docling 2.48.0__py3-none-any.whl → 2.50.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docling/backend/html_backend.py +3 -2
- docling/backend/msexcel_backend.py +15 -1
- docling/backend/pypdfium2_backend.py +24 -2
- docling/datamodel/base_models.py +13 -1
- docling/datamodel/document.py +5 -3
- docling/datamodel/extraction.py +39 -0
- docling/datamodel/pipeline_options.py +11 -5
- docling/datamodel/vlm_model_specs.py +17 -0
- docling/document_converter.py +3 -6
- docling/document_extractor.py +325 -0
- docling/models/layout_model.py +3 -3
- docling/models/page_preprocessing_model.py +1 -1
- docling/models/rapid_ocr_model.py +1 -0
- docling/models/table_structure_model.py +1 -1
- docling/models/vlm_models_inline/nuextract_transformers_model.py +290 -0
- docling/pipeline/base_extraction_pipeline.py +58 -0
- docling/pipeline/extraction_vlm_pipeline.py +204 -0
- docling/utils/model_downloader.py +2 -1
- {docling-2.48.0.dist-info → docling-2.50.0.dist-info}/METADATA +4 -2
- {docling-2.48.0.dist-info → docling-2.50.0.dist-info}/RECORD +24 -19
- {docling-2.48.0.dist-info → docling-2.50.0.dist-info}/WHEEL +0 -0
- {docling-2.48.0.dist-info → docling-2.50.0.dist-info}/entry_points.txt +0 -0
- {docling-2.48.0.dist-info → docling-2.50.0.dist-info}/licenses/LICENSE +0 -0
- {docling-2.48.0.dist-info → docling-2.50.0.dist-info}/top_level.txt +0 -0
docling/backend/html_backend.py
CHANGED
@@ -467,13 +467,14 @@ class HTMLDocumentBackend(DeclarativeDocumentBackend):
|
|
467
467
|
|
468
468
|
@contextmanager
|
469
469
|
def _use_hyperlink(self, tag: Tag):
|
470
|
+
old_hyperlink: Union[AnyUrl, Path, None] = None
|
471
|
+
new_hyperlink: Union[AnyUrl, Path, None] = None
|
470
472
|
this_href = tag.get("href")
|
471
473
|
if this_href is None:
|
472
474
|
yield None
|
473
475
|
else:
|
474
476
|
if isinstance(this_href, str) and this_href:
|
475
|
-
old_hyperlink
|
476
|
-
new_hyperlink: Union[AnyUrl, Path, None] = None
|
477
|
+
old_hyperlink = self.hyperlink
|
477
478
|
if self.original_url is not None:
|
478
479
|
this_href = urljoin(str(self.original_url), str(this_href))
|
479
480
|
# ugly fix for relative links since pydantic does not support them.
|
@@ -1,10 +1,11 @@
|
|
1
1
|
import logging
|
2
2
|
from io import BytesIO
|
3
3
|
from pathlib import Path
|
4
|
-
from typing import Any, Union, cast
|
4
|
+
from typing import Any, Optional, Union, cast
|
5
5
|
|
6
6
|
from docling_core.types.doc import (
|
7
7
|
BoundingBox,
|
8
|
+
ContentLayer,
|
8
9
|
CoordOrigin,
|
9
10
|
DocItem,
|
10
11
|
DoclingDocument,
|
@@ -197,6 +198,7 @@ class MsExcelDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentBacken
|
|
197
198
|
parent=None,
|
198
199
|
label=GroupLabel.SECTION,
|
199
200
|
name=f"sheet: {sheet_name}",
|
201
|
+
content_layer=self._get_sheet_content_layer(sheet),
|
200
202
|
)
|
201
203
|
doc = self._convert_sheet(doc, sheet)
|
202
204
|
width, height = self._find_page_size(doc, page_no)
|
@@ -237,6 +239,7 @@ class MsExcelDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentBacken
|
|
237
239
|
"""
|
238
240
|
|
239
241
|
if self.workbook is not None:
|
242
|
+
content_layer = self._get_sheet_content_layer(sheet)
|
240
243
|
tables = self._find_data_tables(sheet)
|
241
244
|
|
242
245
|
for excel_table in tables:
|
@@ -282,6 +285,7 @@ class MsExcelDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentBacken
|
|
282
285
|
origin=CoordOrigin.TOPLEFT,
|
283
286
|
),
|
284
287
|
),
|
288
|
+
content_layer=content_layer,
|
285
289
|
)
|
286
290
|
|
287
291
|
return doc
|
@@ -486,6 +490,7 @@ class MsExcelDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentBacken
|
|
486
490
|
The updated DoclingDocument.
