dragon-ml-toolbox 12.13.0__py3-none-any.whl → 13.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

ml_tools/_schema.py ADDED
@@ -0,0 +1,19 @@
1
+ from typing import NamedTuple, Tuple, Optional, Dict
2
+
3
+ class FeatureSchema(NamedTuple):
4
+ """Holds the final, definitive schema for the model pipeline."""
5
+
6
+ # The final, ordered list of all feature names
7
+ feature_names: Tuple[str, ...]
8
+
9
+ # List of all continuous feature names
10
+ continuous_feature_names: Tuple[str, ...]
11
+
12
+ # List of all categorical feature names
13
+ categorical_feature_names: Tuple[str, ...]
14
+
15
+ # Map of {column_index: cardinality} for categorical features
16
+ categorical_index_map: Optional[Dict[int, int]]
17
+
18
+ # The original string-to-int mappings (e.g., {'color': {'red': 0, 'blue': 1}})
19
+ categorical_mappings: Optional[Dict[str, Dict[str, int]]]
@@ -11,7 +11,7 @@ from .path_manager import sanitize_filename, make_fullpath
11
11
  from ._script_info import _script_info
12
12
  from ._logger import _LOGGER
13
13
  from .utilities import save_dataframe_filename
14
-
14
+ from ._schema import FeatureSchema
15
15
 
16
16
  # Keep track of all available tools, show using `info()`
17
17
  __all__ = [
@@ -32,9 +32,9 @@ __all__ = [
32
32
  "drop_outlier_samples",
33
33
  "match_and_filter_columns_by_regex",
34
34
  "standardize_percentages",
35
- "create_transformer_categorical_map",
36
35
  "reconstruct_one_hot",
37
- "reconstruct_binary"
36
+ "reconstruct_binary",
37
+ "finalize_feature_schema"
38
38
  ]
39
39
 
40
40
 
@@ -977,49 +977,6 @@ def standardize_percentages(
977
977
  return df_copy
978
978
 
979
979
 
980
- def create_transformer_categorical_map(
981
- df: pd.DataFrame,
982
- mappings: Dict[str, Dict[str, int]],
983
- verbose: bool = True
984
- ) -> Dict[int, int]:
985
- """
986
- Creates the `categorical_map` required by a `TabularTransformer` model.
987
-
988
- This function should be called late in the preprocessing pipeline, after all
989
- column additions, deletions, or reordering have occurred. It uses the final
990
- DataFrame's column order to map the correct column index to its cardinality.
991
-
992
- Args:
993
- df (pd.DataFrame): The final, processed DataFrame.
994
- mappings (Dict[str, Dict[str, int]]): The mappings dictionary generated by
995
- `encode_categorical_features`, containing the category-to-integer
996
- mapping for each categorical column.
997
- verbose (bool): If True, prints mapping progress.
998
-
999
- Returns:
1000
- (Dict[int, int]): The final `categorical_map` for the transformer,
1001
- mapping each column's current index to its cardinality (e.g., {0: 3}).
1002
- """
1003
- transformer_map = {}
1004
- categorical_column_names = mappings.keys()
1005
-
1006
- _LOGGER.info("Creating categorical map for TabularTransformer.")
1007
- for col_name in categorical_column_names:
1008
- if col_name in df.columns:
1009
- col_idx = df.columns.get_loc(col_name)
1010
-
1011
- # Get cardinality directly from the length of the mapping dictionary
1012
- cardinality = len(mappings[col_name])
1013
-
1014
- transformer_map[col_idx] = cardinality
1015
- if verbose:
1016
- print(f" - Mapping column '{col_name}' at index {col_idx} with cardinality {cardinality}.")
1017
- else:
1018
- _LOGGER.warning(f"Categorical column '{col_name}' not found in the final DataFrame. Skipping.")
1019
-
1020
- return transformer_map
1021
-
1022
-
1023
980
  def reconstruct_one_hot(
1024
981
  df: pd.DataFrame,
1025
982
  features_to_reconstruct: List[Union[str, Tuple[str, Optional[str]]]],
@@ -1274,6 +1231,78 @@ def reconstruct_binary(
1274
1231
  return new_df
1275
1232
 
