docp 0.1.0b1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docp/__init__.py +31 -0
- docp/_version.py +1 -0
- docp/dbs/__init__.py +0 -0
- docp/dbs/chroma.py +184 -0
- docp/loaders/__init__.py +0 -0
- docp/loaders/_chromabaseloader.py +362 -0
- docp/loaders/chroma.py +166 -0
- docp/objects/__init__.py +0 -0
- docp/objects/_docbaseobject.py +76 -0
- docp/objects/_pageobject.py +126 -0
- docp/objects/_tableobject.py +0 -0
- docp/objects/_textobject.py +0 -0
- docp/objects/pdfobject.py +39 -0
- docp/parsers/__init__.py +0 -0
- docp/parsers/_pdfbaseparser.py +210 -0
- docp/parsers/_pdftableparser.py +273 -0
- docp/parsers/_pdftextparser.py +253 -0
- docp/parsers/pdfparser.py +62 -0
- docp-0.1.0b1.dist-info/LICENSE +622 -0
- docp-0.1.0b1.dist-info/METADATA +55 -0
- docp-0.1.0b1.dist-info/RECORD +23 -0
- docp-0.1.0b1.dist-info/WHEEL +5 -0
- docp-0.1.0b1.dist-info/top_level.txt +1 -0
docp/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
"""
|
4
|
+
:Purpose: This module provides the project initilisation logic.
|
5
|
+
|
6
|
+
:Platform: Linux/Windows | Python 3.10+
|
7
|
+
:Developer: J Berendt
|
8
|
+
:Email: development@s3dev.uk
|
9
|
+
|
10
|
+
:Comments: n/a
|
11
|
+
|
12
|
+
"""
|
13
|
+
|
14
|
+
import os
|
15
|
+
import sys
|
16
|
+
sys.path.insert(0, os.path.dirname(os.path.realpath(__file__)))
|
17
|
+
|
18
|
+
# Bring entry-points to the surface.
|
19
|
+
try:
|
20
|
+
from loaders.chroma import ChromaLoader
|
21
|
+
except ImportError as err:
|
22
|
+
# The chroma loader requires a lot of backend which is not required for the parser.
|
23
|
+
msg = f'An error occurred while importing the Chroma loader:\n- {err}'
|
24
|
+
raise ImportError(msg) from err
|
25
|
+
|
26
|
+
try:
|
27
|
+
from .parsers.pdfparser import PDFParser
|
28
|
+
from ._version import __version__
|
29
|
+
except ImportError:
|
30
|
+
from parsers.pdfparser import PDFParser
|
31
|
+
from _version import __version__
|
docp/_version.py
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
__version__ = '0.1.0b1'
|
docp/dbs/__init__.py
ADDED
File without changes
|
docp/dbs/chroma.py
ADDED
@@ -0,0 +1,184 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
"""
|
4
|
+
:Purpose: This module provides a localised wrapper and specialised
|
5
|
+
functionality around the
|
6
|
+
``langchain_community.vectorstores.Chroma`` class, for
|
7
|
+
interacting with a Chroma database.
|
8
|
+
|
9
|
+
:Platform: Linux/Windows | Python 3.10+
|
10
|
+
:Developer: J Berendt
|
11
|
+
:Email: development@s3dev.uk
|
12
|
+
|
13
|
+
:Comments: n/a
|
14
|
+
|
15
|
+
"""
|
16
|
+
# pylint: disable=wrong-import-order
|
17
|
+
|
18
|
+
import chromadb
|
19
|
+
import os
|
20
|
+
import torch
|
21
|
+
from glob import glob
|
22
|
+
from hashlib import md5
|
23
|
+
from langchain_huggingface import HuggingFaceEmbeddings
|
24
|
+
# langchain's Chroma is used rather than the base chromadb as it provides
|
25
|
+
# the add_texts method which support GPU processing and parallelisation.
|
26
|
+
from langchain_community.vectorstores import Chroma as _Chroma
|
27
|
+
|
28
|
+
|
29
|
+
class ChromaDB(_Chroma):
|
30
|
+
"""Wrapper class around the ``chromadb`` library.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
path (str): Path to the chroma database's *directory*.
|
34
|
+
collection (str): Collection name.
