dragon-ml-toolbox 10.1.0__py3-none-any.whl → 10.1.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dragon-ml-toolbox might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dragon-ml-toolbox
3
- Version: 10.1.0
3
+ Version: 10.1.1
4
4
  Summary: A collection of tools for data science and machine learning projects.
5
5
  Author-email: Karl Loza <luigiloza@gmail.com>
6
6
  License-Expression: MIT
@@ -1,6 +1,6 @@
1
- dragon_ml_toolbox-10.1.0.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
- dragon_ml_toolbox-10.1.0.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
3
- ml_tools/ETL_cleaning.py,sha256=khr7g_9McEiniMKOyyVT2sWXQBwg99NmML1Lc4FRkx0,15878
1
+ dragon_ml_toolbox-10.1.1.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
2
+ dragon_ml_toolbox-10.1.1.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=lY4_rJPnLnMu7YBQaY-_iz1JRDcLdQzNCyeLAF1glJY,1837
3
+ ml_tools/ETL_cleaning.py,sha256=i-hrafaAivg8wprcCmwHA5MkXFsUmHNR9RRGbIyw4ZE,15981
4
4
  ml_tools/ETL_engineering.py,sha256=sgpIhlFIeId4eSJ-a33MnVuPNXs50msxFWa8-kw2hOI,36369
5
5
  ml_tools/GUI_tools.py,sha256=kEQWg-bog3pB5tI22gMGKWaCGHnz9TB2Lvvfhf5F2CI,45412
6
6
  ml_tools/MICE_imputation.py,sha256=kVSythWfxJFR4-2mtcYCWQaQ1Oz5yyx_SJu5gjnS7H8,11670
@@ -30,7 +30,7 @@ ml_tools/keys.py,sha256=HtPG8-MWh89C32A7eIlfuuA-DLwkxGkoDfwR2TGN9CQ,1074
30
30
  ml_tools/optimization_tools.py,sha256=P3I6lIpvZ8Xf2kX5FvvBKBmrK2pB6idBpkTzfUJxTeE,5073
31
31
  ml_tools/path_manager.py,sha256=TJgoqMAryc5F0dal8W_zvJgE1TpOzlskIyYJk614WW4,13809
32
32
  ml_tools/utilities.py,sha256=SVMaSDigh6SUoAeig2_sXLLIj5w5mUs5KuVWpHvFDec,19816
33
- dragon_ml_toolbox-10.1.0.dist-info/METADATA,sha256=N1SOO1xHhKMj3_ontR98YV9S2BhaRLRWFxywzDkuJbc,6968
34
- dragon_ml_toolbox-10.1.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
35
- dragon_ml_toolbox-10.1.0.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
36
- dragon_ml_toolbox-10.1.0.dist-info/RECORD,,
33
+ dragon_ml_toolbox-10.1.1.dist-info/METADATA,sha256=wJ2byoP5azuIBrLRpUUQ96DkDAQuxVtgf2lFPafBUUQ,6968
34
+ dragon_ml_toolbox-10.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
35
+ dragon_ml_toolbox-10.1.1.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
36
+ dragon_ml_toolbox-10.1.1.dist-info/RECORD,,
ml_tools/ETL_cleaning.py CHANGED
@@ -17,7 +17,7 @@ __all__ = [
17
17
 
18
18
 
19
19
  ################ Unique Values per column #################
20
- def save_unique_values(csv_path: Union[str, Path], output_dir: Union[str, Path]) -> None:
20
+ def save_unique_values(csv_path: Union[str, Path], output_dir: Union[str, Path], verbose: bool=False) -> None:
21
21
  """
22
22
  Loads a CSV file, then analyzes it and saves the unique non-null values
23
23
  from each column into a separate text file exactly as they appear.
@@ -50,6 +50,7 @@ def save_unique_values(csv_path: Union[str, Path], output_dir: Union[str, Path])
50
50
  _LOGGER.info(f"Data loaded from '{csv_path}'")
51
51
 
52
52
  # --- 3. Process Each Column ---
53
+ counter = 0
53
54
  for i, column_name in enumerate(df.columns):
54
55
  # _LOGGER.info(f"Processing column: '{column_name}'...")
55
56
 
@@ -85,9 +86,11 @@ def save_unique_values(csv_path: Union[str, Path], output_dir: Union[str, Path])
85
86
  except IOError:
86
87
  _LOGGER.exception(f"Error writing to file {file_path}.")
87
88
  else:
88
- _LOGGER.info(f"Successfully saved {len(sorted_uniques)} unique values from '{column_name}'.")
89
-
90
- _LOGGER.info("Process complete.")
89
+ if verbose:
90
+ _LOGGER.info(f"Successfully saved {len(sorted_uniques)} unique values from '{column_name}'.")
91
+ counter += 1
92
+
93
+ _LOGGER.info(f"{counter} files of unique values created.")
91
94
 
92
95
 
93
96
  ########## Basic df cleaner #############