dragon-ml-toolbox 13.1.0__py3-none-any.whl → 14.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dragon-ml-toolbox might be problematic. Click here for more details.
- {dragon_ml_toolbox-13.1.0.dist-info → dragon_ml_toolbox-14.3.0.dist-info}/METADATA +11 -2
- dragon_ml_toolbox-14.3.0.dist-info/RECORD +48 -0
- {dragon_ml_toolbox-13.1.0.dist-info → dragon_ml_toolbox-14.3.0.dist-info}/licenses/LICENSE-THIRD-PARTY.md +10 -0
- ml_tools/MICE_imputation.py +207 -5
- ml_tools/ML_datasetmaster.py +63 -205
- ml_tools/ML_evaluation.py +23 -15
- ml_tools/ML_evaluation_multi.py +5 -6
- ml_tools/ML_inference.py +0 -1
- ml_tools/ML_models.py +22 -6
- ml_tools/ML_models_advanced.py +323 -0
- ml_tools/ML_trainer.py +463 -20
- ml_tools/ML_utilities.py +302 -4
- ml_tools/ML_vision_datasetmaster.py +1352 -0
- ml_tools/ML_vision_evaluation.py +260 -0
- ml_tools/ML_vision_inference.py +428 -0
- ml_tools/ML_vision_models.py +627 -0
- ml_tools/ML_vision_transformers.py +58 -0
- ml_tools/_ML_vision_recipe.py +88 -0
- ml_tools/__init__.py +1 -0
- ml_tools/_schema.py +79 -2
- ml_tools/custom_logger.py +37 -14
- ml_tools/data_exploration.py +502 -93
- ml_tools/keys.py +42 -1
- ml_tools/math_utilities.py +1 -1
- ml_tools/serde.py +77 -15
- ml_tools/utilities.py +192 -3
- dragon_ml_toolbox-13.1.0.dist-info/RECORD +0 -41
- {dragon_ml_toolbox-13.1.0.dist-info → dragon_ml_toolbox-14.3.0.dist-info}/WHEEL +0 -0
- {dragon_ml_toolbox-13.1.0.dist-info → dragon_ml_toolbox-14.3.0.dist-info}/licenses/LICENSE +0 -0
- {dragon_ml_toolbox-13.1.0.dist-info → dragon_ml_toolbox-14.3.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,323 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch import nn
|
|
3
|
+
from typing import Union, Dict, Any
|
|
4
|
+
from pathlib import Path
|
|
5
|
+
import json
|
|
6
|
+
|
|
7
|
+
from ._logger import _LOGGER
|
|
8
|
+
from .path_manager import make_fullpath
|
|
9
|
+
from .keys import PytorchModelArchitectureKeys
|
|
10
|
+
from ._schema import FeatureSchema
|
|
11
|
+
from ._script_info import _script_info
|
|
12
|
+
from .ML_models import _ArchitectureHandlerMixin
|
|
13
|
+
|
|
14
|
+
# Imports from pytorch_tabular
|
|
15
|
+
try:
|
|
16
|
+
from omegaconf import DictConfig
|
|
17
|
+
from pytorch_tabular.models import GatedAdditiveTreeEnsembleModel, NODEModel
|
|
18
|
+
except ImportError:
|
|
19
|
+
_LOGGER.error(f"GATE and NODE require 'pip install pytorch_tabular omegaconf' dependencies.")
|
|
20
|
+
raise ImportError()
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
__all__ = [
|
|
24
|
+
"DragonGateModel",
|
|
25
|
+
"DragonNodeModel",
|
|
26
|
+
]
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
class _BasePytabWrapper(nn.Module, _ArchitectureHandlerMixin):
|
|
30
|
+
"""
|
|
31
|
+
Internal Base Class: Do not use directly.
|
|
32
|
+
|
|
33
|
+
This is an adapter to make pytorch_tabular models compatible with the
|
|
34
|
+
dragon-ml-toolbox pipeline.