|
35
|
+
offline (bool, optional): Remain offline, used the cached
|
36
|
+
embedding function model rather than obtaining one online.
|
37
|
+
Defaults to False.
|
38
|
+
"""
|
39
|
+
# pylint: disable=line-too-long
|
40
|
+
|
41
|
+
_MODEL_CACHE = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), '.cache')
|
42
|
+
# Installing torch is a huge overhead, just for this. However, torch
|
43
|
+
# will already be installed as part of the sentence-transformers library,
|
44
|
+
# so we'll use it here.
|
45
|
+
_MODEL_KWARGS = {'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
|
46
|
+
# TODO: Add this to a config file.
|
47
|
+
_MODEL_NAME = 'all-MiniLM-L6-v2'
|
48
|
+
|
49
|
+
def __init__(self, path: str, collection: str, offline: bool=False):
|
50
|
+
"""Chroma database class initialiser."""
|
51
|
+
self._path = os.path.realpath(path)
|
52
|
+
self._cname = collection
|
53
|
+
self._offline = offline
|
54
|
+
self._client = None # Database 'client' object
|
55
|
+
self._dbc = None # Database 'collection' object.
|
56
|
+
self._set_client()
|
57
|
+
self._set_embedding_fn()
|
58
|
+
super().__init__(client=self._client,
|
59
|
+
collection_name=self._cname,
|
60
|
+
embedding_function=self._embfn,
|
61
|
+
persist_directory=self._path)
|
62
|
+
self._set_collection()
|
63
|
+
|
64
|
+
@property
|
65
|
+
def client(self):
|
66
|
+
"""Accessor to the :class:`chromadb.PersistentClient` class."""
|
67
|
+
return self._client
|
68
|
+
|
69
|
+
@property
|
70
|
+
def collection(self):
|
71
|
+
"""Accessor to the chromadb client's collection object."""
|
72
|
+
return self._dbc
|
73
|
+
|
74
|
+
@property
|
75
|
+
def embedding_function(self):
|
76
|
+
"""Accessor to the embedding function used."""
|
77
|
+
return self._embfn
|
78
|
+
|
79
|
+
@property
|
80
|
+
def path(self) -> str:
|
81
|
+
"""Accessor to the database's path."""
|
82
|
+
return self._path
|
83
|
+
|
84
|
+
def add_documents(self, docs: list):
|
85
|
+
"""Add multiple documents to the collection.
|
86
|
+
|
87
|
+
This method wraps ``Chroma.add_texts`` method which supports GPU
|
88
|
+
processing and parallelisation. The ID is derived locally from
|
89
|
+
the file's basename, page number and page content.
|
90
|
+
|
91
|
+
Args:
|
92
|
+
docs (list): A list of ``langchain_core.documents.base.Document``
|
93
|
+
document objects.
|
94
|
+
|
95
|
+
"""
|
96
|
+
# This method overrides the base class' add_documents method.
|
97
|
+
# pylint: disable=arguments-differ
|
98
|
+
# pylint: disable=arguments-renamed
|
99
|
+
if not isinstance(docs, list):
|
100
|
+
docs = [docs]
|
101
|
+
ids_, docs_, meta_ = self._preproc(docs=docs)
|
102
|
+
self.add_texts(ids=ids_, texts=docs_, metadatas=meta_)
|
103
|
+
|
104
|
+
def show_all(self):
|
105
|
+
"""Return the entire contents of the collection.
|
106
|
+
|
107
|
+
This is an alias around ``.collection.get()``.
|
108
|
+
|
109
|
+
"""
|
110
|
+
return self._dbc.get()
|
111
|
+
|
112
|
+
def _get_embedding_function_model(self) -> str:
|
113
|
+
"""Derive the path to the embedding function model.
|
114
|
+
|
115
|
+
:Note:
|
116
|
+
If ``offline=True`` was passed into the class constructor,
|
117
|
+
the model cache is used, if available - otherwise the user
|
118
|
+
is warned.
|
119
|
+
|
120
|
+
If online usage is allowed, the model is obtained by the
|
121
|
+
means defined by the embedding function constructor.