1276
1233
 
1234
+ def finalize_feature_schema(
1235
+ df_features: pd.DataFrame,
1236
+ categorical_mappings: Optional[Dict[str, Dict[str, int]]]
1237
+ ) -> FeatureSchema:
1238
+ """
1239
+ Analyzes the final features DataFrame to create a definitive schema.
1240
+
1241
+ This function is the "single source of truth" for column order
1242
+ and type (categorical vs. continuous) for the entire ML pipeline.
1243
+
1244
+ It should be called at the end of the feature engineering process.
1245
+
1246
+ Args:
1247
+ df_features (pd.DataFrame):
1248
+ The final, processed DataFrame containing *only* feature columns
1249
+ in the exact order they will be fed to the model.
1250
+ categorical_mappings (Dict[str, Dict[str, int]] | None):
1251
+ The mappings dictionary generated by
1252
+ `encode_categorical_features`. Can be None if no
1253
+ categorical features exist.
1254
+
1255
+ Returns:
1256
+ FeatureSchema: A NamedTuple containing all necessary metadata for the pipeline.
1257
+ """
1258
+ feature_names: List[str] = df_features.columns.to_list()
1259
+
1260
+ # Intermediate lists for building
1261
+ continuous_feature_names_list: List[str] = []
1262
+ categorical_feature_names_list: List[str] = []
1263
+ categorical_index_map_dict: Dict[int, int] = {}
1264
+
1265
+ _LOGGER.info("Finalizing feature schema...")
1266
+
1267
+ if categorical_mappings:
1268
+ # --- Categorical features are present ---
1269
+ categorical_names_set = set(categorical_mappings.keys())
1270
+
1271
+ for index, name in enumerate(feature_names):
1272
+ if name in categorical_names_set:
1273
+ # This is a categorical feature
1274
+ cardinality = len(categorical_mappings[name])
1275
+ categorical_index_map_dict[index] = cardinality
1276
+ categorical_feature_names_list.append(name)
1277
+ else:
1278
+ # This is a continuous feature
1279
+ continuous_feature_names_list.append(name)
1280
+
1281
+ # Use the populated dict, or None if it's empty
1282
+ final_index_map = categorical_index_map_dict if categorical_index_map_dict else None
1283
+
1284
+ else:
1285
+ # --- No categorical features ---
1286
+ _LOGGER.info("No categorical mappings provided. Treating all features as continuous.")
1287
+ continuous_feature_names_list = list(feature_names)
1288
+ # categorical_feature_names_list remains empty
1289
+ # categorical_index_map_dict remains empty
1290
+ final_index_map = None # Explicitly set to None to match Optional type
1291
+
1292
+ _LOGGER.info(f"Schema created: {len(continuous_feature_names_list)} continuous, {len(categorical_feature_names_list)} categorical.")
1293
+
1294
+ # Create the final immutable instance
1295
+ schema_instance = FeatureSchema(
1296
+ feature_names=tuple(feature_names),
1297
+ continuous_feature_names=tuple(continuous_feature_names_list),
1298
+ categorical_feature_names=tuple(categorical_feature_names_list),
1299
+ categorical_index_map=final_index_map,
1300
+ categorical_mappings=categorical_mappings
1301
+ )
1302
+
1303
+ return schema_instance
1304
+
1305
+
1277
1306
  def _validate_columns(df: pd.DataFrame, columns: list[str]):
1278
1307
  valid_columns = [column for column in columns if column in df.columns]
1279
1308
  return valid_columns
ml_tools/keys.py CHANGED
@@ -68,6 +68,15 @@ class SHAPKeys:
68
68
  SAVENAME = "shap_summary"
69
69
 
70
70
 
71
+ class PyTorchCheckpointKeys:
72
+ """Keys for saving/loading a training checkpoint dictionary."""
73
+ MODEL_STATE = "model_state_dict"
74
+ OPTIMIZER_STATE = "optimizer_state_dict"
75
+ SCHEDULER_STATE = "scheduler_state_dict"
76
+ EPOCH = "epoch"
77
+ BEST_SCORE = "best_score"
78
+
79
+
71
80
  class _OneHotOtherPlaceholder:
72
81
  """Used internally by GUI_tools."""
73
82
  OTHER_GUI = "OTHER"
@@ -9,6 +9,7 @@ from .utilities import yield_dataframes_from_dir
9
9
  from ._logger import _LOGGER
10
10
  from ._script_info import _script_info
11
11
  from .SQL import DatabaseManager
12
+ from ._schema import FeatureSchema
12
13
 