|
487
491
|
"""
|
488
492
|
if self.workbook is not None:
|
493
|
+
content_layer = self._get_sheet_content_layer(sheet)
|
489
494
|
# Iterate over byte images in the sheet
|
490
495
|
for item in sheet._images: # type: ignore[attr-defined]
|
491
496
|
try:
|
@@ -511,6 +516,7 @@ class MsExcelDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentBacken
|
|
511
516
|
anchor, origin=CoordOrigin.TOPLEFT
|
512
517
|
),
|
513
518
|
),
|
519
|
+
content_layer=content_layer,
|
514
520
|
)
|
515
521
|
except Exception:
|
516
522
|
_log.error("could not extract the image from excel sheets")
|
@@ -536,3 +542,11 @@ class MsExcelDocumentBackend(DeclarativeDocumentBackend, PaginatedDocumentBacken
|
|
536
542
|
bottom = max(bottom, bbox.b) if bottom != -1 else bbox.b
|
537
543
|
|
538
544
|
return (right - left, bottom - top)
|
545
|
+
|
546
|
+
@staticmethod
|
547
|
+
def _get_sheet_content_layer(sheet: Worksheet) -> Optional[ContentLayer]:
|
548
|
+
return (
|
549
|
+
None
|
550
|
+
if sheet.sheet_state == Worksheet.SHEETSTATE_VISIBLE
|
551
|
+
else ContentLayer.INVISIBLE
|
552
|
+
)
|
@@ -254,16 +254,38 @@ class PyPdfiumPageBackend(PdfPageBackend):
|
|
254
254
|
def get_bitmap_rects(self, scale: float = 1) -> Iterable[BoundingBox]:
|
255
255
|
AREA_THRESHOLD = 0 # 32 * 32
|
256
256
|
page_size = self.get_size()
|
257
|
+
rotation = self._ppage.get_rotation()
|
258
|
+
|
257
259
|
with pypdfium2_lock:
|
258
260
|
for obj in self._ppage.get_objects(filter=[pdfium_c.FPDF_PAGEOBJ_IMAGE]):
|
259
261
|
pos = obj.get_pos()
|
262
|
+
if rotation == 90:
|
263
|
+
pos = (
|
264
|
+
pos[1],
|
265
|
+
page_size.height - pos[2],
|
266
|
+
pos[3],
|
267
|
+
page_size.height - pos[0],
|
268
|
+
)
|
269
|
+
elif rotation == 180:
|
270
|
+
pos = (
|
271
|
+
page_size.width - pos[2],
|
272
|
+
page_size.height - pos[3],
|
273
|
+
page_size.width - pos[0],
|
274
|
+
page_size.height - pos[1],
|
275
|
+
)
|
276
|
+
elif rotation == 270:
|
277
|
+
pos = (
|
278
|
+
page_size.width - pos[3],
|
279
|
+
pos[0],
|
280
|
+
page_size.width - pos[1],
|
281
|
+
pos[2],
|
282
|
+
)
|
283
|
+
|
260
284
|
cropbox = BoundingBox.from_tuple(
|
261
285
|
pos, origin=CoordOrigin.BOTTOMLEFT
|
262
286
|
).to_top_left_origin(page_height=page_size.height)
|
263
|
-
|
264
287
|
if cropbox.area() > AREA_THRESHOLD:
|
265
288
|
cropbox = cropbox.scaled(scale=scale)
|
266
|
-
|
267
289
|
yield cropbox
|
268
290
|
|
269
291
|
def get_text_in_rect(self, bbox: BoundingBox) -> str:
|
docling/datamodel/base_models.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
import math
|
2
2
|
from collections import defaultdict
|
3
3
|
from enum import Enum
|
4
|
-
from typing import TYPE_CHECKING, Dict, List, Optional, Union
|
4
|
+
from typing import TYPE_CHECKING, Dict, List, Optional, Type, Union
|
5
5
|
|
6
6
|
import numpy as np
|
7
7
|
from docling_core.types.doc import (
|
@@ -32,6 +32,18 @@ from pydantic import (
|
|
32
32
|
if TYPE_CHECKING:
|
33
33
|
from docling.backend.pdf_backend import PdfPageBackend
|
34
34
|
|
35
|
+
from docling.backend.abstract_backend import AbstractDocumentBackend
|
36
|
+
from docling.datamodel.pipeline_options import PipelineOptions
|
37
|
+
|
38
|
+
|
39
|
+
class BaseFormatOption(BaseModel):
|
40
|
+
"""Base class for format options used by _DocumentConversionInput."""