|
122
|
+
|
123
|
+
Returns:
|
124
|
+
str: The name of the model. Or, if offline, the path to the
|
125
|
+
model's cache to be passed into the embedding function
|
126
|
+
constructor is returned.
|
127
|
+
|
128
|
+
"""
|
129
|
+
if self._offline:
|
130
|
+
if not os.path.exists(self._MODEL_CACHE):
|
131
|
+
os.makedirs(self._MODEL_CACHE)
|
132
|
+
msg = ('Offline mode has been chosen, yet the embedding function model cache does not exist. '
|
133
|
+
'Therefore, a model must be downloaded. Please enable online usage for the first run '
|
134
|
+
'so a model can be downloaded and stored into the cache for future (offline) use.')
|
135
|
+
raise FileNotFoundError(msg)
|
136
|
+
# Find the cache directory containing the named model, this enables offline use.
|
137
|
+
model_loc = os.path.commonpath(filter(lambda x: 'config.json' in x,
|
138
|
+
glob(os.path.join(self._MODEL_CACHE,
|
139
|
+
f'*{self._MODEL_NAME}*',
|
140
|
+
'**'),
|
141
|
+
recursive=True)))
|
142
|
+
return model_loc
|
143
|
+
return self._MODEL_NAME
|
144
|
+
|
145
|
+
@staticmethod
|
146
|
+
def _preproc(docs: list):
|
147
|
+
"""Pre-process the document objects to create the IDs.
|
148
|
+
|
149
|
+
Parse the ``Document`` object into its parts for storage.
|
150
|
+
Additionally, create the ID as a hash of the source document's
|
151
|
+
basename, page number and content.
|
152
|
+
|
153
|
+
"""
|
154
|
+
ids = []
|
155
|
+
txts = []
|
156
|
+
metas = []
|
157
|
+
for doc in docs:
|
158
|
+
pc = doc.page_content
|
159
|
+
m = doc.metadata
|
160
|
+
pc_, src_ = map(str.encode, (pc, m['source']))
|
161
|
+
pg_ = str(m.get('pageno', 0)).zfill(4)
|
162
|
+
id_ = f'id_{md5(src_).hexdigest()}_{pg_}_{md5(pc_).hexdigest()}'
|
163
|
+
ids.append(id_)
|
164
|
+
txts.append(pc)
|
165
|
+
metas.append(m)
|
166
|
+
return ids, txts, metas
|
167
|
+
|
168
|
+
def _set_client(self):
|
169
|
+
"""Set the database client object."""
|
170
|
+
settings = chromadb.Settings(anonymized_telemetry=False)
|
171
|
+
self._client = chromadb.PersistentClient(path=self._path,
|
172
|
+
settings=settings)
|
173
|
+
|
174
|
+
def _set_collection(self):
|
175
|
+
"""Set the database collection object."""
|
176
|
+
self._dbc = self._client.get_or_create_collection(self._cname,
|
177
|
+
metadata={'hnsw:space': 'cosine'})
|
178
|
+
|
179
|
+
def _set_embedding_fn(self):
|
180
|
+
"""Set the embeddings function object."""
|
181
|
+
model_name = self._get_embedding_function_model()
|
182
|
+
self._embfn = HuggingFaceEmbeddings(model_name=model_name,
|
183
|
+
model_kwargs=self._MODEL_KWARGS,
|
184
|
+
cache_folder=self._MODEL_CACHE)
|
docp/loaders/__init__.py
ADDED
File without changes
|
@@ -0,0 +1,362 @@
|
|
1
|
+
#!/usr/bin/env python3
|
2
|
+
# -*- coding: utf-8 -*-
|
3
|
+
"""
|
4
|
+
:Purpose: This module provides functionality to parse and store
|
5
|
+
document data into a Chroma vector database.
