dragon-ml-toolbox 13.3.0__py3-none-any.whl → 14.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -112,7 +112,7 @@ def evaluate_model_classification(
112
112
  report_df = pd.DataFrame(report_dict).iloc[:-1, :].T
113
113
  plt.figure(figsize=figsize)
114
114
  sns.heatmap(report_df, annot=True, cmap=heatmap_cmap, fmt='.2f',
115
- annot_kws={"size": base_fontsize - 4})
115
+ annot_kws={"size": base_fontsize - 4}, vmin=0.0, vmax=1.0)
116
116
  plt.title(f"{model_name} - {target_name}", fontsize=base_fontsize)
117
117
  plt.xticks(fontsize=base_fontsize - 2)
118
118
  plt.yticks(fontsize=base_fontsize - 2)
@@ -133,6 +133,7 @@ def evaluate_model_classification(
133
133
  normalize="true",
134
134
  ax=ax
135
135
  )
136
+ disp.im_.set_clim(vmin=0.0, vmax=1.0)
136
137
 
137
138
  ax.set_title(f"{model_name} - {target_name}", fontsize=base_fontsize)
138
139
  ax.tick_params(axis='both', labelsize=base_fontsize)
@@ -327,7 +328,8 @@ def plot_calibration_curve(
327
328
  target_name: str,
328
329
  figure_size: tuple = (10, 10),
329
330
  base_fontsize: int = 24,
330
- n_bins: int = 15
331
+ n_bins: int = 15,
332
+ line_color: str = 'darkorange'
331
333
  ) -> plt.Figure: # type: ignore
332
334
  """
333
335
  Plots the calibration curve (reliability diagram) for a classifier.
@@ -348,22 +350,63 @@ def plot_calibration_curve(
348
350
  """
349
351
  fig, ax = plt.subplots(figsize=figure_size)
350
352
 
351
- disp = CalibrationDisplay.from_estimator(
352
- model,
353
- x_test,
354
- y_test,
355
- n_bins=n_bins,
356
- ax=ax
353
+ # --- Step 1: Get probabilities from the estimator ---
354
+ # We do this manually so we can pass them to from_predictions
355
+ try:
356
+ y_prob = model.predict_proba(x_test)
357
+ # Use probabilities for the positive class (assuming binary)
358
+ y_score = y_prob[:, 1]
359
+ except Exception as e:
360
+ _LOGGER.error(f"Could not get probabilities from model: {e}")
361
+ plt.close(fig)
362
+ return fig # Return empty figure
363
+
364
+ # --- Step 2: Get binned data *without* plotting ---
365
+ with plt.ioff():
366
+ fig_temp, ax_temp = plt.subplots()
367
+ cal_display_temp = CalibrationDisplay.from_predictions(
368
+ y_test,
369
+ y_score,
370
+ n_bins=n_bins,
371
+ ax=ax_temp,
372
+ name="temp"
373
+ )
374
+ line_x, line_y = cal_display_temp.line_.get_data() # type: ignore
375
+ plt.close(fig_temp)
376
+
377
+ # --- Step 3: Build the plot from scratch on ax ---
378
+
379
+ # 3a. Plot the ideal diagonal line
380
+ ax.plot([0, 1], [0, 1], 'k--', label='Perfectly calibrated')
381
+
382
+ # 3b. Use regplot for the regression line and its CI
383
+ sns.regplot(
384
+ x=line_x,
385
+ y=line_y,
386
+ ax=ax,
387
+ scatter=False, # No scatter dots
388
+ label=f"Calibration Curve ({n_bins} bins)",
389
+ line_kws={
390
+ 'color': line_color,
391
+ 'linestyle': '--',
392
+ 'linewidth': 2
393
+ }
357
394
  )
358
395
 
396
+ # --- Step 4: Apply original formatting ---
359
397
  ax.set_title(f"{model_name} - Reliability Curve for {target_name}", fontsize=base_fontsize)
360
398
  ax.tick_params(axis='both', labelsize=base_fontsize - 2)
361
399
  ax.set_xlabel("Mean Predicted Probability", fontsize=base_fontsize)
362
400
  ax.set_ylabel("Fraction of Positives", fontsize=base_fontsize)
363
- ax.legend(fontsize=base_fontsize - 4)
401
+
402
+ # Set limits
403
+ ax.set_ylim(0.0, 1.0)
404
+ ax.set_xlim(0.0, 1.0)
405
+
406
+ ax.legend(fontsize=base_fontsize - 4, loc='lower right')
364
407
  fig.tight_layout()
365
408
 
