donkit-llm 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
donkit/llm/openai_model.py
CHANGED
|
@@ -43,6 +43,43 @@ class OpenAIModel(LLMModelAbstract):
|
|
|
43
43
|
self._init_client(api_key, base_url, organization)
|
|
44
44
|
self._capabilities = self._determine_capabilities()
|
|
45
45
|
|
|
46
|
+
def _clean_schema_for_openai(self, schema: dict, is_gpt5: bool = False) -> dict:
|
|
47
|
+
"""Clean JSON Schema for OpenAI strict mode.
|
|
48
|
+
|
|
49
|
+
Args:
|
|
50
|
+
schema: JSON Schema to clean
|
|
51
|
+
is_gpt5: Currently unused - both GPT-4o and GPT-5 support title/description
|
|
52
|
+
|
|
53
|
+
OpenAI Structured Outputs supports:
|
|
54
|
+
- title and description (useful metadata for the model)
|
|
55
|
+
- Automatically adds additionalProperties: false for all objects
|
|
56
|
+
- Recursively processes nested objects and arrays
|
|
57
|
+
|
|
58
|
+
Note: The main requirement is additionalProperties: false for all objects,
|
|
59
|
+
which is automatically added by this method.
|
|
60
|
+
"""
|
|
61
|
+
cleaned = {}
|
|
62
|
+
|
|
63
|
+
# Copy all fields, recursively processing nested structures
|
|
64
|
+
for key, value in schema.items():
|
|
65
|
+
if key == "properties" and isinstance(value, dict):
|
|
66
|
+
# Recursively clean properties
|
|
67
|
+
cleaned["properties"] = {
|
|
68
|
+
k: self._clean_schema_for_openai(v, is_gpt5) if isinstance(v, dict) else v
|
|
69
|
+
for k, v in value.items()
|
|
70
|
+
}
|
|
71
|
+
elif key == "items" and isinstance(value, dict):
|
|
72
|
+
# Recursively clean array items
|
|
73
|
+
cleaned["items"] = self._clean_schema_for_openai(value, is_gpt5)
|
|
74
|
+
else:
|
|
75
|
+
cleaned[key] = value
|
|
76
|
+
|
|
77
|
+
# Ensure additionalProperties is false for objects (required by OpenAI)
|
|
78
|
+
if cleaned.get("type") == "object" and "additionalProperties" not in cleaned:
|
|
79
|
+
cleaned["additionalProperties"] = False
|
|
80
|
+
|
|
81
|
+
return cleaned
|
|
82
|
+
|
|
46
83
|
def _get_base_model_name(self) -> str:
|
|
47
84
|
"""Get base model name for capability/parameter detection.
|
|
48
85
|
|
|
@@ -263,7 +300,29 @@ class OpenAIModel(LLMModelAbstract):
|
|
|
263
300
|
kwargs["tool_choice"] = request.tool_choice
|
|
264
301
|
|
|
265
302
|
if request.response_format:
|
|
266
|
-
|
|
303
|
+
# OpenAI requires specific format for structured output
|
|
304
|
+
# If response_format is a JSON Schema dict with "type": "object", wrap it
|
|
305
|
+
if isinstance(request.response_format, dict):
|
|
306
|
+
if request.response_format.get("type") == "object":
|
|
307
|
+
# This is a JSON Schema - clean and wrap it in json_schema format
|
|
308
|
+
# GPT-5 and reasoning models need stricter schema cleaning
|
|
309
|
+
is_gpt5 = self._is_reasoning_model()
|
|
310
|
+
cleaned_schema = self._clean_schema_for_openai(
|
|
311
|
+
request.response_format, is_gpt5=is_gpt5
|
|
312
|
+
)
|
|
313
|
+
kwargs["response_format"] = {
|
|
314
|
+
"type": "json_schema",
|
|
315
|
+
"json_schema": {
|
|
316
|
+
"name": "response",
|
|
317
|
+
"strict": True,
|
|
318
|
+
"schema": cleaned_schema,
|
|
319
|
+
},
|
|
320
|
+
}
|
|
321
|
+
else:
|
|
322
|
+
# Already in correct format or simple type
|
|
323
|
+
kwargs["response_format"] = request.response_format
|
|
324
|
+
else:
|
|
325
|
+
kwargs["response_format"] = request.response_format
|
|
267
326
|
|
|
268
327
|
return kwargs
|
|
269
328
|
|
donkit/llm/vertex_model.py
CHANGED
|
@@ -330,6 +330,39 @@ class VertexAIModel(LLMModelAbstract):
|
|
|
330
330
|
|
|
331
331
|
return convert(schema)
|
|
332
332
|
|
|
333
|
+
def _build_config_kwargs(
|
|
334
|
+
self, request: GenerateRequest, system_instruction: str | None = None
|
|
335
|
+
) -> dict[str, Any]:
|
|
336
|
+
"""Build configuration kwargs for Vertex AI generate/generate_stream."""