|
6
|
+
|
7
|
+
:Platform: Linux/Windows | Python 3.10+
|
8
|
+
:Developer: J Berendt
|
9
|
+
:Email: development@s3dev.uk
|
10
|
+
|
11
|
+
:Comments: n/a
|
12
|
+
|
13
|
+
"""
|
14
|
+
# pylint: disable=no-name-in-module # langchain.chains.RetrievalQA
|
15
|
+
|
16
|
+
import contextlib
|
17
|
+
import os
|
18
|
+
import re
|
19
|
+
from chromadb.api.types import errors as chromadberrors
|
20
|
+
from langchain.chains import RetrievalQA
|
21
|
+
from langchain.docstore.document import Document
|
22
|
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
23
|
+
from utils4.reporterror import reporterror
|
24
|
+
from utils4.user_interface import ui
|
25
|
+
# locals
|
26
|
+
try:
|
27
|
+
from .dbs.chroma import ChromaDB
|
28
|
+
from .parsers.pdfparser import PDFParser
|
29
|
+
except ImportError:
|
30
|
+
from dbs.chroma import ChromaDB
|
31
|
+
from parsers.pdfparser import PDFParser
|
32
|
+
|
33
|
+
_PRE_ERR = '\n[ERROR]:'
|
34
|
+
_PRE_WARN = '\n[WARNING]:'
|
35
|
+
|
36
|
+
|
37
|
+
class Tools:
|
38
|
+
"""General tools used for loading documents."""
|
39
|
+
|
40
|
+
@staticmethod
|
41
|
+
def parse_to_keywords(resp: str) -> list:
|
42
|
+
"""Parse the bot's response into a list of keywords.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
resp (str): Text response directly from the bot.
|
46
|
+
|
47
|
+
Returns:
|
48
|
+
list: A list of keywords extracted from the response,
|
49
|
+
separated by asterisks as bullet points.
|
50
|
+
|
51
|
+
"""
|
52
|
+
# Capture asterisk bullet points or a numbered list.
|
53
|
+
rexp = re.compile(r'(?:\*|[0-9]+\.)\s*(.*)\n')
|
54
|
+
trans = {45: ' ', 47: ' '}
|
55
|
+
resp_ = resp.translate(trans).lower()
|
56
|
+
kwds = rexp.findall(resp_)
|
57
|
+
if kwds:
|
58
|
+
return ', '.join(kwds)
|
59
|
+
return ''
|
60
|
+
|
61
|
+
|
62
|
+
class _ChromaBaseLoader:
|
63
|
+
"""Base class for loading documents into a Chroma vector database.
|
64
|
+
|
65
|
+
Args:
|
66
|
+
path (str): Full path to the file to be parsed and loaded.
|
67
|
+
dbpath (str | Chroma): Either the full path to the Chroma database
|
68
|
+
*directory*, or an instance of a :class:`~dbs.chroma.Chroma`
|
69
|
+
database. If the instance is passed, the ``collection``
|
70
|
+
argument is ignored.
|
71
|
+
collection (str, optional): Name of the Chroma database
|
72
|
+
collection. Only required if the ``db`` parameter is a path.
|
73
|
+
Defaults to None.
|
74
|
+
offline (bool, optional): Remain offline and use the locally
|
75
|
+
cached embedding function model. Defaults to False.
|
76
|
+
|
77
|
+
"""
|
78
|
+
|
79
|
+
_PARSERS = {'.pdf': PDFParser}
|
80
|
+
|
81
|
+
def __init__(self,
|
82
|
+
dbpath: str | ChromaDB,
|
83
|
+
collection: str=None,
|
84
|
+
*,
|
85
|
+
load_keywords: bool=False,
|
86
|
+
llm: object=None,
|
87
|
+
offline: bool=False):
|
88
|
+
"""Chroma database class initialiser."""
|
89
|
+
self._dbpath = dbpath
|
90
|
+
self._cname = collection
|
91
|
+
self._load_keywords = load_keywords
|
92
|
+
self._llm = llm
|
93
|
+
self._offline = offline
|
94
|
+
self._dbo = None # Database object.
|
95
|
+
self._docs = [] # List of 'Document' objects.
|
96
|
+
self._docss = [] # List of 'Document' objects *with splits*.
|
97
|
+
self._fbase = None # Basename of the document currently being loaded.
|
98
|
+
self._fpath = None # Full path to the document currently being loaded.
|
99
|
+
self._p = None # Document parser object.
|
100
|
+
self._splitter = None # Text splitter.
|
101
|
+
self._set_db_client()
|
102
|
+
self._check_parameters()
|
103
|
+
|
104
|
+
@property
|
105
|
+
def chroma(self):
|
106
|
+
"""Accessor to the database client object."""