13
14
 
14
15
  __all__ = [
@@ -19,35 +20,25 @@ __all__ = [
19
20
 
20
21
 
21
22
  def create_optimization_bounds(
22
- csv_path: Union[str, Path],
23
+ schema: FeatureSchema,
23
24
  continuous_bounds_map: Dict[str, Tuple[float, float]],
24
- categorical_map: Dict[int, int],
25
- target_column: Optional[str] = None,
26
25
  start_at_zero: bool = True
27
26
  ) -> Tuple[List[float], List[float]]:
28
27
  """
29
- Generates the lower and upper bounds lists for the optimizer from a CSV header.
28
+ Generates the lower and upper bounds lists for the optimizer from a FeatureSchema.
30
29
 
31
30
  This helper function automates the creation of unbiased bounds for
32
31
  categorical features and combines them with user-defined bounds for
33
- continuous features.
34
-
35
- It reads *only* the header of the provided CSV to determine the full
36
- list of feature columns and their order, excluding the specified target.
37
- This is memory-efficient as the full dataset is not loaded.
32
+ continuous features, using the schema as the single source of truth
33
+ for feature order and type.
38
34
 
39
35
  Args:
40
- csv_path (Union[str, Path]):
41
- Path to the final, preprocessed CSV file. The column order in
42
- this file must match the order expected by the model.
36
+ schema (FeatureSchema):
37
+ The definitive schema object created by
38
+ `data_exploration.finalize_feature_schema()`.
43
39
  continuous_bounds_map (Dict[str, Tuple[float, float]]):
44
40
  A dictionary mapping the *name* of each **continuous** feature
45
41
  to its (min_bound, max_bound) tuple.
46
- categorical_map (Dict[int, int]):
47
- The map from the *index* of each **categorical** feature to its cardinality.
48
- (e.g., {2: 4} for a feature at index 2 with 4 categories).
49
- target_column (Optional[str], optional):
50
- The name of the target column to exclude. If None (default), the *last column* in the CSV is assumed to be the target.
51
42
  start_at_zero (bool):
52
43
  - If True, assumes categorical encoding is [0, 1, ..., k-1].
53
44
  Bounds will be set as [-0.5, k - 0.5].
@@ -59,98 +50,86 @@ def create_optimization_bounds(
59
50
  A tuple containing two lists: (lower_bounds, upper_bounds).
60
51
 
61
52
  Raises:
62
- ValueError: If a feature is defined in both maps, is missing from
63
- both maps, or if a name in `continuous_bounds_map`
64
- or `target_column` is not found in the CSV columns.
53
+ ValueError: If a feature is missing from `continuous_bounds_map`
54
+ or if a feature name in the map is not a
55
+ continuous feature according to the schema.
65
56
  """
66
- # 1. Read header and determine feature names
67
- full_csv_path = make_fullpath(csv_path, enforce="file")
68
- try:
69
- df_header = pd.read_csv(full_csv_path, nrows=0, encoding="utf-8")
70
- except Exception as e:
71
- _LOGGER.error(f"Failed to read header from CSV: {e}")
72
- raise
73
-
74
- all_column_names = df_header.columns.to_list()
75
- feature_names: List[str] = []
76
-
77
- if target_column is None:
78
- feature_names = all_column_names[:-1]
79
- excluded_target = all_column_names[-1]
80
- _LOGGER.info(f"No target_column provided. Assuming last column '{excluded_target}' is the target.")
81
- else:
82
- if target_column not in all_column_names:
83
- _LOGGER.error(f"Target column '{target_column}' not found in CSV header.")
84
- raise ValueError()
85
- feature_names = [name for name in all_column_names if name != target_column]
86
- _LOGGER.info(f"Excluding target column '{target_column}'.")
87
-
88
- # 2. Initialize bound lists
57
+ # 1. Get feature names and map from schema
58
+ feature_names = schema.feature_names
59
+ categorical_index_map = schema.categorical_index_map
89
60
  total_features = len(feature_names)
61
+
90
62
  if total_features <= 0:
91
- _LOGGER.error("No feature columns remain after excluding the target.")
63
+ _LOGGER.error("Schema contains no features.")
92
64
  raise ValueError()
65
+
66
+ _LOGGER.info(f"Generating bounds for {total_features} total features...")
93
67
 