|
|
337
|
+
config_kwargs: dict[str, Any] = {
|
|
338
|
+
"temperature": request.temperature
|
|
339
|
+
if request.temperature is not None
|
|
340
|
+
else 0.2,
|
|
341
|
+
"top_p": request.top_p if request.top_p is not None else 0.95,
|
|
342
|
+
"max_output_tokens": request.max_tokens
|
|
343
|
+
if request.max_tokens is not None
|
|
344
|
+
else 8192,
|
|
345
|
+
}
|
|
346
|
+
if system_instruction:
|
|
347
|
+
config_kwargs["system_instruction"] = system_instruction
|
|
348
|
+
if request.stop:
|
|
349
|
+
config_kwargs["stop_sequences"] = request.stop
|
|
350
|
+
if request.response_format:
|
|
351
|
+
config_kwargs["response_mime_type"] = "application/json"
|
|
352
|
+
# If response_format is a JSON Schema dict with "type": "object", use it directly
|
|
353
|
+
if isinstance(request.response_format, dict):
|
|
354
|
+
if request.response_format.get("type") == "object":
|
|
355
|
+
# This is a JSON Schema - use it directly
|
|
356
|
+
config_kwargs["response_schema"] = self._clean_json_schema(
|
|
357
|
+
request.response_format
|
|
358
|
+
)
|
|
359
|
+
elif "schema" in request.response_format:
|
|
360
|
+
# Already wrapped in schema key
|
|
361
|
+
config_kwargs["response_schema"] = self._clean_json_schema(
|
|
362
|
+
request.response_format["schema"]
|
|
363
|
+
)
|
|
364
|
+
return config_kwargs
|
|
365
|
+
|
|
333
366
|
async def generate(self, request: GenerateRequest) -> GenerateResponse:
|
|
334
367
|
"""Generate a response using Vertex AI."""
|
|
335
368
|
await self.validate_request(request)
|
|
@@ -410,26 +443,7 @@ class VertexAIModel(LLMModelAbstract):
|
|
|
410
443
|
contents.append(user_content)
|
|
411
444
|
i += 1
|
|
412
445
|
|
|
413
|
-
config_kwargs =
|
|
414
|
-
"temperature": request.temperature
|
|
415
|
-
if request.temperature is not None
|
|
416
|
-
else 0.2,
|
|
417
|
-
"top_p": request.top_p if request.top_p is not None else 0.95,
|
|
418
|
-
"max_output_tokens": request.max_tokens
|
|
419
|
-
if request.max_tokens is not None
|
|
420
|
-
else 8192,
|
|
421
|
-
}
|
|
422
|
-
if system_instruction:
|
|
423
|
-
config_kwargs["system_instruction"] = system_instruction
|
|
424
|
-
if request.stop:
|
|
425
|
-
config_kwargs["stop_sequences"] = request.stop
|
|
426
|
-
if request.response_format:
|
|
427
|
-
config_kwargs["response_mime_type"] = "application/json"
|
|
428
|
-
if "schema" in request.response_format:
|
|
429
|
-
config_kwargs["response_schema"] = self._clean_json_schema(
|
|
430
|
-
request.response_format["schema"]