|
107
|
+
return self._dbo
|
108
|
+
|
109
|
+
@property
|
110
|
+
def parser(self):
|
111
|
+
"""Accessor to the document parser object."""
|
112
|
+
return self._p
|
113
|
+
|
114
|
+
def _check_parameters(self) -> None:
|
115
|
+
"""Verify the class parameters are viable.
|
116
|
+
|
117
|
+
Raises:
|
118
|
+
ValueError: If the ``load_keywords`` argument is True and the
|
119
|
+
``llm`` argument is None, or the inverse. Both arguments
|
120
|
+
must either sum to 0, or 2.
|
121
|
+
|
122
|
+
"""
|
123
|
+
if sum((self._load_keywords, self._llm is not None)) not in (0, 2):
|
124
|
+
raise ValueError('For keyword loading, the load_keywords argument '
|
125
|
+
'must be True and a model instance must be provided.')
|
126
|
+
|
127
|
+
def _create_documents(self) -> bool:
|
128
|
+
"""Convert each extracted page into a ``Document`` object.
|
129
|
+
|
130
|
+
Returns:
|
131
|
+
bool: True of the pages are loaded as ``Document`` objects
|
132
|
+
successfully. Otherwise False.
|
133
|
+
|
134
|
+
"""
|
135
|
+
self._docs = [Document(page_content=page.content,
|
136
|
+
metadata={'source': self._p.doc.basename,
|
137
|
+
'pageno': page.pageno})
|
138
|
+
for page in self._p.doc.pages if page.hastext]
|
139
|
+
if not self._docs:
|
140
|
+
msg = f'{_PRE_WARN} Text could not be parsed from {self._p.doc.basename}.'
|
141
|
+
ui.print_warning(msg)
|
142
|
+
return False
|
143
|
+
return True
|
144
|
+
|
145
|
+
def _get_keywords(self) -> str:
|
146
|
+
"""Query the document (using the LLM) to extract the keywords."""
|
147
|
+
# pylint: disable=line-too-long
|
148
|
+
print('- Extracting keywords ...')
|
149
|
+
qry = ('List the important keywords which can be used to summarize this '
|
150
|
+
f'document: "{self._fbase}". Use only phrases which are found in the document.')
|
151
|
+
# Suppress stdout.
|
152
|
+
with contextlib.redirect_stdout(None):
|
153
|
+
nids = len(self._dbo.get(where={'source': self._fbase})['ids'])
|
154
|
+
# Max of 50, min n records; prefer n records or 10%.
|
155
|
+
filter_ = {'k': min(nids, max(25, min(nids//10, 50))),
|
156
|
+
'filter': {'source': {'$eq': self._fbase}}}
|
157
|
+
# TODO: Replace this with the module.cless.method once created.
|
158
|
+
qa = RetrievalQA.from_chain_type(llm=self._llm,
|
159
|
+
chain_type="stuff",
|
160
|
+
retriever=self._dbo.as_retriever(search_kwargs=filter_),
|
161
|
+
return_source_documents=True,
|
162
|
+
verbose=True)
|
163
|
+
resp = qa.invoke(qry)
|
164
|
+
kwds = Tools.parse_to_keywords(resp=resp['result'])
|
165
|
+
return kwds
|
166
|
+
|
167
|
+
def _load(self, path: str, **kwargs):
|
168
|
+
"""Load the selected files into the vector store.
|
169
|
+
|
170
|
+
Args:
|
171
|
+
path (str): Full path to the file to be loaded.
|
172
|
+
|
173
|
+
:Keyword Arguments:
|
174
|
+
Those passed from the loader-specific ``load`` method.
|
175
|
+
|
176
|
+
"""
|
177
|
+
# pylint: disable=multiple-statements
|
178
|
+
self._fpath = path
|
179
|
+
self._fbase = os.path.basename(path)
|
180
|
+
s = self._set_parser()
|
181
|
+
if s: s = self._set_text_splitter()
|
182
|
+
if s: s = self._parse_text(**kwargs)
|
183
|
+
if s: s = self._create_documents()
|
184
|
+
if s: s = self._split_texts()
|
185
|
+
if s: s = self._load_worker()
|
186
|
+
if s and self._load_keywords and self._llm:
|
187
|
+
kwds = self._get_keywords()
|
188
|
+
s = self._store_keywords(kwds=kwds)
|
189
|
+
self._print_summary(success=s)
|
190
|
+
|
191
|
+
def _load_worker(self) -> bool:
|
192
|
+
"""Load the split documents into the database collection.