366
- # Save figure
409
+ # --- Step 5: Save figure (using original logic) ---
367
410
  save_path = make_fullpath(save_dir, make=True)
368
411
  sanitized_target_name = sanitize_filename(target_name)
369
412
  full_save_path = save_path / f"Calibration_Plot_{sanitized_target_name}.svg"
ml_tools/keys.py CHANGED
@@ -36,6 +36,7 @@ class PyTorchInferenceKeys:
36
36
  # For classification tasks
37
37
  LABELS = "labels"
38
38
  PROBABILITIES = "probabilities"
39
+ LABEL_NAMES = "label_names"
39
40
 
40
41
 
41
42
  class PytorchModelArchitectureKeys:
@@ -80,6 +81,44 @@ class PyTorchCheckpointKeys:
80
81
  BEST_SCORE = "best_score"
81
82
 
82
83
 
84
+ class UtilityKeys:
85
+ """Keys used for utility modules"""
86
+ MODEL_PARAMS_FILE = "model_parameters"
87
+ TOTAL_PARAMS = "Total Parameters"
88
+ TRAINABLE_PARAMS = "Trainable Parameters"
89
+ PTH_FILE = "pth report "
90
+ MODEL_ARCHITECTURE_FILE = "model_architecture_summary"
91
+
92
+
93
+ class VisionKeys:
94
+ """For vision ML metrics"""
95
+ SEGMENTATION_REPORT = "segmentation_report"
96
+ SEGMENTATION_HEATMAP = "segmentation_metrics_heatmap"
97
+ SEGMENTATION_CONFUSION_MATRIX = "segmentation_confusion_matrix"
98
+ # Object detection
99
+ OBJECT_DETECTION_REPORT = "object_detection_report"
100
+
101
+
102
+ class VisionTransformRecipeKeys:
103
+ """Defines the key names for the transform recipe JSON file."""
104
+ TASK = "task"
105
+ PIPELINE = "pipeline"
106
+ NAME = "name"
107
+ KWARGS = "kwargs"
108
+ PRE_TRANSFORMS = "pre_transforms"
109
+
110
+ RESIZE_SIZE = "resize_size"
111
+ CROP_SIZE = "crop_size"
112
+ MEAN = "mean"
113
+ STD = "std"
114
+
115
+
116
+ class ObjectDetectionKeys:
117
+ """Used by the object detection dataset"""
118
+ BOXES = "boxes"
119
+ LABELS = "labels"
120
+
121
+
83
122
  class _OneHotOtherPlaceholder:
84
123
  """Used internally by GUI_tools."""
85
124
  OTHER_GUI = "OTHER"
@@ -219,7 +219,7 @@ def discretize_categorical_values(
219
219
  _LOGGER.error(f"'categorical_info' is not a dictionary, or is empty.")
220
220
  raise ValueError()
221
221
 
222
- _, total_features = input_array.shape
222
+ _, total_features = working_array.shape
223
223
  for col_idx, cardinality in categorical_info.items():
224
224
  if not isinstance(col_idx, int):
225
225
  _LOGGER.error(f"Column index key {col_idx} is not an integer.")
ml_tools/serde.py CHANGED
@@ -85,7 +85,7 @@ def serialize_object(obj: Any, file_path: Path, verbose: bool = True, raise_on_e
85
85
  return None
86
86
  else:
87
87
  if verbose:
88
- if isinstance(obj, _SIMPLE_TYPES):
88
+ if type(obj) in _SIMPLE_TYPES:
89
89
  _LOGGER.info(f"Object of type '{type(obj)}' saved to '{file_path}'")
90
90
  else:
91
91
  _LOGGER.info(f"Object '{obj}' saved to '{file_path}'")
@@ -140,7 +140,7 @@ def deserialize_object(
140
140
 