|
|
431
|
-
)
|
|
432
|
-
|
|
446
|
+
config_kwargs = self._build_config_kwargs(request, system_instruction)
|
|
433
447
|
config = genai.types.GenerateContentConfig(**config_kwargs)
|
|
434
448
|
|
|
435
449
|
if request.tools:
|
|
@@ -584,25 +598,7 @@ class VertexAIModel(LLMModelAbstract):
|
|
|
584
598
|
contents.append(user_content)
|
|
585
599
|
i += 1
|
|
586
600
|
|
|
587
|
-
config_kwargs
|
|
588
|
-
"temperature": request.temperature
|
|
589
|
-
if request.temperature is not None
|
|
590
|
-
else 0.2,
|
|
591
|
-
"top_p": request.top_p if request.top_p is not None else 0.95,
|
|
592
|
-
"max_output_tokens": request.max_tokens
|
|
593
|
-
if request.max_tokens is not None
|
|
594
|
-
else 8192,
|
|
595
|
-
}
|
|
596
|
-
if system_instruction:
|
|
597
|
-
config_kwargs["system_instruction"] = system_instruction
|
|
598
|
-
if request.stop:
|
|
599
|
-
config_kwargs["stop_sequences"] = request.stop
|
|
600
|
-
if request.response_format:
|
|
601
|
-
config_kwargs["response_mime_type"] = "application/json"
|
|
602
|
-
if "schema" in request.response_format:
|
|
603
|
-
config_kwargs["response_schema"] = self._clean_json_schema(
|
|
604
|
-
request.response_format["schema"]
|
|
605
|
-
)
|
|
601
|
+
config_kwargs = self._build_config_kwargs(request, system_instruction)
|
|
606
602
|
config_kwargs["automatic_function_calling"] = (
|
|
607
603
|
genai.types.AutomaticFunctionCallingConfig(maximum_remote_calls=100)
|
|
608
604
|
)
|
|
@@ -5,8 +5,8 @@ donkit/llm/factory.py,sha256=KoZ9bD6FsZjU3ldKL7szznDSB8gI1slnI1jGGwKIuVY,9195
|
|
|
5
5
|
donkit/llm/gemini_model.py,sha256=2uLoZr9HjUf1wxiZRGLQFcURCutsB2SV9f-1VaR6kGI,14413
|
|
6
6
|
donkit/llm/model_abstract.py,sha256=aOgYh3I96PsxSxnkIJ1ETx5UFeRxozCD1c44wiKoBSs,8191
|
|
7
7
|
donkit/llm/ollama_integration.py,sha256=WXeV2xNxP7gd1JyMsHMKaQOjvH7QYkLIPs7pmTPWFrg,13236
|
|
8
|
-
donkit/llm/openai_model.py,sha256=
|
|
9
|
-
donkit/llm/vertex_model.py,sha256=
|
|
10
|
-
donkit_llm-0.1.
|
|
11
|
-
donkit_llm-0.1.
|
|
12
|
-
donkit_llm-0.1.
|
|
8
|
+
donkit/llm/openai_model.py,sha256=zzo_wVYMqfId7IksfQyC4zr7lIMfiWmpeIqpKI3MgUo,27446
|
|
9
|
+
donkit/llm/vertex_model.py,sha256=LcdWBdx4JYzom2IsXxhNGEsrYf0N6JmwuRc3sqfKIos,29350
|
|
10
|
+
donkit_llm-0.1.6.dist-info/METADATA,sha256=RTN3wR7de8ToDFQeUs4WfD2nSnrvFc33GLmwrZF4bvc,742
|
|
11
|
+
donkit_llm-0.1.6.dist-info/WHEEL,sha256=IYZQI976HJqqOpQU6PHkJ8fb3tMNBFjg-Cn-pwAbaFM,88
|
|
12
|
+
donkit_llm-0.1.6.dist-info/RECORD,,
|
|
File without changes
|