68
+ # 2. Initialize bound lists
94
69
  lower_bounds: List[Optional[float]] = [None] * total_features
95
70
  upper_bounds: List[Optional[float]] = [None] * total_features
96
-
97
- _LOGGER.info(f"Generating bounds for {total_features} total features...")
98
71
 
99
72
  # 3. Populate categorical bounds (Index-based)
100
- # The indices in categorical_map (e.g., {2: 4}) directly correspond
101
- # to the indices in the `feature_names` list.
102
- for index, cardinality in categorical_map.items():
103
- if not (0 <= index < total_features):
104
- _LOGGER.error(f"Categorical index {index} is out of range for the {total_features} features.")
105
- raise ValueError()
106
-
107
- if start_at_zero:
108
- # Rule for [0, k-1]: bounds are [-0.5, k - 0.5]
109
- low = -0.5
110
- high = float(cardinality) - 0.5
111
- else:
112
- # Rule for [1, k]: bounds are [0.5, k + 0.5]
113
- low = 0.5
114
- high = float(cardinality) + 0.5
115
-
116
- lower_bounds[index] = low
117
- upper_bounds[index] = high
73
+ if categorical_index_map:
74
+ for index, cardinality in categorical_index_map.items():
75
+ if not (0 <= index < total_features):
76
+ _LOGGER.error(f"Categorical index {index} is out of range for the {total_features} features.")
77
+ raise ValueError()
78
+
79
+ if start_at_zero:
80
+ # Rule for [0, k-1]: bounds are [-0.5, k - 0.5]
81
+ low = -0.5
82
+ high = float(cardinality) - 0.5
83
+ else:
84
+ # Rule for [1, k]: bounds are [0.5, k + 0.5]
85
+ low = 0.5
86
+ high = float(cardinality) + 0.5
87
+
88
+ lower_bounds[index] = low
89
+ upper_bounds[index] = high
118
90
 
119
- _LOGGER.info(f"Automatically set bounds for {len(categorical_map)} categorical features.")
91
+ _LOGGER.info(f"Automatically set bounds for {len(categorical_index_map)} categorical features.")
92
+ else:
93
+ _LOGGER.info("No categorical features found in schema.")
120
94
 
121
95
  # 4. Populate continuous bounds (Name-based)
96
+ # Use schema.continuous_feature_names for robust checking
97
+ continuous_names_set = set(schema.continuous_feature_names)
98
+
99
+ if continuous_names_set != set(continuous_bounds_map.keys()):
100
+ missing_in_map = continuous_names_set - set(continuous_bounds_map.keys())
101
+ if missing_in_map:
102
+ _LOGGER.error(f"The following continuous features are missing from 'continuous_bounds_map': {list(missing_in_map)}")
103
+
104
+ extra_in_map = set(continuous_bounds_map.keys()) - continuous_names_set
105
+ if extra_in_map:
106
+ _LOGGER.error(f"The following features in 'continuous_bounds_map' are not defined as continuous in the schema: {list(extra_in_map)}")
107
+
108
+ raise ValueError("Mismatch between 'continuous_bounds_map' and schema's continuous features.")
109
+
122
110
  count_continuous = 0
123
111
  for name, (low, high) in continuous_bounds_map.items():
124
- try:
125
- # Map name to its index in the *feature-only* list
126
- index = feature_names.index(name)
127
- except ValueError:
128
- _LOGGER.warning(f"Feature name '{name}' from 'continuous_bounds_map' not found in the CSV's feature columns.")
129
- continue
130
-
112
+ # Map name to its index in the *feature-only* list
113
+ # This is guaranteed to be correct by the schema
114
+ index = feature_names.index(name)
115
+
131
116
  if lower_bounds[index] is not None:
132
- # This index was already set by the categorical map
133
- _LOGGER.error(f"Feature '{name}' (at index {index}) is defined in both 'categorical_map' and 'continuous_bounds_map'.")
117
+ # This should be impossible if schema is correct, but good to check
118
+ _LOGGER.error(f"Schema conflict: Feature '{name}' (at index {index}) is defined as both continuous and categorical.")
134
119
  raise ValueError()
135
-
120
+
136
121
  lower_bounds[index] = float(low)
137
122
  upper_bounds[index] = float(high)
138
123
  count_continuous += 1
139
124
 
