, shuffle)
849
+ self.model.to(self.device)
850
+
851
+ if resume_from_checkpoint:
852
+ self._load_checkpoint(resume_from_checkpoint)
853
+
854
+ # Reset stop_training flag on the trainer
855
+ self.stop_training = False
856
+
857
+ self._callbacks_hook('on_train_begin')
858
+
859
+ for epoch in range(self.start_epoch, self.epochs + 1):
860
+ self.epoch = epoch
861
+ epoch_logs = {}
862
+ self._callbacks_hook('on_epoch_begin', epoch, logs=epoch_logs)
863
+
864
+ train_logs = self._train_step()
865
+ epoch_logs.update(train_logs)
866
+
867
+ val_logs = self._validation_step()
868
+ epoch_logs.update(val_logs)
869
+
870
+ self._callbacks_hook('on_epoch_end', epoch, logs=epoch_logs)
871
+
872
+ # Check the early stopping flag
873
+ if self.stop_training:
874
+ break
875
+
876
+ self._callbacks_hook('on_train_end')
877
+ return self.history
878
+
879
+ def _train_step(self):
880
+ self.model.train()
881
+ running_loss = 0.0
882
+ for batch_idx, (images, targets) in enumerate(self.train_loader): # type: ignore
883
+ # images is a tuple of tensors, targets is a tuple of dicts
884
+ batch_size = len(images)
885
+
886
+ # Create a log dictionary for the batch
887
+ batch_logs = {
888
+ PyTorchLogKeys.BATCH_INDEX: batch_idx,
889
+ PyTorchLogKeys.BATCH_SIZE: batch_size
890
+ }
891
+ self._callbacks_hook('on_batch_begin', batch_idx, logs=batch_logs)
892
+
893
+ # Move data to device
894
+ images = list(img.to(self.device) for img in images)
895
+ targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
896
+
897
+ self.optimizer.zero_grad()
898
+
899
+ # Model returns a loss dict when in train() mode and targets are passed
900
+ loss_dict = self.model(images, targets)
901
+
902
+ if not loss_dict:
903
+ # No losses returned, skip batch
904
+ _LOGGER.warning(f"Model returned no losses for batch {batch_idx}. Skipping.")
905
+ batch_logs[PyTorchLogKeys.BATCH_LOSS] = 0
906
+ self._callbacks_hook('on_batch_end', batch_idx, logs=batch_logs)
907
+ continue
908
+
909
+ # Sum all losses
910
+ loss: torch.Tensor = sum(l for l in loss_dict.values()) # type: ignore
911
+
912
+ loss.backward()
913
+ self.optimizer.step()
914
+
915
+ # Calculate batch loss and update running loss for the epoch
916
+ batch_loss = loss.item()
917
+ running_loss += batch_loss * batch_size
918
+
919
+ # Add the batch loss to the logs and call the end-of-batch hook
920
+ batch_logs[PyTorchLogKeys.BATCH_LOSS] = batch_loss # type: ignore
921
+ self._callbacks_hook('on_batch_end', batch_idx, logs=batch_logs)
922
+
923
+ return {PyTorchLogKeys.TRAIN_LOSS: running_loss / len(self.train_loader.dataset)} # type: ignore
924
+
925
+ def _validation_step(self):
926
+ self.model.train() # Set to train mode even for validation loss calculation
927
+ # as model internals (e.g., proposals) might differ,
928
+ # but we still need loss_dict.
929
+ # We use torch.no_grad() to prevent gradient updates.
930
+ running_loss = 0.0
931
+ with torch.no_grad():
932
+ for images, targets in self.test_loader: # type: ignore
933
+ batch_size = len(images)
934
+
935
+ # Move data to device
936
+ images = list(img.to(self.device) for img in images)
937
+ targets = [{k: v.to(self.device) for k, v in t.items()} for t in targets]
938
+
939
+ # Get loss dict
940
+ loss_dict = self.model(images, targets)
941
+
942
+ if not loss_dict:
943
+ _LOGGER.warning("Model returned no losses during validation step. Skipping batch.")
944
+ continue # Skip if no losses
945
+
946
+ # Sum all losses
947
+ loss: torch.Tensor = sum(l for l in loss_dict.values()) # type: ignore
948
+
949
+ running_loss += loss.item() * batch_size
950
+
951
+ logs = {PyTorchLogKeys.VAL_LOSS: running_loss / len(self.test_loader.dataset)} # type: ignore
952
+ return logs
953
+
954
+ def evaluate(self, save_dir: Union[str, Path], data: Optional[Union[DataLoader, Dataset]] = None):
955
+ """
956
+ Evaluates the model using object detection mAP metrics.
957
+
958
+ Args:
959
+ save_dir (str | Path): Directory to save all reports and plots.
960
+ data (DataLoader | Dataset | None): The data to evaluate on. If None, defaults to the trainer's internal test_dataset.