|
41
|
+
|
42
|
+
pipeline_options: Optional[PipelineOptions] = None
|
43
|
+
backend: Type[AbstractDocumentBackend]
|
44
|
+
|
45
|
+
model_config = ConfigDict(arbitrary_types_allowed=True)
|
46
|
+
|
35
47
|
|
36
48
|
class ConversionStatus(str, Enum):
|
37
49
|
PENDING = "pending"
|
docling/datamodel/document.py
CHANGED
@@ -2,12 +2,13 @@ import csv
|
|
2
2
|
import logging
|
3
3
|
import re
|
4
4
|
import tarfile
|
5
|
-
from collections.abc import Iterable
|
5
|
+
from collections.abc import Iterable, Mapping
|
6
6
|
from enum import Enum
|
7
7
|
from io import BytesIO
|
8
8
|
from pathlib import Path, PurePath
|
9
9
|
from typing import (
|
10
10
|
TYPE_CHECKING,
|
11
|
+
Any,
|
11
12
|
Dict,
|
12
13
|
List,
|
13
14
|
Literal,
|
@@ -72,7 +73,7 @@ from docling.utils.profiling import ProfilingItem
|
|
72
73
|
from docling.utils.utils import create_file_hash
|
73
74
|
|
74
75
|
if TYPE_CHECKING:
|
75
|
-
from docling.
|
76
|
+
from docling.datamodel.base_models import BaseFormatOption
|
76
77
|
|
77
78
|
_log = logging.getLogger(__name__)
|
78
79
|
|
@@ -238,7 +239,8 @@ class _DocumentConversionInput(BaseModel):
|
|
238
239
|
limits: Optional[DocumentLimits] = DocumentLimits()
|
239
240
|
|
240
241
|
def docs(
|
241
|
-
self,
|
242
|
+
self,
|
243
|
+
format_options: Mapping[InputFormat, "BaseFormatOption"],
|
242
244
|
) -> Iterable[InputDocument]:
|
243
245
|
for item in self.path_or_stream_iterator:
|
244
246
|
obj = (
|
@@ -0,0 +1,39 @@
|
|
1
|
+
"""Data models for document extraction functionality."""
|
2
|
+
|
3
|
+
from typing import Any, Dict, List, Optional, Type, Union
|
4
|
+
|
5
|
+
from pydantic import BaseModel, Field
|
6
|
+
|
7
|
+
from docling.datamodel.base_models import ConversionStatus, ErrorItem
|
8
|
+
from docling.datamodel.document import InputDocument
|
9
|
+
|
10
|
+
|
11
|
+
class ExtractedPageData(BaseModel):
|
12
|
+
"""Data model for extracted content from a single page."""
|
13
|
+
|
14
|
+
page_no: int = Field(..., description="1-indexed page number")
|
15
|
+
extracted_data: Optional[Dict[str, Any]] = Field(
|
16
|
+
None, description="Extracted structured data from the page"
|
17
|
+
)
|
18
|
+
raw_text: Optional[str] = Field(None, description="Raw extracted text")
|
19
|
+
errors: List[str] = Field(
|
20
|
+
default_factory=list,
|
21
|
+
description="Any errors encountered during extraction for this page",
|
22
|
+
)
|
23
|
+
|
24
|
+
|
25
|
+
class ExtractionResult(BaseModel):
|
26
|
+
"""Result of document extraction."""
