dragon-ml-toolbox 13.7.0__py3-none-any.whl → 13.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 13.7.0
3
+ Version: 13.8.0
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: "Karl L. Loza Vidaurre" <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,5 +1,5 @@
1
- dragon_ml_toolbox-13.7.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-13.7.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
1
+ dragon_ml_toolbox-13.8.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
+ dragon_ml_toolbox-13.8.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
3
3
  ml_tools/ETL_cleaning.py,sha256=2VBRllV8F-ZiPylPp8Az2gwn5ztgazN0BH5OKnRUhV0,20402
4
4
  ml_tools/ETL_engineering.py,sha256=KfYqgsxupAx6e_TxwO1LZXeu5mFkIhVXJrNjP3CzIZc,54927
5
5
  ml_tools/GUI_tools.py,sha256=Va6ig-dHULPVRwQYYtH3fvY5XPIoqRcJpRW8oXC55Hw,45413
@@ -13,7 +13,7 @@ ml_tools/ML_models.py,sha256=UVWJHPLVIvFno_csCHH1FwBfTwQ5nX0V8F1TbOByZ4I,31388
13
13
  ml_tools/ML_optimization.py,sha256=P0zkhKAwTpkorIBtR0AOIDcyexo5ngmvFUzo3DfNO-E,22692
14
14
  ml_tools/ML_scaler.py,sha256=tw6onj9o8_kk3FQYb930HUzvv1zsFZe2YZJdF3LtHkU,7538
15
15
  ml_tools/ML_trainer.py,sha256=ZxeOagXW5adFhYIH-oMTlcrLU6VHe4R1EROI7yypNwQ,29665
16
- ml_tools/ML_utilities.py,sha256=EnKpPTnJ2qjZmz7kvows4Uu5CfSA7ByRmI1v2-KarKw,9337
16
+ ml_tools/ML_utilities.py,sha256=QC44y5mAzA6iUdb3py0bjI-nPjxUatZTdm8sMrb3He0,19364
17
17
  ml_tools/PSO_optimization.py,sha256=T-HWHMRJUnPvPwixdU5jif3_rnnI36TzcL8u3oSCwuA,22960
18
18
  ml_tools/RNN_forecast.py,sha256=Qa2KoZfdAvSjZ4yE78N4BFXtr3tTr0Gx7tQJZPotsh0,1967
19
19
  ml_tools/SQL.py,sha256=vXLPGfVVg8bfkbBE3HVfyEclVbdJy0TBhuQONtMwSCQ,11234
@@ -23,19 +23,19 @@ ml_tools/_logger.py,sha256=dlp5cGbzooK9YSNSZYB4yjZrOaQUGW8PTrM411AOvL8,4717
23
23
  ml_tools/_schema.py,sha256=yu6aWmn_2Z4_AxAtJGDDCIa96y6JcUp-vgnCS013Qmw,3908
24
24
  ml_tools/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
25
25
  ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
26
- ml_tools/custom_logger.py,sha256=7tSAgRL7e-Ekm7rS1FLDocaPLCnaoKc7VSrtfwCtCEg,10067
26