|
|
35
|
+
|
|
36
|
+
It handles:
|
|
37
|
+
1. Schema-based initialization.
|
|
38
|
+
2. Single-tensor forward pass, which is then split into the
|
|
39
|
+
dict {'continuous': ..., 'categorical': ...} that pytorch_tabular expects.
|
|
40
|
+
3. Saving/Loading architecture using the pipeline's _ArchitectureHandlerMixin.
|
|
41
|
+
"""
|
|
42
|
+
def __init__(self, schema: FeatureSchema):
|
|
43
|
+
super().__init__()
|
|
44
|
+
|
|
45
|
+
self.schema = schema
|
|
46
|
+
self.model_name = "Base" # To be overridden by child
|
|
47
|
+
self.internal_model: nn.Module = None # type: ignore # To be set by child
|
|
48
|
+
self.model_hparams: Dict = dict() # To be set by child
|
|
49
|
+
|
|
50
|
+
# --- Derive indices from schema ---
|
|
51
|
+
categorical_map = schema.categorical_index_map
|
|
52
|
+
|
|
53
|
+
if categorical_map:
|
|
54
|
+
# The order of keys/values is implicitly linked and must be preserved
|
|
55
|
+
self.categorical_indices = list(categorical_map.keys())
|
|
56
|
+
self.cardinalities = list(categorical_map.values())
|
|
57
|
+
else:
|
|
58
|
+
self.categorical_indices = []
|
|
59
|
+
self.cardinalities = []
|
|
60
|
+
|
|
61
|
+
# Derive numerical indices by finding what's not categorical
|
|
62
|
+
all_indices = set(range(len(schema.feature_names)))
|
|
63
|
+
categorical_indices_set = set(self.categorical_indices)
|
|
64
|
+
self.numerical_indices = sorted(list(all_indices - categorical_indices_set))
|
|
65
|
+
|
|
66
|
+
def _build_pt_config(self, out_targets: int, **kwargs) -> DictConfig:
|
|
67
|
+
"""Helper to create the minimal config dict for a pytorch_tabular model."""
|
|
68
|
+
# 'regression' is the most neutral for model architecture. The final output_dim is what truly matters.
|
|
69
|
+
task = "regression"
|
|
70
|
+
|
|
71
|
+
config_dict = {
|
|
72
|
+
# --- Data / Schema Params ---
|
|
73
|
+
'task': task,
|
|
74
|
+
'continuous_cols': list(self.schema.continuous_feature_names),
|
|
75
|
+
'categorical_cols': list(self.schema.categorical_feature_names),
|
|
76
|
+
'continuous_dim': len(self.numerical_indices),
|
|
77
|
+
'categorical_dim': len(self.categorical_indices),
|
|
78
|
+
'categorical_cardinality': self.cardinalities,
|
|
79
|
+
'target': ['dummy_target'], # Required, but not used
|
|
80
|
+
|
|
81
|
+
# --- Model Params ---
|
|
82
|
+
'output_dim': out_targets,
|
|
83
|
+
**kwargs
|
|
84
|
+
}
|
|
85
|
+
|
|
86
|
+
# Add common params that most models need
|
|
87
|
+
if 'loss' not in config_dict:
|
|
88
|
+
config_dict['loss'] = 'NotUsed'
|
|
89
|
+
if 'metrics' not in config_dict:
|
|
90
|
+
config_dict['metrics'] = []
|
|
91
|
+
|
|
92
|
+
return DictConfig(config_dict)
|
|
93
|
+
|
|
94
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
95
|
+
"""
|
|
96
|
+
Accepts a single tensor and converts it to the dict
|
|
97
|
+
that pytorch_tabular models expect.