141
141
  if verbose:
142
142
  # log special objects
143
- if isinstance(obj, _SIMPLE_TYPES):
143
+ if type(obj) in _SIMPLE_TYPES:
144
144
  _LOGGER.info(f"Loaded object of type '{type(obj)}' from '{true_filepath}'.")
145
145
  else:
146
146
  _LOGGER.info(f"Loaded object '{obj}' from '{true_filepath}'.")
ml_tools/utilities.py CHANGED
@@ -7,16 +7,19 @@ from typing import Literal, Union, Optional, Any, Iterator, Tuple, overload
7
7
  from .path_manager import sanitize_filename, make_fullpath, list_csv_paths
8
8
  from ._script_info import _script_info
9
9
  from ._logger import _LOGGER
10
+ from ._schema import FeatureSchema
10
11
 
11
12
 
12
13
  # Keep track of available tools
13
14
  __all__ = [
14
15
  "load_dataframe",
15
16
  "load_dataframe_greedy",
17
+ "load_dataframe_with_schema",
16
18
  "yield_dataframes_from_dir",
17
19
  "merge_dataframes",
18
20
  "save_dataframe_filename",
19
21
  "save_dataframe",
22
+ "save_dataframe_with_schema",
20
23
  "distribute_dataset_by_target",
21
24
  "train_dataset_orchestrator",
22
25
  "train_dataset_yielder"
@@ -96,6 +99,7 @@ def load_dataframe(
96
99
  elif kind == "polars":
97
100
  pl_kwargs: dict[str,Any]
98
101
  pl_kwargs = {}
102
+ pl_kwargs['null_values'] = ["", " "]
99
103
  if use_columns:
100
104
  pl_kwargs['columns'] = use_columns
101
105
 
@@ -173,6 +177,68 @@ def load_dataframe_greedy(directory: Union[str, Path],
173
177
  return df
174
178
 
175
179
 
180
+ def load_dataframe_with_schema(
181
+ df_path: Union[str, Path],
182
+ schema: "FeatureSchema",
183
+ all_strings: bool = False,
184
+ ) -> Tuple[pd.DataFrame, str]:
185
+ """
186
+ Loads a CSV file into a Pandas DataFrame, strictly validating its
187
+ feature columns against a FeatureSchema.
188
+
189
+ This function wraps `load_dataframe`. After loading, it validates
190
+ that the first N columns of the DataFrame (where N =
191
+ len(schema.feature_names)) contain *exactly* the set of features
192
+ specified in the schema.
193
+
194
+ - If the columns are present but out of order, they are reordered.
195
+ - If any required feature is missing from the first N columns, it fails.
196
+ - If any extra column is found within the first N columns, it fails.
197
+
198
+ Columns *after* the first N are considered target columns and are
199
+ logged for verification.
200
+
201
+ Args:
202
+ df_path (str, Path):
203
+ The path to the CSV file.
204
+ schema (FeatureSchema):
205
+ The schema object to validate against.
206
+ all_strings (bool):
207
+ If True, loads all columns as string data types.
208
+
209
+ Returns:
210
+ (Tuple[pd.DataFrame, str]):
211
+ A tuple containing the loaded, validated (and possibly
212
+ reordered) pandas DataFrame and the base name of the file.
213
+
214
+ Raises:
215
+ ValueError:
216
+ - If the DataFrame is missing columns required by the schema
217
+ within its first N columns.
218
+ - If the DataFrame's first N columns contain unexpected
219
+ columns that are not in the schema.
220
+ FileNotFoundError:
221
+ If the file does not exist at the given path.
222
+ """
223
+ # Step 1: Load the dataframe using the original function
224
+ try:
225
+ df, df_name = load_dataframe(
226
+ df_path=df_path,
227
+ use_columns=None, # Load all columns for validation
228
+ kind="pandas",
229
+ all_strings=all_strings,
230
+ verbose=True
231
+ )
232
+ except Exception as e:
233
+ _LOGGER.error(f"Failed during initial load for schema validation: {e}")
234
+ raise e
235
+
236
+ # Step 2: Call the helper to validate and reorder
237
+ df_validated = _validate_and_reorder_schema(df=df, schema=schema)
238
+
239
+ return df_validated, df_name
240
+
241
+
176
242
  def yield_dataframes_from_dir(datasets_dir: Union[str,Path], verbose: bool=True):
177
243
  """
178
244
  Iterates over all CSV files in a given directory, loading each into a Pandas DataFrame.
@@ -288,15 +354,25 @@ def save_dataframe_filename(df: Union[pd.DataFrame, pl.DataFrame], save_dir: Uni
288
354
 