+ ml_tools/custom_logger.py,sha256=i0cAr1qPnwXDyqQ1itk2o72-2jniRXJNEuST2eW4zF4,11016
27
27
  ml_tools/data_exploration.py,sha256=-BbWO7BBFapPi_7ZuWo65VqguJXaBfgFSptrXyoWrDk,51902
28
28
  ml_tools/ensemble_evaluation.py,sha256=FGHSe8LBI8_w8LjNeJWOcYQ1UK_mc6fVah8gmSvNVGg,26853
29
29
  ml_tools/ensemble_inference.py,sha256=0yLmLNj45RVVoSCLH1ZYJG9IoAhTkWUqEZmLOQTFGTY,9348
30
30
  ml_tools/ensemble_learning.py,sha256=vsIED7nlheYI4w2SBzP6SC1AnNeMfn-2A1Gqw5EfxsM,21964
31
31
  ml_tools/handle_excel.py,sha256=pfdAPb9ywegFkM9T54bRssDOsX-K7rSeV0RaMz7lEAo,14006
32
- ml_tools/keys.py,sha256=oykUVLB4Wos3AZomowjtI8AFFC5xnMUH-icNHydRpOk,2275
32
+ ml_tools/keys.py,sha256=CcqE9R9R32osR0vLz0i-3cyv1UlVsDWAHqvlVf8xm_0,2492
33
33
  ml_tools/math_utilities.py,sha256=xeKq1quR_3DYLgowcp4Uam_4s3JltUyOnqMOGuAiYWU,8802
34
34
  ml_tools/optimization_tools.py,sha256=TYFQ2nSnp7xxs-VyoZISWgnGJghFbsWasHjruegyJRs,12763
35
35
  ml_tools/path_manager.py,sha256=CyDU16pOKmC82jPubqJPT6EBt-u-3rGVbxyPIZCvDDY,18432
36
36
  ml_tools/serde.py,sha256=c8uDYjYry_VrLvoG4ixqDj5pij88lVn6Tu4NHcPkwDU,6943
37
37
  ml_tools/utilities.py,sha256=aWqvYzmxlD74PD5Yqu1VuTekDJeYLQrmPIU_VeVyRp0,22526
38
- dragon_ml_toolbox-13.7.0.dist-info/METADATA,sha256=Rk5n5BbicDim5Qg6AzpyG8MwJAqlu5MSclAiLP_V-Vc,6166
39
- dragon_ml_toolbox-13.7.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
- dragon_ml_toolbox-13.7.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
- dragon_ml_toolbox-13.7.0.dist-info/RECORD,,
38
+ dragon_ml_toolbox-13.8.0.dist-info/METADATA,sha256=mvK0WY75d25CARpUbiDoaK3PHtVgRIEcCauCo7RT6wU,6166
39
+ dragon_ml_toolbox-13.8.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
+ dragon_ml_toolbox-13.8.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
+ dragon_ml_toolbox-13.8.0.dist-info/RECORD,,
ml_tools/ML_utilities.py CHANGED
@@ -1,18 +1,24 @@
1
1
  import pandas as pd
2
2
  from pathlib import Path
3
- from typing import Union, Any, Optional
3
+ from typing import Union, Any, Optional, Dict, List, Iterable
4
+ import torch
5
+ from torch import nn
6
+
4
7
 