|
193
|
+
|
194
|
+
Returns:
|
195
|
+
bool: True if loaded successfully, otherwise False. Success
|
196
|
+
is based on the number of records after the load being
|
197
|
+
greater than the number of records before the load, or not
|
198
|
+
exceptions being raised.
|
199
|
+
|
200
|
+
"""
|
201
|
+
try:
|
202
|
+
print('- Loading the document into the database ...')
|
203
|
+
nrecs_b = self._dbo.collection.count() # Count records before.
|
204
|
+
self._dbo.add_documents(self._docss)
|
205
|
+
nrecs_a = self._dbo.collection.count() # Count records after.
|
206
|
+
return self._test_load(nrecs_b=nrecs_b, nrecs_a=nrecs_a)
|
207
|
+
except chromadberrors.DuplicateIDError:
|
208
|
+
print('-- Document already loaded; duplicate detected.')
|
209
|
+
return False # Prevent from loading keywords.
|
210
|
+
except Exception as err:
|
211
|
+
reporterror(err)
|
212
|
+
return False
|
213
|
+
|
214
|
+
def _parse_text(self, **kwargs) -> bool:
|
215
|
+
"""Parse text from the document.
|
216
|
+
|
217
|
+
:Keyword Arguments:
|
218
|
+
Those to be passed into the text extraction method.
|
219
|
+
|
220
|
+
Returns:
|
221
|
+
bool: True if the parser's 'text' object is populated,
|
222
|
+
otherwise False.
|
223
|
+
|
224
|
+
"""
|
225
|
+
print('- Extracting text ...')
|
226
|
+
self._p.extract_text(**kwargs)
|
227
|
+
if len(self._p.doc.pages) < 2:
|
228
|
+
ui.print_warning(f'No text extracted from {self._p.doc.basename}')
|
229
|
+
return False
|
230
|
+
return True
|
231
|
+
|
232
|
+
@staticmethod
|
233
|
+
def _print_summary(success: bool):
|
234
|
+
"""Print an end of processing summary.
|
235
|
+
|
236
|
+
Args:
|
237
|
+
success (bool): Success flag from the processor.
|
238
|
+
|
239
|
+
"""
|
240
|
+
if success:
|
241
|
+
print('Processing complete. Success.')
|
242
|
+
else:
|
243
|
+
print('Processing aborted due to error. Failure.')
|
244
|
+
|
245
|
+
def _set_db_client(self) -> bool:
|
246
|
+
"""Set the database client object.
|
247
|
+
|
248
|
+
If the ``_db`` object is a string, this is inferred as the *path*
|
249
|
+
to the database. Otherwise, it is inferred as the database object
|
250
|
+
itself.
|
251
|
+
|
252
|
+
Returns:
|
253
|
+
bool: True if the database object is set without error.
|
254
|
+
Otherwise False.
|
255
|
+
|
256
|
+
"""
|
257
|
+
try:
|
258
|
+
if isinstance(self._dbpath, str):
|
259
|
+
self._dbo = ChromaDB(path=self._dbpath,
|
260
|
+
collection=self._cname,
|
261
|
+
offline=self._offline)
|
262
|
+
else:
|
263
|
+
self._dbo = self._dbpath
|
264
|
+
except Exception as err:
|
265
|
+
reporterror(err)
|
266
|
+
return False
|
267
|
+
return True
|
268
|
+
|
269
|
+
def _set_parser(self) -> bool:
|
270
|
+
"""Set the appropriate document parser.
|
271
|
+
|
272
|
+
:Rationale:
|
273
|
+
The parser is set by the file extension. For example, a file
|
274
|
+
extension ``.pdf`` will set the
|
275
|
+
:class:`parsers.pdfparser.PDFParser` class.
|
276
|
+
|
277
|
+
Returns:
|
278
|
+
bool: True if a file extension appropriate parser was found.
|
279
|
+
Otherwise, False.