|
27
|
+
|
28
|
+
input: InputDocument
|
29
|
+
status: ConversionStatus = ConversionStatus.PENDING
|
30
|
+
errors: List[ErrorItem] = []
|
31
|
+
|
32
|
+
# Pages field - always a list for consistency
|
33
|
+
pages: List[ExtractedPageData] = Field(
|
34
|
+
default_factory=list, description="Extracted data from each page"
|
35
|
+
)
|
36
|
+
|
37
|
+
|
38
|
+
# Type alias for template parameters that can be string, dict, or BaseModel
|
39
|
+
ExtractionTemplateType = Union[str, Dict[str, Any], BaseModel, Type[BaseModel]]
|
@@ -37,6 +37,7 @@ from docling.datamodel.pipeline_options_vlm_model import (
|
|
37
37
|
from docling.datamodel.vlm_model_specs import (
|
38
38
|
GRANITE_VISION_OLLAMA as granite_vision_vlm_ollama_conversion_options,
|
39
39
|
GRANITE_VISION_TRANSFORMERS as granite_vision_vlm_conversion_options,
|
40
|
+
NU_EXTRACT_2B_TRANSFORMERS,
|
40
41
|
SMOLDOCLING_MLX as smoldocling_vlm_mlx_conversion_options,
|
41
42
|
SMOLDOCLING_TRANSFORMERS as smoldocling_vlm_conversion_options,
|
42
43
|
VlmModelType,
|
@@ -113,6 +114,7 @@ class RapidOcrOptions(OcrOptions):
|
|
113
114
|
cls_model_path: Optional[str] = None # same default as rapidocr
|
114
115
|
rec_model_path: Optional[str] = None # same default as rapidocr
|
115
116
|
rec_keys_path: Optional[str] = None # same default as rapidocr
|
117
|
+
rec_font_path: Optional[str] = None # same default as rapidocr
|
116
118
|
|
117
119
|
model_config = ConfigDict(
|
118
120
|
extra="forbid",
|
@@ -246,12 +248,9 @@ class OcrEngine(str, Enum):
|
|
246
248
|
RAPIDOCR = "rapidocr"
|
247
249
|
|
248
250
|
|
249
|
-
class PipelineOptions(
|
251
|
+
class PipelineOptions(BaseOptions):
|
250
252
|
"""Base pipeline options."""
|
251
253
|
|
252
|
-
create_legacy_output: bool = (
|
253
|
-
True # This default will be set to False on a future version of docling
|
254
|
-
)
|
255
254
|
document_timeout: Optional[float] = None
|
256
255
|
accelerator_options: AcceleratorOptions = AcceleratorOptions()
|
257
256
|
enable_remote_services: bool = False
|
@@ -284,10 +283,10 @@ class LayoutOptions(BaseModel):
|
|
284
283
|
keep_empty_clusters: bool = (
|
285
284
|
False # Whether to keep clusters that contain no text cells
|
286
285
|
)
|
286
|
+
model_spec: LayoutModelConfig = DOCLING_LAYOUT_HERON
|
287
287
|
skip_cell_assignment: bool = (
|
288
288
|
False # Skip cell-to-cluster assignment for VLM-only processing
|
289
289
|
)
|
290
|
-
model_spec: LayoutModelConfig = DOCLING_LAYOUT_V2
|
291
290
|
|
292
291
|
|
293
292
|
class AsrPipelineOptions(PipelineOptions):
|
@@ -295,6 +294,13 @@ class AsrPipelineOptions(PipelineOptions):
|
|
295
294
|
artifacts_path: Optional[Union[Path, str]] = None
|
296
295
|
|
297
296
|
|
297
|
+
class VlmExtractionPipelineOptions(PipelineOptions):
|
298
|
+
"""Options for extraction pipeline."""
|
299
|
+
|
300
|
+
artifacts_path: Optional[Union[Path, str]] = None
|
301
|
+
vlm_options: Union[InlineVlmOptions] = NU_EXTRACT_2B_TRANSFORMERS
|
302
|
+
|
303
|
+
|
298
304
|
class PdfPipelineOptions(PaginatedPipelineOptions):
|
299
305
|
"""Options for the PDF pipeline."""