|
|
98
|
+
"""
|
|
99
|
+
# 1. Split the single tensor input
|
|
100
|
+
x_cont = x[:, self.numerical_indices].float()
|
|
101
|
+
x_cat = x[:, self.categorical_indices].long()
|
|
102
|
+
|
|
103
|
+
# 2. Create the input dict
|
|
104
|
+
input_dict = {
|
|
105
|
+
'continuous': x_cont,
|
|
106
|
+
'categorical': x_cat
|
|
107
|
+
}
|
|
108
|
+
|
|
109
|
+
# 3. Pass to the internal pytorch_tabular model
|
|
110
|
+
# The model returns a dict, we extract the logits
|
|
111
|
+
model_output_dict = self.internal_model(input_dict)
|
|
112
|
+
|
|
113
|
+
# 4. Return the logits tensor
|
|
114
|
+
return model_output_dict['logits']
|
|
115
|
+
|
|
116
|
+
def get_architecture_config(self) -> Dict[str, Any]:
|
|
117
|
+
"""Returns the full configuration of the model."""
|
|
118
|
+
# Deconstruct schema into a JSON-friendly dict
|
|
119
|
+
schema_dict = {
|
|
120
|
+
'feature_names': self.schema.feature_names,
|
|
121
|
+
'continuous_feature_names': self.schema.continuous_feature_names,
|
|
122
|
+
'categorical_feature_names': self.schema.categorical_feature_names,
|
|
123
|
+
'categorical_index_map': self.schema.categorical_index_map,
|
|
124
|
+
'categorical_mappings': self.schema.categorical_mappings
|
|
125
|
+
}
|
|
126
|
+
|
|
127
|
+
config = {
|
|
128
|
+
'schema_dict': schema_dict,
|
|
129
|
+
'out_targets': self.out_targets,
|
|
130
|
+
**self.model_hparams
|
|
131
|
+
}
|
|
132
|
+
return config
|
|
133
|
+
|
|
134
|
+
@classmethod
|
|
135
|
+
def load(cls: type, file_or_dir: Union[str, Path], verbose: bool = True) -> nn.Module:
|
|
136
|
+
"""Loads a model architecture from a JSON file."""
|
|
137
|
+
user_path = make_fullpath(file_or_dir)
|
|
138
|
+
|
|
139
|
+
if user_path.is_dir():
|
|
140
|
+
json_filename = PytorchModelArchitectureKeys.SAVENAME + ".json"
|
|
141
|
+
target_path = make_fullpath(user_path / json_filename, enforce="file")
|
|
142
|
+
elif user_path.is_file():
|
|
143
|
+
target_path = user_path
|
|
144
|
+
else:
|
|
145
|
+
_LOGGER.error(f"Invalid path: '{file_or_dir}'")
|
|
146
|
+
raise IOError()
|
|
147
|
+
|
|
148
|
+
with open(target_path, 'r') as f:
|
|
149
|
+
saved_data = json.load(f)
|
|
150
|
+
|
|
151
|
+
saved_class_name = saved_data[PytorchModelArchitectureKeys.MODEL]
|
|
152
|
+
config = saved_data[PytorchModelArchitectureKeys.CONFIG]
|
|
153
|
+
|
|
154
|
+
if saved_class_name != cls.__name__:
|
|
155
|
+
_LOGGER.error(f"Model class mismatch. File specifies '{saved_class_name}', but '{cls.__name__}' was expected.")
|
|
156
|
+
raise ValueError()
|
|
157
|
+
|
|
158
|
+
# --- RECONSTRUCTION LOGIC ---
|
|
159
|
+
if 'schema_dict' not in config:
|
|
160
|
+
_LOGGER.error("Invalid architecture file: missing 'schema_dict'. This file may be from an older version.")
|
|
161
|
+
raise ValueError("Missing 'schema_dict' in config.")
|
|
162
|
+
|
|
163
|
+
schema_data = config.pop('schema_dict')
|
|
164
|
+
|
|
165
|
+
# JSON saves all dict keys as strings, convert them back to int.
|
|
166
|
+
raw_index_map = schema_data['categorical_index_map']
|
|
167
|
+
if raw_index_map is not None:
|
|
168
|
+
rehydrated_index_map = {int(k): v for k, v in raw_index_map.items()}
|
|
169
|
+
else:
