dragon-ml-toolbox 12.9.1__py3-none-any.whl → 12.9.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 12.9.1
3
+ Version: 12.9.2
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: "Karl L. Loza Vidaurre" <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,5 +1,5 @@
1
- dragon_ml_toolbox-12.9.1.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-12.9.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
1
+ dragon_ml_toolbox-12.9.2.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
+ dragon_ml_toolbox-12.9.2.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
3
3
  ml_tools/ETL_cleaning.py,sha256=2VBRllV8F-ZiPylPp8Az2gwn5ztgazN0BH5OKnRUhV0,20402
4
4
  ml_tools/ETL_engineering.py,sha256=KfYqgsxupAx6e_TxwO1LZXeu5mFkIhVXJrNjP3CzIZc,54927
5
5
  ml_tools/GUI_tools.py,sha256=Va6ig-dHULPVRwQYYtH3fvY5XPIoqRcJpRW8oXC55Hw,45413
@@ -24,7 +24,7 @@ ml_tools/_logger.py,sha256=dlp5cGbzooK9YSNSZYB4yjZrOaQUGW8PTrM411AOvL8,4717
24
24
  ml_tools/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
25
25
  ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
26
26
  ml_tools/custom_logger.py,sha256=xot-VeZFigKjcVxADgzvI54vZO_MqMMejo7JmDED8Xo,5892
27
- ml_tools/data_exploration.py,sha256=9Bbppxi6WWSAotB1tCwwWPOEkx7Vs-yvCAhesVplIBY,50618
27
+ ml_tools/data_exploration.py,sha256=haddQFsXAWzuf84NLItcZ4Q7vzN3YWjFoh7lPlWUczo,50679
28
28
  ml_tools/ensemble_evaluation.py,sha256=FGHSe8LBI8_w8LjNeJWOcYQ1UK_mc6fVah8gmSvNVGg,26853
29
29
  ml_tools/ensemble_inference.py,sha256=0yLmLNj45RVVoSCLH1ZYJG9IoAhTkWUqEZmLOQTFGTY,9348
30
30
  ml_tools/ensemble_learning.py,sha256=vsIED7nlheYI4w2SBzP6SC1AnNeMfn-2A1Gqw5EfxsM,21964
@@ -35,7 +35,7 @@ ml_tools/optimization_tools.py,sha256=P074YCuZzkqkONnAsM-Zb9DTX_i8cRkkJLpwAWz6CR
35
35
  ml_tools/path_manager.py,sha256=CyDU16pOKmC82jPubqJPT6EBt-u-3rGVbxyPIZCvDDY,18432
36
36
  ml_tools/serde.py,sha256=UIshIesHRFmxr8F6B3LxGG8bYc1HHK-nlE3kENSZL18,5288
37
37
  ml_tools/utilities.py,sha256=OcAyV1tEcYAfOWlGjRgopsjDLxU3DcI5EynzvWV4q3A,15754
38
- dragon_ml_toolbox-12.9.1.dist-info/METADATA,sha256=oQWsgVpaYAb7-91f2DpCuMUNCmP1OuHmwzMCeSgVQU8,6166
39
- dragon_ml_toolbox-12.9.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
- dragon_ml_toolbox-12.9.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
- dragon_ml_toolbox-12.9.1.dist-info/RECORD,,
38
+ dragon_ml_toolbox-12.9.2.dist-info/METADATA,sha256=vwKDioQfPVheuLmZasMsZGFynib5C8FMc52Tn1Ql7k0,6166
39
+ dragon_ml_toolbox-12.9.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
+ dragon_ml_toolbox-12.9.2.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
+ dragon_ml_toolbox-12.9.2.dist-info/RECORD,,
@@ -1024,7 +1024,7 @@ def reconstruct_one_hot(
1024
1024
  df: pd.DataFrame,
1025
1025
  features_to_reconstruct: List[Union[str, Tuple[str, Optional[str]]]],
1026
1026
  separator: str = '_',
1027
- baseline_category_name: str = "Other",
1027
+ baseline_category_name: Optional[str] = "Other",
1028
1028
  drop_original: bool = True,
1029
1029
  verbose: bool = True
1030
1030
  ) -> pd.DataFrame:
@@ -1056,7 +1056,7 @@ def reconstruct_one_hot(
1056
1056
  separator (str):
1057
1057
  The character separating the base name from the categorical value in
1058
1058
  the column names (e.g., '_' in 'B_a').
1059
- baseline_category_name (str):
1059
+ baseline_category_name (str | None):
1060
1060
  The baseline category name to use by default if it is not explicitly provided.
1061
1061
  drop_original (bool):
1062
1062
  If True, the original one-hot encoded columns will be dropped from
@@ -1081,8 +1081,8 @@ def reconstruct_one_hot(
1081
1081
  _LOGGER.error("Input must be a pandas DataFrame.")
1082
1082
  raise TypeError()
1083
1083
 
1084
- if not isinstance(baseline_category_name, str):
1085
- _LOGGER.error("The baseline_category must be a string.")
1084
+ if not (baseline_category_name is None or isinstance(baseline_category_name, str)):
1085
+ _LOGGER.error("The baseline_category must be None or a string.")
1086
1086
  raise TypeError()
1087
1087
 
1088
1088
  new_df = df.copy()