140
125
  _LOGGER.info(f"Manually set bounds for {count_continuous} continuous features.")
141
126
 
142
- # 5. Validation: Check for any remaining None values
143
- missing_indices = []
144
- for i in range(total_features):
145
- if lower_bounds[i] is None:
146
- missing_indices.append(i)
147
-
148
- if missing_indices:
127
+ # 5. Final Validation (all Nones should be filled)
128
+ if None in lower_bounds:
129
+ missing_indices = [i for i, b in enumerate(lower_bounds) if b is None]
149
130
  missing_names = [feature_names[i] for i in missing_indices]
150
- _LOGGER.error(f"Bounds not defined for all features. Missing: {missing_names}")
151
- raise ValueError()
152
-
153
- # _LOGGER.info("All bounds successfully created.")
131
+ _LOGGER.error(f"Failed to create all bounds. This indicates an internal logic error. Missing: {missing_names}")
132
+ raise RuntimeError("Internal error: Not all bounds were populated.")
154
133
 
155
134
  # Cast to float lists, as 'None' sentinels are gone
156
135
  return (
ml_tools/serde.py CHANGED
@@ -116,8 +116,7 @@ def deserialize_object(
116
116
  # Can't do an isinstance check on 'Any', skip it.
117
117
  if type_to_check is not Any and not isinstance(obj, type_to_check):
118
118
  error_msg = (
119
- f"Type mismatch: Expected an instance of '{expected_type}', "
120
- f"but found '{type(obj)}' in '{true_filepath}'."
119
+ f"Type mismatch: Expected an instance of '{expected_type}', but found '{type(obj)}' in '{true_filepath}'."
121
120
  )
122
121
  _LOGGER.error(error_msg)
123
122
  raise TypeError()
@@ -1,41 +0,0 @@
1
- dragon_ml_toolbox-12.13.0.dist-info/licenses/LICENSE,sha256=L35WDmmLZNTlJvxF6Vy7Uy4SYNi6rCfWUqlTHpoRMoU,1081
2
- dragon_ml_toolbox-12.13.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=iy2r_R7wjzsCbz_Q_jMsp_jfZ6oP8XW9QhwzRBH0mGY,1904
3
- ml_tools/ETL_cleaning.py,sha256=2VBRllV8F-ZiPylPp8Az2gwn5ztgazN0BH5OKnRUhV0,20402
4
- ml_tools/ETL_engineering.py,sha256=KfYqgsxupAx6e_TxwO1LZXeu5mFkIhVXJrNjP3CzIZc,54927
5
- ml_tools/GUI_tools.py,sha256=Va6ig-dHULPVRwQYYtH3fvY5XPIoqRcJpRW8oXC55Hw,45413
6
- ml_tools/MICE_imputation.py,sha256=X273Qlgoqqg7KTmoKd75YDyAPB0UIbTzGP3xsCmRh3E,11717
7
- ml_tools/ML_callbacks.py,sha256=2ZazJjlbClP-ALc8q0ru2oalkugbhO3TFwPg4RFZpck,14056
8
- ml_tools/ML_datasetmaster.py,sha256=kedCGneR3S2zui0_JFZN6TBL5e69XWkdpkE_QohyqSM,31433
9
- ml_tools/ML_evaluation.py,sha256=h7fAtk0lS4gTqQ46fiVjucTvFlX4rsufKnEtate6Nu0,18381
10
- ml_tools/ML_evaluation_multi.py,sha256=Kn9n5lfxo7A0TvgIDMx8UHZCvzTqv1ViezzwJBF-ypM,15970
11
- ml_tools/ML_inference.py,sha256=ymFvncFsU10PExq87xnEj541DKV5ck0nMuK8ToJHzVQ,23067