|
|
170
|
+
rehydrated_index_map = None
|
|
171
|
+
|
|
172
|
+
# JSON deserializes tuples as lists, convert them back.
|
|
173
|
+
schema = FeatureSchema(
|
|
174
|
+
feature_names=tuple(schema_data['feature_names']),
|
|
175
|
+
continuous_feature_names=tuple(schema_data['continuous_feature_names']),
|
|
176
|
+
categorical_feature_names=tuple(schema_data['categorical_feature_names']),
|
|
177
|
+
categorical_index_map=rehydrated_index_map,
|
|
178
|
+
categorical_mappings=schema_data['categorical_mappings']
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
config['schema'] = schema
|
|
182
|
+
# --- End Reconstruction ---
|
|
183
|
+
|
|
184
|
+
model = cls(**config)
|
|
185
|
+
if verbose:
|
|
186
|
+
_LOGGER.info(f"Successfully loaded architecture for '{saved_class_name}'")
|
|
187
|
+
return model
|
|
188
|
+
|
|
189
|
+
def __repr__(self) -> str:
|
|
190
|
+
internal_model_str = str(self.internal_model)
|
|
191
|
+
# Grab the first line of the internal model's repr
|
|
192
|
+
internal_repr = internal_model_str.split('\n')[0]
|
|
193
|
+
return f"{self.model_name}(internal_model={internal_repr})"
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
class DragonGateModel(_BasePytabWrapper):
|
|
197
|
+
"""
|
|
198
|
+
Adapter for the Gated Additive Tree Ensemble (GATE) model from the 'pytorch_tabular' library.
|
|
199
|
+
|
|
200
|
+
GATE is a hybrid model that uses Gated Feature Learning Units (GFLUs) to
|
|
201
|
+
learn powerful feature representations. These learned features are then
|
|
202
|
+
fed into an additive ensemble of differentiable decision trees, combining
|
|
203
|
+
the representation learning of deep networks with the structured
|
|
204
|
+
decision-making of tree ensembles.
|
|
205
|
+
"""
|
|
206
|
+
def __init__(self, *,
|
|
207
|
+
schema: FeatureSchema,
|
|
208
|
+
out_targets: int,
|
|
209
|
+
embedding_dim: int = 32,
|
|
210
|
+
gflu_stages: int = 6,
|
|
211
|
+
num_trees: int = 20,
|
|
212
|
+
tree_depth: int = 5,
|
|
213
|
+
dropout: float = 0.1):
|
|
214
|
+
"""
|
|
215
|
+
Args:
|
|
216
|
+
schema (FeatureSchema):
|
|
217
|
+
The definitive schema object from data_exploration.
|
|
218
|
+
out_targets (int):
|
|
219
|
+
Number of output targets.
|
|
220
|
+
embedding_dim (int):
|
|
221
|
+
Dimension of the categorical embeddings. (Recommended: 16 to 64)
|
|
222
|
+
gflu_stages (int):
|
|
223
|
+
Number of Gated Feature Learning Units (GFLU) stages. (Recommended: 2 to 6)
|
|
224
|
+
num_trees (int):
|
|
225
|
+
Number of trees in the ensemble. (Recommended: 10 to 50)
|
|
226
|
+
tree_depth (int):
|
|
227
|
+
Depth of each tree. (Recommended: 4 to 8)
|
|
228
|
+
dropout (float):
|
|
229
|
+
Dropout rate for the GFLU.
