dragon-ml-toolbox 12.3.0__py3-none-any.whl → 12.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 12.3.0
3
+ Version: 12.4.0
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: "Karl L. Loza Vidaurre" <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,5 +1,5 @@
1
- dragon_ml_toolbox-12.3.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-12.3.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
1
+ dragon_ml_toolbox-12.4.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
+ dragon_ml_toolbox-12.4.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
3
3
  ml_tools/ETL_cleaning.py,sha256=PLRSR-VYnt1nNT9XrcWq40SE0VzHCw7DQ8v9czfSQsU,20366
4
4
  ml_tools/ETL_engineering.py,sha256=l0I6Og9o4s6EODdk0kZXjbbC-a3vVPYy1FopP2BkQSQ,54909
5
5
  ml_tools/GUI_tools.py,sha256=Va6ig-dHULPVRwQYYtH3fvY5XPIoqRcJpRW8oXC55Hw,45413
@@ -23,8 +23,8 @@ ml_tools/__init__.py,sha256=q0y9faQ6e17XCQ7eUiCZ1FJ4Bg5EQqLjZ9f_l5REUUY,41
23
23
  ml_tools/_logger.py,sha256=dlp5cGbzooK9YSNSZYB4yjZrOaQUGW8PTrM411AOvL8,4717
24
24
  ml_tools/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
25
25
  ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
26
- ml_tools/custom_logger.py,sha256=OZqG7FR_UE6byzY3RDmlj08a336ZU-4DzNBMPLr_d5c,5881
27
- ml_tools/data_exploration.py,sha256=H-cHp6jL4u4Kl2L_fktcCdQWRdAzTC6kwFCrOHnzLNA,46549
26
+ ml_tools/custom_logger.py,sha256=xot-VeZFigKjcVxADgzvI54vZO_MqMMejo7JmDED8Xo,5892
27
+ ml_tools/data_exploration.py,sha256=OwPJHAM6MpkUD-S76XF4v-NRXjw5-pizKNHpyKj5OwE,46809
28
28
  ml_tools/ensemble_evaluation.py,sha256=FGHSe8LBI8_w8LjNeJWOcYQ1UK_mc6fVah8gmSvNVGg,26853
29
29
  ml_tools/ensemble_inference.py,sha256=0yLmLNj45RVVoSCLH1ZYJG9IoAhTkWUqEZmLOQTFGTY,9348
30
30
  ml_tools/ensemble_learning.py,sha256=aTPeKthO4zRWBEaQJOUj8jEqVHiHjjOMXuiEWjI9NxM,21946
@@ -35,7 +35,7 @@ ml_tools/optimization_tools.py,sha256=ewYMAdSGlFxYALAGFXn-MsHpvW_Sbx6I-sKg9Kp6rB
35
35
  ml_tools/path_manager.py,sha256=CyDU16pOKmC82jPubqJPT6EBt-u-3rGVbxyPIZCvDDY,18432
36
36
  ml_tools/serde.py,sha256=k0qAwfMf13lVBQSgq5u9MSXEoo31iOA2-Ncm8XgMCMI,3974
37
37
  ml_tools/utilities.py,sha256=gef62GLK7ev5BWkkQekeJoVZqwf2mIuOlOfyCw6WdtE,13882
38
- dragon_ml_toolbox-12.3.0.dist-info/METADATA,sha256=999BzvvR1VfwwEETUJhMLJk6a3EtcPuITG_QXE2NP_c,6166
39
- dragon_ml_toolbox-12.3.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
- dragon_ml_toolbox-12.3.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
- dragon_ml_toolbox-12.3.0.dist-info/RECORD,,
38
+ dragon_ml_toolbox-12.4.0.dist-info/METADATA,sha256=KylxsFKgAXRHl6A_0w3PXcevzLc_GnAtmR1SLRC4x8g,6166
39
+ dragon_ml_toolbox-12.4.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
+ dragon_ml_toolbox-12.4.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
+ dragon_ml_toolbox-12.4.0.dist-info/RECORD,,
ml_tools/custom_logger.py CHANGED
@@ -172,7 +172,7 @@ def load_list_strings(text_file: Union[str,Path], verbose: bool=True) -> list[st
172
172
  raise ValueError()
173
173
 
174
174
  if verbose:
175
- _LOGGER.info(f"Text file loaded as list of strings.")
175
+ _LOGGER.info(f"Loaded '{target_path.name}' as list of strings.")
176
176
 
177
177
  return loaded_strings
178
178
 
@@ -891,7 +891,8 @@ def standardize_percentages(
891
891
  df: pd.DataFrame,
892
892
  columns: list[str],
893
893
  treat_one_as_proportion: bool = True,
894
- round_digits: int = 2
894
+ round_digits: int = 2,
895
+ verbose: bool=True
895
896
  ) -> pd.DataFrame:
896
897
  """
897
898
  Standardizes numeric columns containing mixed-format percentages.
@@ -932,6 +933,8 @@ def standardize_percentages(
932
933
 
933
934
  # Otherwise, the value is assumed to be a correctly formatted percentage
934
935
  return x
936
+
937
+ fixed_columns: list[str] = list()
935
938
 
936
939
  for col in columns:
937
940
  # --- Robustness Checks ---
@@ -949,6 +952,13 @@ def standardize_percentages(
949
952
 
950
953
  # Round the result
951
954
  df_copy[col] = df_copy[col].round(round_digits)
955
+
956
+ fixed_columns.append(col)
957
+
958
+ if verbose:
959
+ _LOGGER.info(f"Columns standardized:")
960
+ for fixed_col in fixed_columns:
961
+ print(f" '{fixed_col}'")
952
962
 
953
963
  return df_copy
954
964