289
355
  # --- Type-specific saving logic ---
290
356
  if isinstance(df, pd.DataFrame):
291
- df.to_csv(output_path, index=False, encoding='utf-8')
357
+ # Transform "" to np.nan before saving
358
+ df_to_save = df.replace(r'^\s*$', np.nan, regex=True)
359
+ # Save
360
+ df_to_save.to_csv(output_path, index=False, encoding='utf-8')
292
361
  elif isinstance(df, pl.DataFrame):
293
- df.write_csv(output_path) # Polars defaults to utf8 and no index
362
+ # Transform empty strings to Null
363
+ df_to_save = df.with_columns(
364
+ pl.when(pl.col(pl.Utf8).str.strip() == "")
365
+ .then(None)
366
+ .otherwise(pl.col(pl.Utf8))
367
+ )
368
+ # Save
369
+ df_to_save.write_csv(output_path)
294
370
  else:
295
371
  # This error handles cases where an unsupported type is passed
296
372
  _LOGGER.error(f"Unsupported DataFrame type: {type(df)}. Must be pandas or polars.")
297
373
  raise TypeError()
298
374
 
299
- _LOGGER.info(f"Saved dataset: '{filename}' with shape: {df.shape}")
375
+ _LOGGER.info(f"Saved dataset: '{filename}' with shape: {df_to_save.shape}")
300
376
 
301
377
 
302
378
  def save_dataframe(df: Union[pd.DataFrame, pl.DataFrame], full_path: Path):
@@ -319,6 +395,52 @@ def save_dataframe(df: Union[pd.DataFrame, pl.DataFrame], full_path: Path):
319
395
  filename=full_path.name)
320
396
 
321
397
 
398
+ def save_dataframe_with_schema(
399
+ df: pd.DataFrame,
400
+ full_path: Path,
401
+ schema: "FeatureSchema"
402
+ ) -> None:
403
+ """
404
+ Saves a pandas DataFrame to a CSV, strictly enforcing that the
405
+ first N columns match the FeatureSchema.
406
+
407
+ This function validates that the first N columns of the DataFrame
408
+ (where N = len(schema.feature_names)) contain *exactly* the set
409
+ of features specified in the schema.
410
+
411
+ - If the columns are present but out of order, they are reordered.
412
+ - If any required feature is missing from the first N columns, it fails.
413
+ - If any extra column is found within the first N columns, it fails.
414
+
415
+ Columns *after* the first N are considered target columns and are
416
+ logged for verification.
417
+
418
+ Args:
419
+ df (pd.DataFrame):
420
+ The DataFrame to save.
421
+ full_path (Path):
422
+ The complete file path where the DataFrame will be saved.
423
+ schema (FeatureSchema):
424
+ The schema object to validate against.
425
+
426
+ Raises:
427
+ ValueError:
428
+ - If the DataFrame is missing columns required by the schema
429
+ within its first N columns.
430
+ - If the DataFrame's first N columns contain unexpected
431
+ columns that are not in the schema.
432
+ """
433
+ if not isinstance(full_path, Path) or not full_path.suffix.endswith(".csv"):
434
+ _LOGGER.error('A path object pointing to a .csv file must be provided.')
435
+ raise ValueError()
436
+
437
+ # Call the helper to validate and reorder
438
+ df_to_save = _validate_and_reorder_schema(df=df, schema=schema)
439
+
440
+ # Call the original save function
441
+ save_dataframe(df=df_to_save, full_path=full_path)
442
+
443
+
322
444
  def distribute_dataset_by_target(
323
445
  df_or_path: Union[pd.DataFrame, str, Path],
324
446
  target_columns: list[str],
@@ -431,5 +553,72 @@ def train_dataset_yielder(
431
553
  yield (df_features, df_target, feature_names, target_col)
432
554
 