5
8
  from .path_manager import make_fullpath, list_subdirectories, list_files_by_extension
6
9
  from ._script_info import _script_info
7
10
  from ._logger import _LOGGER
8
- from .keys import DatasetKeys, PytorchModelArchitectureKeys, PytorchArtifactPathKeys, SHAPKeys
11
+ from .keys import DatasetKeys, PytorchModelArchitectureKeys, PytorchArtifactPathKeys, SHAPKeys, UtilityKeys, PyTorchCheckpointKeys
9
12
  from .utilities import load_dataframe
10
- from .custom_logger import save_list_strings
13
+ from .custom_logger import save_list_strings, custom_logger
11
14
 
12
15
 
13
16
  __all__ = [
14
17
  "find_model_artifacts",
15
- "select_features_by_shap"
18
+ "select_features_by_shap",
19
+ "get_model_parameters",
20
+ "inspect_pth_file",
21
+ "set_parameter_requires_grad"
16
22
  ]
17
23
 
18
24
 
@@ -226,5 +232,248 @@ def select_features_by_shap(
226
232
  return final_features
227
233
 
228
234
 
235
+ def get_model_parameters(model: nn.Module, save_dir: Optional[Union[str,Path]]=None) -> Dict[str, int]:
236
+ """
237
+ Calculates the total and trainable parameters of a PyTorch model.
238
+
239
+ Args:
240
+ model (nn.Module): The PyTorch model to inspect.
241
+ save_dir: Optional directory to save the output as a JSON file.
242
+
243
+ Returns:
244
+ Dict[str, int]: A dictionary containing:
245
+ - "total_params": The total number of parameters.
246
+ - "trainable_params": The number of trainable parameters (where requires_grad=True).
247
+ """
248
+ total_params = sum(p.numel() for p in model.parameters())
249
+ trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
250
+
251
+ report = {
252
+ UtilityKeys.TOTAL_PARAMS: total_params,
253
+ UtilityKeys.TRAINABLE_PARAMS: trainable_params
254
+ }
255
+
256
+ if save_dir is not None:
257
+ output_dir = make_fullpath(save_dir, make=True, enforce="directory")
258
+ custom_logger(data=report,
259
+ save_directory=output_dir,
260
+ log_name=UtilityKeys.MODEL_PARAMS_FILE,
261
+ dict_as="json")
262
+
263
+ return report
264
+
265
+
266
+ def inspect_pth_file(
267
+ pth_path: Union[str, Path],
268
+ save_dir: Union[str, Path],
269
+ ) -> None:
270
+ """
271
+ Inspects a .pth file (e.g., checkpoint) and saves a human-readable
272
+ JSON summary of its contents.
273
+
274
+ Args:
275
+ pth_path (str | Path): The path to the .pth file to inspect.
276
+ save_dir (str | Path): The directory to save the JSON report.
277
+
278
+ Returns:
279
+ Dict (str, Any): A dictionary containing the inspection report.
280
+
281
+ Raises:
282
+ ValueError: If the .pth file is empty or in an unrecognized format.
283
+ """
284
+ # --- 1. Validate paths ---
285
+ pth_file = make_fullpath(pth_path, enforce="file")
286
+ output_dir = make_fullpath(save_dir, make=True, enforce="directory")
287
+ pth_name = pth_file.stem
288
+
289
+ # --- 2. Load data ---
290
+ try:
291
+ # Load onto CPU to avoid GPU memory issues
292
+ loaded_data = torch.load(pth_file, map_location=torch.device('cpu'))
293
+ except Exception as e:
294
+ _LOGGER.error(f"Failed to load .pth file '{pth_file}': {e}")
295
+ raise
296
+
297
+ # --- 3. Initialize Report ---
298
+ report = {
299
+ "top_level_type": str(type(loaded_data)),
300
+ "top_level_summary": {},
301
+ "model_state_analysis": None,
302
+ "notes": []
303
+ }
304
+
305
+ # --- 4. Parse loaded data ---
306
+ if isinstance(loaded_data, dict):
307
+ # --- Case 1: Loaded data is a dictionary (most common case) ---
308
+ # "main loop" that iterates over *everything* first.
309
+ for key, value in loaded_data.items():
310
+ key_summary = {}
311
+ val_type = str(type(value))
312
+ key_summary["type"] = val_type
313
+
314
+ if isinstance(value, torch.Tensor):
315
+ key_summary["shape"] = list(value.shape)
316
+ key_summary["dtype"] = str(value.dtype)
317
