dragon-ml-toolbox 1.4.6__py3-none-any.whl → 1.4.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {dragon_ml_toolbox-1.4.6.dist-info → dragon_ml_toolbox-1.4.7.dist-info}/METADATA +1 -1
- {dragon_ml_toolbox-1.4.6.dist-info → dragon_ml_toolbox-1.4.7.dist-info}/RECORD +7 -7
- ml_tools/particle_swarm_optimization.py +13 -5
- {dragon_ml_toolbox-1.4.6.dist-info → dragon_ml_toolbox-1.4.7.dist-info}/WHEEL +0 -0
- {dragon_ml_toolbox-1.4.6.dist-info → dragon_ml_toolbox-1.4.7.dist-info}/licenses/LICENSE +0 -0
- {dragon_ml_toolbox-1.4.6.dist-info → dragon_ml_toolbox-1.4.7.dist-info}/licenses/LICENSE-THIRD-PARTY.md +0 -0
- {dragon_ml_toolbox-1.4.6.dist-info → dragon_ml_toolbox-1.4.7.dist-info}/top_level.txt +0 -0
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
dragon_ml_toolbox-1.4.
|
|
2
|
-
dragon_ml_toolbox-1.4.
|
|
1
|
+
dragon_ml_toolbox-1.4.7.dist-info/licenses/LICENSE,sha256=2uUFNy7D0TLgHim1K5s3DIJ4q_KvxEXVilnU20cWliY,1066
|
|
2
|
+
dragon_ml_toolbox-1.4.7.dist-info/licenses/LICENSE-THIRD-PARTY.md,sha256=jDnniT0tgD0uw1NpjibsPF-qK3wmOKgTykLG2iNQU7E,1840
|
|
3
3
|
ml_tools/MICE_imputation.py,sha256=JMe9hyidJadFTHW7AHkNQ_fduTxH6CEh7_Ouy2LhCOQ,11096
|
|
4
4
|
ml_tools/VIF_factor.py,sha256=HEBsLJy_qSDaPw1Btha5B7omxN4wjJXg-sqoetCjCJw,10016
|
|
5
5
|
ml_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -8,12 +8,12 @@ ml_tools/datasetmaster.py,sha256=EFUEX-tqq94Ak1rXXYR-XaX85olrxvF2EuytdzUK7y0,291
|
|
|
8
8
|
ml_tools/ensemble_learning.py,sha256=xJyEbkFObm5YX6DmDW10FOUjSeYeBRhHLvncWZv_uTo,37319
|
|
9
9
|
ml_tools/handle_excel.py,sha256=ZJui5__0rc2T8UGHTheqZGhKmdVZ7Q2I54IoYCjAqJw,12612
|
|
10
10
|
ml_tools/logger.py,sha256=ZTtUB9HTkNs5zHTdYRKNbKADjUkuObsF7s8U5pNnVRA,4716
|
|
11
|
-
ml_tools/particle_swarm_optimization.py,sha256=
|
|
11
|
+
ml_tools/particle_swarm_optimization.py,sha256=wRk5ni6pPnh-tqS5t9M5TAjg8GUSGFxp-u09FSIviOM,22213
|
|
12
12
|
ml_tools/pytorch_models.py,sha256=bpWZsrSwCvHJQkR6UfoPpElsMv9AvmiNErNHC8NYB_I,10132
|
|
13
13
|
ml_tools/trainer.py,sha256=WAZ4EdrZuTOAnGXRWV3XcLNce4s7EKGf2-qchLC08Ik,15702
|
|
14
14
|
ml_tools/utilities.py,sha256=Ir3Yw4SuWMLKnbnl4Qzudn5U8CgcQ7zMtNqcllZMHeM,15682
|
|
15
15
|
ml_tools/vision_helpers.py,sha256=idQ-Ugp1IdsvwXiYyhYa9G3rTRTm37YRpkQDLEpANHM,7701
|
|
16
|
-
dragon_ml_toolbox-1.4.
|
|
17
|
-
dragon_ml_toolbox-1.4.
|
|
18
|
-
dragon_ml_toolbox-1.4.
|
|
19
|
-
dragon_ml_toolbox-1.4.
|
|
16
|
+
dragon_ml_toolbox-1.4.7.dist-info/METADATA,sha256=Z_ai6XNFd8a_sf9CD73kh3mgVJlgVhcajXiJhkEivsM,2516
|
|
17
|
+
dragon_ml_toolbox-1.4.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
18
|
+
dragon_ml_toolbox-1.4.7.dist-info/top_level.txt,sha256=wm-oxax3ciyez6VoO4zsFd-gSok2VipYXnbg3TH9PtU,9
|
|
19
|
+
dragon_ml_toolbox-1.4.7.dist-info/RECORD,,
|
|
@@ -8,6 +8,7 @@ from sklearn.base import ClassifierMixin
|
|
|
8
8
|
from typing import Literal, Union, Tuple, Dict, Optional
|
|
9
9
|
import polars as pl
|
|
10
10
|
from functools import partial
|
|
11
|
+
from copy import deepcopy
|
|
11
12
|
from .utilities import sanitize_filename, _script_info, threshold_binary_values, deserialize_object, list_files_by_extension
|
|
12
13
|
|
|
13
14
|
|
|
@@ -210,18 +211,25 @@ def run_pso(lower_boundaries: list[float],
|
|
|
210
211
|
-----
|
|
211
212
|
- PSO minimizes the objective function by default; if maximization is desired, it should be handled inside the ObjectiveFunction.
|
|
212
213
|
"""
|
|
214
|
+
# set local deep copies to prevent in place list modification
|
|
215
|
+
local_lower_boundaries = deepcopy(lower_boundaries)
|
|
216
|
+
local_upper_boundaries = deepcopy(upper_boundaries)
|
|
217
|
+
|
|
213
218
|
# Append binary boundaries
|
|
214
219
|
binary_number = objective_function.binary_features
|
|
215
220
|
if auto_binary_boundaries and binary_number > 0:
|
|
216
|
-
|
|
217
|
-
|
|
221
|
+
local_lower_boundaries.extend([0] * binary_number)
|
|
222
|
+
local_upper_boundaries.extend([1] * binary_number)
|
|
223
|
+
|
|
224
|
+
# Set the total length of features
|
|
225
|
+
size_of_features = len(local_lower_boundaries)
|
|
218
226
|
|
|
219
|
-
lower, upper = _set_boundaries(
|
|
227
|
+
lower, upper = _set_boundaries(local_lower_boundaries, local_upper_boundaries)
|
|
220
228
|
|
|
221
229
|
# feature names
|
|
222
230
|
if feature_names is None and objective_function.feature_names is not None:
|
|
223
231
|
feature_names = objective_function.feature_names
|
|
224
|
-
names = _set_feature_names(size=
|
|
232
|
+
names = _set_feature_names(size=size_of_features, names=feature_names)
|
|
225
233
|
|
|
226
234
|
# target name
|
|
227
235
|
if target_name is None and objective_function.target_name is not None:
|
|
@@ -263,7 +271,7 @@ def run_pso(lower_boundaries: list[float],
|
|
|
263
271
|
return best_features_named, best_target_named
|
|
264
272
|
else:
|
|
265
273
|
all_best_targets = list()
|
|
266
|
-
all_best_features = [[] for _ in range(
|
|
274
|
+
all_best_features = [[] for _ in range(size_of_features)]
|
|
267
275
|
for _ in range(post_hoc_analysis):
|
|
268
276
|
best_features, best_target, *_ = _pso(**arguments)
|
|
269
277
|
# best_features, best_target, _particle_positions, _target_values_per_position = _pso(**arguments)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|