|
300
306
|
|
@@ -247,6 +247,23 @@ DOLPHIN_TRANSFORMERS = InlineVlmOptions(
|
|
247
247
|
temperature=0.0,
|
248
248
|
)
|
249
249
|
|
250
|
+
# NuExtract
|
251
|
+
NU_EXTRACT_2B_TRANSFORMERS = InlineVlmOptions(
|
252
|
+
repo_id="numind/NuExtract-2.0-2B",
|
253
|
+
prompt="", # This won't be used, template is passed separately
|
254
|
+
torch_dtype="bfloat16",
|
255
|
+
inference_framework=InferenceFramework.TRANSFORMERS,
|
256
|
+
transformers_model_type=TransformersModelType.AUTOMODEL_IMAGETEXTTOTEXT,
|
257
|
+
response_format=ResponseFormat.PLAINTEXT,
|
258
|
+
supported_devices=[
|
259
|
+
AcceleratorDevice.CPU,
|
260
|
+
AcceleratorDevice.CUDA,
|
261
|
+
AcceleratorDevice.MPS,
|
262
|
+
],
|
263
|
+
scale=2.0,
|
264
|
+
temperature=0.0,
|
265
|
+
)
|
266
|
+
|
250
267
|
|
251
268
|
class VlmModelType(str, Enum):
|
252
269
|
SMOLDOCLING = "smoldocling"
|
docling/document_converter.py
CHANGED
@@ -28,6 +28,7 @@ from docling.backend.noop_backend import NoOpBackend
|
|
28
28
|
from docling.backend.xml.jats_backend import JatsDocumentBackend
|
29
29
|
from docling.backend.xml.uspto_backend import PatentUsptoDocumentBackend
|
30
30
|
from docling.datamodel.base_models import (
|
31
|
+
BaseFormatOption,
|
31
32
|
ConversionStatus,
|
32
33
|
DoclingComponentType,
|
33
34
|
DocumentStream,
|
@@ -57,12 +58,8 @@ _log = logging.getLogger(__name__)
|
|
57
58
|
_PIPELINE_CACHE_LOCK = threading.Lock()
|
58
59
|
|
59
60
|
|
60
|
-
class FormatOption(
|
61
|
+
class FormatOption(BaseFormatOption):
|
61
62
|
pipeline_cls: Type[BasePipeline]
|
62
|
-
pipeline_options: Optional[PipelineOptions] = None
|
63
|
-
backend: Type[AbstractDocumentBackend]
|
64
|
-
|
65
|
-
model_config = ConfigDict(arbitrary_types_allowed=True)
|
66
63
|
|
67
64
|
@model_validator(mode="after")
|
68
65
|
def set_optional_field_default(self) -> "FormatOption":
|
@@ -191,7 +188,7 @@ class DocumentConverter:
|
|
191
188
|
self.allowed_formats = (
|
192
189
|
allowed_formats if allowed_formats is not None else list(InputFormat)
|
193
190
|
)
|
194
|
-
self.format_to_options = {
|
191
|
+
self.format_to_options: Dict[InputFormat, FormatOption] = {
|
195
192
|
format: (
|
196
193
|
_get_default_option(format=format)
|
197
194
|
if (custom_option := (format_options or {}).get(format)) is None
|
@@ -0,0 +1,325 @@
|
|
1
|
+
import hashlib
|
2
|
+
import logging
|
3
|
+
import sys
|
4
|
+
import threading
|
5
|
+
import time
|
6
|
+
import warnings
|
7
|
+
from collections.abc import Iterable, Iterator
|
8
|
+
from concurrent.futures import ThreadPoolExecutor
|
9
|
+
from functools import partial
|
10
|
+
from pathlib import Path
|
11
|
+
from typing import Dict, List, Optional, Tuple, Type, Union
|
12
|
+
|
13
|
+
from pydantic import ConfigDict, model_validator, validate_call
|
14
|
+
|
15
|
+
from docling.backend.abstract_backend import AbstractDocumentBackend
|
16
|
+
from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend
|
17
|
+
from docling.datamodel.base_models import (
|
18
|
+
BaseFormatOption,
|
19
|
+
ConversionStatus,
|
20
|
+
DoclingComponentType,
|
21
|
+
DocumentStream,
|
22
|
+
ErrorItem,
|
23
|
+
InputFormat,
|
24
|
+
)
|
25
|
+
from docling.datamodel.document import (
|
26
|
+
InputDocument,
|
27
|
+
_DocumentConversionInput, # intentionally reused builder
|
28
|
+
)
|
29
|
+
from docling.datamodel.extraction import ExtractionResult, ExtractionTemplateType
|
30
|
+
from docling.datamodel.pipeline_options import PipelineOptions
|
31
|
+
from docling.datamodel.settings import (
|
32
|
+
DEFAULT_PAGE_RANGE,
|
33
|
+
DocumentLimits,
|
34
|
+
PageRange,
|
35
|
+
settings,
|
36
|
+
)
|
37
|
+
from docling.exceptions import ConversionError
|
38
|
+
from docling.pipeline.base_extraction_pipeline import BaseExtractionPipeline
|
39
|
+
from docling.pipeline.extraction_vlm_pipeline import ExtractionVlmPipeline
|
40
|
+
from docling.utils.utils import chunkify
|
41
|
+
|
42
|
+
_log = logging.getLogger(__name__)
|
43
|
+
_PIPELINE_CACHE_LOCK = threading.Lock()
|
44
|
+
|
45
|
+
|
46
|
+
class ExtractionFormatOption(BaseFormatOption):
|
47
|
+
"""Per-format configuration for extraction.