+ elif isinstance(value, dict):
318
+ key_summary["key_count"] = len(value)
319
+ key_summary["key_preview"] = list(value.keys())[:5]
320
+ elif isinstance(value, (int, float, str, bool)):
321
+ key_summary["value_preview"] = str(value)
322
+ elif isinstance(value, (list, tuple)):
323
+ key_summary["value_preview"] = str(value)[:100]
324
+
325
+ report["top_level_summary"][key] = key_summary
326
+
327
+ # Now, try to find the model state_dict within the dict
328
+ if PyTorchCheckpointKeys.MODEL_STATE in loaded_data and isinstance(loaded_data[PyTorchCheckpointKeys.MODEL_STATE], dict):
329
+ report["notes"].append(f"Found standard checkpoint key: '{PyTorchCheckpointKeys.MODEL_STATE}'. Analyzing as model state_dict.")
330
+ state_dict = loaded_data[PyTorchCheckpointKeys.MODEL_STATE]
331
+ report["model_state_analysis"] = _generate_weight_report(state_dict)
332
+
333
+ elif all(isinstance(v, torch.Tensor) for v in loaded_data.values()):
334
+ report["notes"].append("File dictionary contains only tensors. Analyzing entire dictionary as model state_dict.")
335
+ state_dict = loaded_data
336
+ report["model_state_analysis"] = _generate_weight_report(state_dict)
337
+
338
+ else:
339
+ report["notes"].append("Could not identify a single model state_dict. See top_level_summary for all contents. No detailed weight analysis will be performed.")
340
+
341
+ elif isinstance(loaded_data, nn.Module):
342
+ # --- Case 2: Loaded data is a full pickled model ---
343
+ # _LOGGER.warning("Loading a full, pickled nn.Module is not recommended. Inspecting its state_dict().")
344
+ report["notes"].append("File is a full, pickled nn.Module. This is not recommended. Extracting state_dict() for analysis.")
345
+ state_dict = loaded_data.state_dict()
346
+ report["model_state_analysis"] = _generate_weight_report(state_dict)
347
+
348
+ else:
349
+ # --- Case 3: Unrecognized format (e.g., single tensor, list) ---
350
+ _LOGGER.error(f"Could not parse .pth file. Loaded data is of type {type(loaded_data)}, not a dict or nn.Module.")
351
+ raise ValueError()
352
+
353
+ # --- 5. Save Report ---
354
+ custom_logger(data=report,
355
+ save_directory=output_dir,
356
+ log_name=UtilityKeys.PTH_FILE + pth_name,
357
+ dict_as="json")
358
+
359
+
360
+ def _generate_weight_report(state_dict: dict) -> dict:
361
+ """
362
+ Internal helper to analyze a state_dict and return a structured report.
363
+
364
+ Args:
365
+ state_dict (dict): The model state_dict to analyze.
366
+
367
+ Returns:
368
+ dict: A report containing total parameters and a per-parameter breakdown.
369
+ """
370
+ weight_report = {}
371
+ total_params = 0
372
+ if not isinstance(state_dict, dict):
373
+ _LOGGER.warning(f"Attempted to generate weight report on non-dict type: {type(state_dict)}")
374
+ return {"error": "Input was not a dictionary."}
375
+
376
+ for key, tensor in state_dict.items():
377
+ if not isinstance(tensor, torch.Tensor):
378
+ _LOGGER.warning(f"Skipping key '{key}' in state_dict: value is not a tensor (type: {type(tensor)}).")
379
+ weight_report[key] = {
380
+ "type": str(type(tensor)),
381
+ "value_preview": str(tensor)[:50] # Show a preview
382
+ }
383
+ continue
384
+ weight_report[key] = {
385
+ "shape": list(tensor.shape),
386
+ "dtype": str(tensor.dtype),
387
+ "requires_grad": tensor.requires_grad,
388
+ "num_elements": tensor.numel()
389
+ }
390
+ total_params += tensor.numel()
391
+
392
+ return {
393
+ "total_parameters": total_params,
394
+ "parameter_key_count": len(weight_report),
395
+ "parameters": weight_report
396
+ }
397
+
398
+
399
+ def set_parameter_requires_grad(
400
+ model: nn.Module,
401
+ unfreeze_last_n_params: int,
402
+ ) -> int:
403
+ """
404
+ Freezes or unfreezes parameters in a model based on unfreeze_last_n_params.
405
+
406
+ - N = 0: Freezes ALL parameters.