433
555
 
556
+ def _validate_and_reorder_schema(
557
+ df: pd.DataFrame,
558
+ schema: "FeatureSchema"
559
+ ) -> pd.DataFrame:
560
+ """
561
+ Internal helper to validate and reorder a DataFrame against a schema.
562
+
563
+ Checks for missing, extra, and out-of-order feature columns
564
+ (the first N columns). Returns a reordered DataFrame if necessary.
565
+ Logs all actions.
566
+
567
+ Raises:
568
+ ValueError: If validation fails.
569
+ """
570
+ # Get schema and DataFrame column info
571
+ expected_features = list(schema.feature_names)
572
+ expected_set = set(expected_features)
573
+ n_features = len(expected_features)
574
+
575
+ all_df_columns = df.columns.to_list()
576
+
577
+ # --- Strict Validation ---
578
+
579
+ # 0. Check if DataFrame is long enough
580
+ if len(all_df_columns) < n_features:
581
+ _LOGGER.error(f"DataFrame has only {len(all_df_columns)} columns, but schema requires {n_features} features.")
582
+ raise ValueError()
583
+
584
+ df_feature_cols = all_df_columns[:n_features]
585
+ df_feature_set = set(df_feature_cols)
586
+ df_target_cols = all_df_columns[n_features:]
587
+
588
+ # 1. Check for missing features
589
+ missing_from_df = expected_set - df_feature_set
590
+ if missing_from_df:
591
+ _LOGGER.error(f"DataFrame's first {n_features} columns are missing required schema features: {missing_from_df}")
592
+ raise ValueError()
593
+
594
+ # 2. Check for extra (unexpected) features
595
+ extra_in_df = df_feature_set - expected_set
596
+ if extra_in_df:
597
+ _LOGGER.error(f"DataFrame's first {n_features} columns contain unexpected columns: {extra_in_df}")
598
+ raise ValueError()
599
+
600
+ # --- Reordering ---
601
+
602
+ df_to_process = df
603
+
604
+ # If we pass validation, the sets are equal. Now check order.
605
+ if df_feature_cols == expected_features:
606
+ _LOGGER.info("DataFrame feature columns already match schema order.")
607
+ else:
608
+ _LOGGER.warning("DataFrame feature columns do not match schema order. Reordering...")
609
+
610
+ # Rebuild the DataFrame with the correct feature order + target columns
611
+ new_order = expected_features + df_target_cols
612
+ df_to_process = df[new_order]
613
+
614
+ # Log the presumed target columns for user verification
615
+ if not df_target_cols:
616
+ _LOGGER.warning(f"No target columns were found after index {n_features-1}.")
617
+ else:
618
+ _LOGGER.info(f"Presumed Target Columns: {df_target_cols}")
619
+
620
+ return df_to_process # type: ignore
621
+
622
+
434
623
  def info():
435
624
  _script_info(__all__)
@@ -1,41 +0,0 @@
1
- dragon_ml_toolbox-13.3.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-13.3.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
3
- ml_tools/ETL_cleaning.py,sha256=2VBRllV8F-ZiPylPp8Az2gwn5ztgazN0BH5OKnRUhV0,20402
4
- ml_tools/ETL_engineering.py,sha256=KfYqgsxupAx6e_TxwO1LZXeu5mFkIhVXJrNjP3CzIZc,54927
5
- ml_tools/GUI_tools.py,sha256=Va6ig-dHULPVRwQYYtH3fvY5XPIoqRcJpRW8oXC55Hw,45413
6