12
- ml_tools/ML_models.py,sha256=G64NPhYZfYvHTIUwkIrMrNLgfDTKJwqdc8jwesPqB9E,28090
13
- ml_tools/ML_optimization.py,sha256=es3TlQbY7RYgJMZnznkjYGbUxFnAqzZxE_g3_qLK9Q8,22960
14
- ml_tools/ML_scaler.py,sha256=tw6onj9o8_kk3FQYb930HUzvv1zsFZe2YZJdF3LtHkU,7538
15
- ml_tools/ML_simple_optimization.py,sha256=W2mce1XFCuiOHTOjOsCNbETISHn5MwYlYsTIXH5hMMo,18177
16
- ml_tools/ML_trainer.py,sha256=UmCuKr_GzQGYqhEZ-kaRv9Buj44DsNyuOzmOM7Fw8N0,24569
17
- ml_tools/ML_utilities.py,sha256=EnKpPTnJ2qjZmz7kvows4Uu5CfSA7ByRmI1v2-KarKw,9337
18
- ml_tools/PSO_optimization.py,sha256=fVHeemqilBS0zrGV25E5yKwDlGdd2ZKa18d8CZ6Q6Fk,22961
19
- ml_tools/RNN_forecast.py,sha256=Qa2KoZfdAvSjZ4yE78N4BFXtr3tTr0Gx7tQJZPotsh0,1967
20
- ml_tools/SQL.py,sha256=vXLPGfVVg8bfkbBE3HVfyEclVbdJy0TBhuQONtMwSCQ,11234
21
- ml_tools/VIF_factor.py,sha256=at5IVqPvicja2-DNSTSIIy3SkzDWCmLzo3qTG_qr5n8,10422
22
- ml_tools/__init__.py,sha256=q0y9faQ6e17XCQ7eUiCZ1FJ4Bg5EQqLjZ9f_l5REUUY,41
23
- ml_tools/_logger.py,sha256=dlp5cGbzooK9YSNSZYB4yjZrOaQUGW8PTrM411AOvL8,4717
24
- ml_tools/_script_info.py,sha256=21r83LV3RubsNZ_RTEUON6RbDf7Mh4_udweNcvdF_Fk,212
25
- ml_tools/constants.py,sha256=3br5Rk9cL2IUo638eJuMOGdbGQaWssaUecYEvSeRBLM,3322
26
- ml_tools/custom_logger.py,sha256=7tSAgRL7e-Ekm7rS1FLDocaPLCnaoKc7VSrtfwCtCEg,10067
27
- ml_tools/data_exploration.py,sha256=haddQFsXAWzuf84NLItcZ4Q7vzN3YWjFoh7lPlWUczo,50679
28
- ml_tools/ensemble_evaluation.py,sha256=FGHSe8LBI8_w8LjNeJWOcYQ1UK_mc6fVah8gmSvNVGg,26853
29
- ml_tools/ensemble_inference.py,sha256=0yLmLNj45RVVoSCLH1ZYJG9IoAhTkWUqEZmLOQTFGTY,9348
30
- ml_tools/ensemble_learning.py,sha256=vsIED7nlheYI4w2SBzP6SC1AnNeMfn-2A1Gqw5EfxsM,21964
31
- ml_tools/handle_excel.py,sha256=pfdAPb9ywegFkM9T54bRssDOsX-K7rSeV0RaMz7lEAo,14006
32
- ml_tools/keys.py,sha256=FDpbS3Jb0pjrVvvp2_8nZi919mbob_-xwuy5OOtKM_A,1848
33
- ml_tools/math_utilities.py,sha256=PxoOrnuj6Ntp7_TJqyDWi0JX03WpAO5iaFNK2Oeq5I4,8800
34
- ml_tools/optimization_tools.py,sha256=P074YCuZzkqkONnAsM-Zb9DTX_i8cRkkJLpwAWz6CRw,13521
35
- ml_tools/path_manager.py,sha256=CyDU16pOKmC82jPubqJPT6EBt-u-3rGVbxyPIZCvDDY,18432
36
- ml_tools/serde.py,sha256=ll2mVC0sO2jIEdG3K6xMcgEN13N4YSb8VjviGvw_ers,4949
37
- ml_tools/utilities.py,sha256=OcAyV1tEcYAfOWlGjRgopsjDLxU3DcI5EynzvWV4q3A,15754
38
- dragon_ml_toolbox-12.13.0.dist-info/METADATA,sha256=p3-oOSqq1hhJj13KjIXeFnwBu3UTfBJu5mTDL9MCpdU,6167
39
- dragon_ml_toolbox-12.13.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
40
- dragon_ml_toolbox-12.13.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
41
- dragon_ml_toolbox-12.13.0.dist-info/RECORD,,