407
+ - N > 0 and N < total: Freezes ALL parameters, then unfreezes the last N.
408
+ - N >= total: Unfreezes ALL parameters.
409
+
410
+ Note: 'N' refers to individual parameter tensors (e.g., `layer.weight`
411
+ or `layer.bias`), not modules or layers. For example, to unfreeze
412
+ the final nn.Linear layer, you would use N=2 (for its weight and bias).
413
+
414
+ Args:
415
+ model (nn.Module): The model to modify.
416
+ unfreeze_last_n_params (int):
417
+ The number of parameter tensors to unfreeze, starting from
418
+ the end of the model.
419
+
420
+ Returns:
421
+ int: The total number of individual parameters (elements) that were set to `requires_grad=True`.
422
+ """
423
+ if unfreeze_last_n_params < 0:
424
+ _LOGGER.error(f"unfreeze_last_n_params must be >= 0, but got {unfreeze_last_n_params}")
425
+ raise ValueError()
426
+
427
+ # --- Step 1: Get all parameter tensors ---
428
+ all_params = list(model.parameters())
429
+ total_param_tensors = len(all_params)
430
+
431
+ # --- Case 1: N = 0 (Freeze ALL parameters) ---
432
+ # early exit for the "freeze all" case.
433
+ if unfreeze_last_n_params == 0:
434
+ params_frozen = _set_params_grad(all_params, requires_grad=False)
435
+ _LOGGER.warning(f"Froze all {total_param_tensors} parameter tensors ({params_frozen} total elements).")
436
+ return 0 # 0 parameters unfrozen
437
+
438
+ # --- Case 2: N >= total (Unfreeze ALL parameters) ---
439
+ if unfreeze_last_n_params >= total_param_tensors:
440
+ if unfreeze_last_n_params > total_param_tensors:
441
+ _LOGGER.warning(f"Requested to unfreeze {unfreeze_last_n_params} params, but model only has {total_param_tensors}. Unfreezing all.")
442
+
443
+ params_unfrozen = _set_params_grad(all_params, requires_grad=True)
444
+ _LOGGER.info(f"Unfroze all {total_param_tensors} parameter tensors ({params_unfrozen} total elements) for training.")
445
+ return params_unfrozen
446
+
447
+ # --- Case 3: 0 < N < total (Standard: Freeze all, unfreeze last N) ---
448
+ # Freeze ALL
449
+ params_frozen = _set_params_grad(all_params, requires_grad=False)
450
+ _LOGGER.info(f"Froze {params_frozen} parameters.")
451
+
452
+ # Unfreeze the last N
453
+ params_to_unfreeze = all_params[-unfreeze_last_n_params:]
454
+
455
+ # these are all False, so the helper will set them to True
456
+ params_unfrozen = _set_params_grad(params_to_unfreeze, requires_grad=True)
457
+
458
+ _LOGGER.info(f"Unfroze the last {unfreeze_last_n_params} parameter tensors ({params_unfrozen} total elements) for training.")
459
+
460
+ return params_unfrozen
461
+
462
+
463
+ def _set_params_grad(
464
+ params: Iterable[nn.Parameter],
465
+ requires_grad: bool
466
+ ) -> int:
467
+ """
468
+ A helper function to set the `requires_grad` attribute for an iterable
469
+ of parameters and return the total number of elements changed.
470
+ """
471
+ params_changed = 0
472
+ for param in params:
473
+ if param.requires_grad != requires_grad:
474
+ param.requires_grad = requires_grad
475
+ params_changed += param.numel()
476
+ return params_changed
477
+
229
478
  def info():
230
479
  _script_info(__all__)
ml_tools/custom_logger.py CHANGED
@@ -1,6 +1,6 @@
1
1
  from pathlib import Path
2
2
  from datetime import datetime
3
- from typing import Union, List, Dict, Any
3
+ from typing import Union, List, Dict, Any, Literal
4
4
  import traceback
5
5
  import json
6
6
  import csv
@@ -29,6 +29,7 @@ def custom_logger(
29
29
  ],
30
30
  save_directory: Union[str, Path],
31
31
  log_name: str,
32
+ dict_as: Literal['auto', 'json', 'csv'] = 'auto',
32
33
  ) -> None:
33
34
  """
34
35
  Logs various data types to corresponding output formats:
@@ -36,10 +37,10 @@ def custom_logger(
36
37
  - list[Any] → .txt
37
38
  Each element is written on a new line.
38
39
 