- ml_tools/MICE_imputation.py,sha256=X273Qlgoqqg7KTmoKd75YDyAPB0UIbTzGP3xsCmRh3E,11717
7
- ml_tools/ML_callbacks.py,sha256=elD2Yr030sv_6gX_m9GVd6HTyrbmt34nFS8lrgS4HtM,15808
8
- ml_tools/ML_datasetmaster.py,sha256=7QJnOM6GWFklKt2fiukITM3DK49i3ThK8wazb5szwpE,34396
9
- ml_tools/ML_evaluation.py,sha256=3u5dOhS77gn3kAshKr2GwSa5xZBF0YM77ZkFevqNPvA,18528
10
- ml_tools/ML_evaluation_multi.py,sha256=L6Ub_uObXsI7ToVCF6DtmAFekHRcga5wWMOnRYRR-BY,16121
11
- ml_tools/ML_inference.py,sha256=yq2gdN6s_OUYC5ZLQrIJC5BA5H33q8UKODXwb-_0M2c,23549
12
- ml_tools/ML_models.py,sha256=4Kb23pSusPMRH8h-R9ztK6JoH1lMuckxq7ihorll-H8,29965
13
- ml_tools/ML_optimization.py,sha256=P0zkhKAwTpkorIBtR0AOIDcyexo5ngmvFUzo3DfNO-E,22692
14
- ml_tools/ML_scaler.py,sha256=tw6onj9o8_kk3FQYb930HUzvv1zsFZe2YZJdF3LtHkU,7538
15
- ml_tools/ML_trainer.py,sha256=9BP6JFClqGfe7GL-FGG3n5e-no9ssjEOLol7P6baGrI,29019
16
- ml_tools/ML_utilities.py,sha256=EnKpPTnJ2qjZmz7kvows4Uu5CfSA7ByRmI1v2-KarKw,9337
17
- ml_tools/PSO_optimization.py,sha256=T-HWHMRJUnPvPwixdU5jif3_rnnI36TzcL8u3oSCwuA,22960
18
- ml_tools/RNN_forecast.py,sha256=Qa2KoZfdAvSjZ4yE78N4BFXtr3tTr0Gx7tQJZPotsh0,1967
19
- ml_tools/SQL.py,sha256=vXLPGfVVg8bfkbBE3HVfyEclVbdJy0TBhuQONtMwSCQ,11234
20
- ml_tools/VIF_factor.py,sha256=at5IVqPvicja2-DNSTSIIy3SkzDWCmLzo3qTG_qr5n8,10422
21
- ml_tools/__init__.py,sha256=kJiankjz9_qXu7gU92mYqYg_anLvt-B6RtW0mMH8uGo,76
22
- ml_tools/_logger.py,sha256=dlp5cGbzooK9YSNSZYB4yjZrOaQUGW8PTrM411AOvL8,4717
23
- ml_tools/_schema.py,sha256=yu6aWmn_2Z4_AxAtJGDDCIa96y6JcUp-vgnCS013Qmw,3908
24
- ml_tools/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
25
- ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
26
- ml_tools/custom_logger.py,sha256=7tSAgRL7e-Ekm7rS1FLDocaPLCnaoKc7VSrtfwCtCEg,10067
27
- ml_tools/data_exploration.py,sha256=-BbWO7BBFapPi_7ZuWo65VqguJXaBfgFSptrXyoWrDk,51902
28
- ml_tools/ensemble_evaluation.py,sha256=FGHSe8LBI8_w8LjNeJWOcYQ1UK_mc6fVah8gmSvNVGg,26853
29
- ml_tools/ensemble_inference.py,sha256=0yLmLNj45RVVoSCLH1ZYJG9IoAhTkWUqEZmLOQTFGTY,9348
30
- ml_tools/ensemble_learning.py,sha256=vsIED7nlheYI4w2SBzP6SC1AnNeMfn-2A1Gqw5EfxsM,21964
31
- ml_tools/handle_excel.py,sha256=pfdAPb9ywegFkM9T54bRssDOsX-K7rSeV0RaMz7lEAo,14006
32
- ml_tools/keys.py,sha256=oykUVLB4Wos3AZomowjtI8AFFC5xnMUH-icNHydRpOk,2275
33
- ml_tools/math_utilities.py,sha256=PxoOrnuj6Ntp7_TJqyDWi0JX03WpAO5iaFNK2Oeq5I4,8800
34
- ml_tools/optimization_tools.py,sha256=TYFQ2nSnp7xxs-VyoZISWgnGJghFbsWasHjruegyJRs,12763
35
- ml_tools/path_manager.py,sha256=CyDU16pOKmC82jPubqJPT6EBt-u-3rGVbxyPIZCvDDY,18432
36
- ml_tools/serde.py,sha256=CmdJmQCPdrm2RQA1hWLsGxU_B3aClQoQ9B4vcQtIrEs,6951
37
- ml_tools/utilities.py,sha256=OcAyV1tEcYAfOWlGjRgopsjDLxU3DcI5EynzvWV4q3A,15754
38
- dragon_ml_toolbox-13.3.0.dist-info/METADATA,sha256=m2RVQa8YeN6e4hnsg6TwAMjymhTrburFXbmw-yB8JeQ,6166
39
- dragon_ml_toolbox-13.3.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
- dragon_ml_toolbox-13.3.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
- dragon_ml_toolbox-13.3.0.dist-info/RECORD,,