|
280
|
+
|
281
|
+
"""
|
282
|
+
# pylint: disable=invalid-name # OK as the variable (Parser) is a class.
|
283
|
+
# TODO: Updated this to use the (not-yet-available) ispdf utility
|
284
|
+
# function, rather than relying on the file extension.
|
285
|
+
ext = os.path.splitext(self._fpath)[1]
|
286
|
+
Parser = self._PARSERS.get(ext)
|
287
|
+
if not Parser:
|
288
|
+
msg = f'{_PRE_WARN} Document parser not set for {os.path.basename(self._fpath)}.'
|
289
|
+
ui.print_warning(msg)
|
290
|
+
return False
|
291
|
+
self._p = Parser(path=self._fpath)
|
292
|
+
return True
|
293
|
+
|
294
|
+
# TODO: Add these to a config file.
|
295
|
+
def _set_text_splitter(self) -> bool:
|
296
|
+
"""Define the text splitter to be used.
|
297
|
+
|
298
|
+
Returns:
|
299
|
+
bool: True, always.
|
300
|
+
|
301
|
+
"""
|
302
|
+
self._splitter = RecursiveCharacterTextSplitter(chunk_size=256,
|
303
|
+
chunk_overlap=25,
|
304
|
+
separators=['\n\n\n', '\n\n', '\n', ' '])
|
305
|
+
return True
|
306
|
+
|
307
|
+
def _split_texts(self) -> bool:
|
308
|
+
"""Split the document text using a recursive text splitter.
|
309
|
+
|
310
|
+
Returns:
|
311
|
+
bool: True if the text was split successfully, otherwise
|
312
|
+
False.
|
313
|
+
|
314
|
+
"""
|
315
|
+
self._docss = self._splitter.split_documents(self._docs)
|
316
|
+
if not self._docss:
|
317
|
+
msg = (f'{_PRE_ERR} An error occurred while splitting the documents for '
|
318
|
+
f'{self._p.doc.basename}.')
|
319
|
+
ui.print_warning(msg)
|
320
|
+
return False
|
321
|
+
return True
|
322
|
+
|
323
|
+
def _store_keywords(self, kwds: str) -> bool:
|
324
|
+
"""Store the extracted keywords into the keywords collection.
|
325
|
+
|
326
|
+
Args:
|
327
|
+
kwds (str): A string containing the keywords extracted from
|
328
|
+
the document.
|
329
|
+
|
330
|
+
Returns:
|
331
|
+
bool: True if loaded successfully, otherwise False.
|
332
|
+
|
333
|
+
"""
|
334
|
+
print('- Storing keywords ...')
|
335
|
+
db = ChromaDB(path=self._dbo.path, collection=f'{self._cname}-kwds', offline=self._offline)
|
336
|
+
nrecs_b = db.collection.count() # Count records before.
|
337
|
+
docs = [Document(page_content=kwds, metadata={'source': self._fbase})]
|
338
|
+
db.add_documents(docs)
|
339
|
+
nrecs_a = db.collection.count() # Count records after.
|
340
|
+
return 1 == nrecs_a - nrecs_b
|
341
|
+
|
342
|
+
def _test_load(self, nrecs_b: int, nrecs_a: int) -> bool:
|
343
|
+
"""Test the document was loaded successfully.
|
344
|
+
|
345
|
+
:Test:
|
346
|
+
- Given a count of records before the load, verify the number
|
347
|
+
of records after the load is equal to the number of records
|
348
|
+
before, plus the number of split documents.
|
349
|
+
|
350
|
+
Args:
|
351
|
+
nrecs_b (int): Number of records *before* the load.
|
352
|
+
nrecs_a (int): Number of records *after* the load.
|
353
|
+
|
354
|
+
Returns:
|
355
|
+
bool: True if the number of records before the load plus the
|
356
|
+
number is splits is equal to the number of records after the
|
357
|
+
load.
|
358
|
+
|
359
|
+
"""
|
360
|
+
if nrecs_a == nrecs_b:
|
361
|
+
ui.print_warning(f'{_PRE_WARN} No new documents added. Possibly already loaded?')
|
362
|
+
return nrecs_a == nrecs_b + len(self._docss)
|