39
- - dict[str, list[Any]] → .csv
40
+ - dict[str, list[Any]] → .csv (if dict_as='auto' or 'csv')
40
41
  Dictionary is treated as tabular data; keys become columns, values become rows.
41
42
 
42
- - dict[str, scalar] → .json
43
+ - dict[str, scalar] → .json (if dict_as='auto' or 'json')
43
44
  Dictionary is treated as structured data and serialized as JSON.
44
45
 
45
46
  - str → .log
@@ -52,26 +53,43 @@ def custom_logger(
52
53
  data: The data to be logged. Must be one of the supported types.
53
54
  save_directory: Directory where the log will be saved. Created if it does not exist.
54
55
  log_name: Base name for the log file. Timestamp will be appended automatically.
56
+ dict_as ('auto'|'json'|'csv'):
57
+ - 'auto': Guesses format (JSON or CSV) based on dictionary content.
58
+ - 'json': Forces .json format for any dictionary.
59
+ - 'csv': Forces .csv format. Will fail if dict values are not all lists.
55
60
 
56
61
  Raises:
57
62
  ValueError: If the data type is unsupported.
58
63
  """
59
64
  try:
65
+ if not isinstance(data, BaseException) and not data:
66
+ _LOGGER.warning("Empty data received. No log file will be saved.")
67
+ return
68
+
60
69
  save_path = make_fullpath(save_directory, make=True)
61
70
 
62
71
  timestamp = datetime.now().strftime(r"%Y%m%d_%H%M%S")
63
72
  log_name = sanitize_filename(log_name)
64
73
 
65
74
  base_path = save_path / f"{log_name}_{timestamp}"
66
-
75
+
76
+ # Router
67
77
  if isinstance(data, list):
68
78
  _log_list_to_txt(data, base_path.with_suffix(".txt"))
69
79
 
70
80
  elif isinstance(data, dict):
71
- if all(isinstance(v, list) for v in data.values()):
72
- _log_dict_to_csv(data, base_path.with_suffix(".csv"))
73
- else:
81
+ if dict_as == 'json':
74
82
  _log_dict_to_json(data, base_path.with_suffix(".json"))
83
+
84
+ elif dict_as == 'csv':
85
+ # This will raise a ValueError if data is not all lists
86
+ _log_dict_to_csv(data, base_path.with_suffix(".csv"))
87
+
88
+ else: # 'auto' mode
89
+ if all(isinstance(v, list) for v in data.values()):
90
+ _log_dict_to_csv(data, base_path.with_suffix(".csv"))
91
+ else:
92
+ _log_dict_to_json(data, base_path.with_suffix(".json"))
75
93
 
76
94
  elif isinstance(data, str):
77
95
  _log_string_to_log(data, base_path.with_suffix(".log"))
@@ -83,7 +101,7 @@ def custom_logger(
83
101
  _LOGGER.error("Unsupported data type. Must be list, dict, str, or BaseException.")
84
102
  raise ValueError()
85
103
 
86
- _LOGGER.info(f"Log saved to: '{base_path}'")
104
+ _LOGGER.info(f"Log saved as: '{base_path.name}'")
87
105
 
88
106
  except Exception:
89
107
  _LOGGER.exception(f"Log not saved.")
ml_tools/keys.py CHANGED
@@ -80,6 +80,14 @@ class PyTorchCheckpointKeys:
80
80
  BEST_SCORE = "best_score"
81
81
 
82
82
 
83
+ class UtilityKeys:
84
+ """Keys used for utility modules"""
85
+ MODEL_PARAMS_FILE = "model_parameters"
86
+ TOTAL_PARAMS = "Total Parameters"
87
+ TRAINABLE_PARAMS = "Trainable Parameters"
88
+ PTH_FILE = "pth report "
89
+
90
+
83
91
  class _OneHotOtherPlaceholder:
84
92
  """Used internally by GUI_tools."""
85
93
  OTHER_GUI = "OTHER"