961
+ """
962
+ dataset_for_names = None
963
+ eval_loader = None
964
+
965
+ if isinstance(data, DataLoader):
966
+ eval_loader = data
967
+ if hasattr(data, 'dataset'):
968
+ dataset_for_names = data.dataset
969
+ elif isinstance(data, Dataset):
970
+ # Create a new loader from the provided dataset
971
+ eval_loader = DataLoader(data,
972
+ batch_size=self._batch_size,
973
+ shuffle=False,
974
+ num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
975
+ pin_memory=(self.device.type == "cuda"),
976
+ collate_fn=self.collate_fn)
977
+ dataset_for_names = data
978
+ else: # data is None, use the trainer's default test dataset
979
+ if self.test_dataset is None:
980
+ _LOGGER.error("Cannot evaluate. No data provided and no test_dataset available in the trainer.")
981
+ raise ValueError()
982
+ # Create a fresh DataLoader from the test_dataset
983
+ eval_loader = DataLoader(
984
+ self.test_dataset,
985
+ batch_size=self._batch_size,
986
+ shuffle=False,
987
+ num_workers=0 if self.device.type == 'mps' else self.dataloader_workers,
988
+ pin_memory=(self.device.type == "cuda"),
989
+ collate_fn=self.collate_fn
990
+ )
991
+ dataset_for_names = self.test_dataset
992
+
993
+ if eval_loader is None:
994
+ _LOGGER.error("Cannot evaluate. No valid data was provided or found.")
995
+ raise ValueError()
996
+
997
+ print("\n--- Model Evaluation ---")
998
+
999
+ all_predictions = []
1000
+ all_targets = []
1001
+
1002
+ self.model.eval() # Set model to evaluation mode
1003
+ self.model.to(self.device)
1004
+
1005
+ with torch.no_grad():
1006
+ for images, targets in eval_loader:
1007
+ # Move images to device
1008
+ images = list(img.to(self.device) for img in images)
1009
+
1010
+ # Model returns predictions when in eval() mode
1011
+ predictions = self.model(images)
1012
+
1013
+ # Move predictions and targets to CPU for aggregation
1014
+ cpu_preds = [{k: v.to('cpu') for k, v in p.items()} for p in predictions]
1015
+ cpu_targets = [{k: v.to('cpu') for k, v in t.items()} for t in targets]
1016
+
1017
+ all_predictions.extend(cpu_preds)
1018
+ all_targets.extend(cpu_targets)
1019
+
1020
+ if not all_targets:
1021
+ _LOGGER.error("Evaluation failed: No data was processed.")
1022
+ return
1023
+
1024
+ # Get class names from the dataset for the report
1025
+ class_names = None
1026
+ try:
1027
+ # Try to get 'classes' from ObjectDetectionDatasetMaker
1028
+ if hasattr(dataset_for_names, 'classes'):
1029
+ class_names = dataset_for_names.classes # type: ignore
1030
+ # Fallback for Subset
1031
+ elif hasattr(dataset_for_names, 'dataset') and hasattr(dataset_for_names.dataset, 'classes'): # type: ignore
1032
+ class_names = dataset_for_names.dataset.classes # type: ignore
1033
+ except AttributeError:
1034
+ _LOGGER.warning("Could not find 'classes' attribute on dataset. Per-class metrics will not be named.")
1035
+ pass # class_names is still None
1036
+
1037
+ # --- Routing Logic ---
1038
+ object_detection_metrics(
1039
+ preds=all_predictions,
1040
+ targets=all_targets,
1041
+ save_dir=save_dir,
1042
+ class_names=class_names,
1043
+ print_output=False
1044
+ )
1045
+
1046
+ print("\n--- Training History ---")
1047
+ plot_losses(self.history, save_dir=save_dir)
1048
+
1049
+ def _callbacks_hook(self, method_name: str, *args, **kwargs):
1050
+ """Calls the specified method on all callbacks."""
1051
+ for callback in self.callbacks:
1052
+ method = getattr(callback, method_name)
1053
+ method(*args, **kwargs)
1054
+
1055
+ def to_cpu(self):
1056
+ """
1057
+ Moves the model to the CPU and updates the trainer's device setting.
1058
+
1059
+ This is useful for running operations that require the CPU.
1060
+ """
1061
+ self.device = torch.device('cpu')
1062
+ self.model.to(self.device)
1063
+ _LOGGER.info("Trainer and model moved to CPU.")
640
1064
 
1065
+ def to_device(self, device: str):
1066
+ """
1067
+ Moves the model to the specified device and updates the trainer's device setting.
1068
+
1069
+ Args:
1070
+ device (str): The target device (e.g., 'cuda', 'mps', 'cpu').
1071
+ """
1072
+ self.device = self._validate_device(device)
1073
+ self.model.to(self.device)
1074
+ _LOGGER.info(f"Trainer and model moved to {self.device}.")
1075
+
641
1076
 
642
1077
  def info():
643
1078
  _script_info(__all__)