|
|
230
|
+
"""
|
|
231
|
+
super().__init__(schema)
|
|
232
|
+
self.model_name = "DragonGateModel"
|
|
233
|
+
self.out_targets = out_targets
|
|
234
|
+
|
|
235
|
+
# Store hparams for saving/loading
|
|
236
|
+
self.model_hparams = {
|
|
237
|
+
'embedding_dim': embedding_dim,
|
|
238
|
+
'gflu_stages': gflu_stages,
|
|
239
|
+
'num_trees': num_trees,
|
|
240
|
+
'tree_depth': tree_depth,
|
|
241
|
+
'dropout': dropout
|
|
242
|
+
}
|
|
243
|
+
|
|
244
|
+
# Build the minimal config for the GateModel
|
|
245
|
+
pt_config = self._build_pt_config(
|
|
246
|
+
out_targets=out_targets,
|
|
247
|
+
embedding_dim=embedding_dim,
|
|
248
|
+
gflu_stages=gflu_stages,
|
|
249
|
+
num_trees=num_trees,
|
|
250
|
+
tree_depth=tree_depth,
|
|
251
|
+
dropout=dropout,
|
|
252
|
+
# GATE-specific params
|
|
253
|
+
gflu_dropout=dropout,
|
|
254
|
+
chain_trees=False,
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
# Instantiate the internal pytorch_tabular model
|
|
258
|
+
self.internal_model = GatedAdditiveTreeEnsembleModel(config=pt_config)
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
class DragonNodeModel(_BasePytabWrapper):
|
|
262
|
+
"""
|
|
263
|
+
Adapter for the Neural Oblivious Decision Ensembles (NODE) model from the 'pytorch_tabular' library.
|
|
264
|
+
|
|
265
|
+
NODE is a model based on an ensemble of differentiable 'oblivious'
|
|
266
|
+
decision trees. An oblivious tree uses the same splitting feature and
|
|
267
|
+
threshold across all nodes at the same depth. This structure, combined
|
|
268
|
+
with a differentiable formulation, allows the model to be trained
|
|
269
|
+
end-to-end with gradient descent, learning feature interactions and
|
|
270
|
+
splitting thresholds simultaneously.
|
|
271
|
+
"""
|
|
272
|
+
def __init__(self, *,
|
|
273
|
+
schema: FeatureSchema,
|
|
274
|
+
out_targets: int,
|
|
275
|
+
embedding_dim: int = 32,
|
|
276
|
+
num_trees: int = 1024,
|
|
277
|
+
tree_depth: int = 6,
|
|
278
|
+
dropout: float = 0.1):
|
|
279
|
+
"""
|
|
280
|
+
Args:
|
|
281
|
+
schema (FeatureSchema):
|
|
282
|
+
The definitive schema object from data_exploration.
|
|
283
|
+
out_targets (int):
|
|
284
|
+
Number of output targets.
|
|
285
|
+
embedding_dim (int):
|
|
286
|
+
Dimension of the categorical embeddings. (Recommended: 16 to 64)
|
|
287
|
+
num_trees (int):
|
|
288
|
+
Total number of trees in the ensemble. (Recommended: 256 to 2048)
|
|
289
|
+
tree_depth (int):
|
|
290
|
+
Depth of each tree. (Recommended: 4 to 8)
|
|
291
|
+
dropout (float):
|
|
292
|
+
Dropout rate.
|
|
293
|
+
"""
|
|
294
|
+
super().__init__(schema)
|
|
295
|
+
self.model_name = "DragonNodeModel"
|
|
296
|
+
self.out_targets = out_targets
|
|
297
|
+
|
|
298
|
+
# Store hparams for saving/loading
|
|
299
|
+
self.model_hparams = {
|
|
300
|
+
'embedding_dim': embedding_dim,
|
|
301
|
+
'num_trees': num_trees,
|
|
302
|
+
'tree_depth': tree_depth,
|
|
303
|
+
'dropout': dropout
|
|
304
|
+
}
|
|
305
|
+
|
|
306
|
+
# Build the minimal config for the NodeModel
|
|
307
|
+
pt_config = self._build_pt_config(
|
|
308
|
+
out_targets=out_targets,
|
|
309
|
+
embedding_dim=embedding_dim,
|
|
310
|
+
num_trees=num_trees,
|
|
311
|
+
tree_depth=tree_depth,
|
|
312
|
+
# NODE-specific params
|
|
313
|
+
num_layers=1, # NODE uses num_layers=1 for a single ensemble
|
|
314
|
+
total_trees=num_trees,
|
|
315
|
+
dropout_rate=dropout,
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
# Instantiate the internal pytorch_tabular model
|
|
319
|
+
self.internal_model = NODEModel(config=pt_config)
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
def info():
|
|
323
|
+
_script_info(__all__)
|