|
48
|
+
|
49
|
+
Notes:
|
50
|
+
- `pipeline_cls` must subclass `BaseExtractionPipeline`.
|
51
|
+
- `pipeline_options` is typed as `PipelineOptions` which MUST inherit from
|
52
|
+
`BaseOptions` (as used by `BaseExtractionPipeline`).
|
53
|
+
- `backend` is the document-opening backend used by `_DocumentConversionInput`.
|
54
|
+
"""
|
55
|
+
|
56
|
+
pipeline_cls: Type[BaseExtractionPipeline]
|
57
|
+
|
58
|
+
@model_validator(mode="after")
|
59
|
+
def set_optional_field_default(self) -> "ExtractionFormatOption":
|
60
|
+
if self.pipeline_options is None:
|
61
|
+
# `get_default_options` comes from BaseExtractionPipeline
|
62
|
+
self.pipeline_options = self.pipeline_cls.get_default_options() # type: ignore[assignment]
|
63
|
+
return self
|
64
|
+
|
65
|
+
|
66
|
+
def _get_default_extraction_option(fmt: InputFormat) -> ExtractionFormatOption:
|
67
|
+
"""Return the default extraction option for a given input format.
|
68
|
+
|
69
|
+
Defaults mirror the converter's *backend* choices, while the pipeline is
|
70
|
+
the VLM extractor. This duplication will be removed when we deduplicate
|
71
|
+
the format registry between convert/extract.
|
72
|
+
"""
|
73
|
+
format_to_default_backend: Dict[InputFormat, Type[AbstractDocumentBackend]] = {
|
74
|
+
InputFormat.IMAGE: PyPdfiumDocumentBackend,
|
75
|
+
InputFormat.PDF: PyPdfiumDocumentBackend,
|
76
|
+
}
|
77
|
+
|
78
|
+
backend = format_to_default_backend.get(fmt)
|
79
|
+
if backend is None:
|
80
|
+
raise RuntimeError(f"No default extraction backend configured for {fmt}")
|
81
|
+
|
82
|
+
return ExtractionFormatOption(
|
83
|
+
pipeline_cls=ExtractionVlmPipeline,
|
84
|
+
backend=backend,
|
85
|
+
)
|
86
|
+
|
87
|
+
|
88
|
+
class DocumentExtractor:
|
89
|
+
"""Standalone extractor class.
|
90
|
+
|
91
|
+
Public API:
|
92
|
+
- `extract(...) -> ExtractionResult`
|
93
|
+
- `extract_all(...) -> Iterator[ExtractionResult]`
|
94
|
+
|
95
|
+
Implementation intentionally reuses `_DocumentConversionInput` to build
|
96
|
+
`InputDocument` with the correct backend per format.
|
97
|
+
"""
|
98
|
+
|
99
|
+
def __init__(
|
100
|
+
self,
|
101
|
+
allowed_formats: Optional[List[InputFormat]] = None,
|
102
|
+
extraction_format_options: Optional[
|
103
|
+
Dict[InputFormat, ExtractionFormatOption]
|
104
|
+
] = None,
|
105
|
+
) -> None:
|
106
|
+
self.allowed_formats: List[InputFormat] = (
|
107
|
+
allowed_formats if allowed_formats is not None else list(InputFormat)
|
108
|
+
)
|
109
|
+
# Build per-format options with defaults, then apply any user overrides
|
110
|
+
overrides = extraction_format_options or {}
|
111
|
+
self.extraction_format_to_options: Dict[InputFormat, ExtractionFormatOption] = {
|
112
|
+
fmt: overrides.get(fmt, _get_default_extraction_option(fmt))
|
113
|
+
for fmt in self.allowed_formats
|
114
|
+
}
|
115
|
+
|
116
|
+
# Cache pipelines by (class, options-hash)
|
117
|
+
self._initialized_pipelines: Dict[
|
118
|
+
Tuple[Type[BaseExtractionPipeline], str], BaseExtractionPipeline
|
119
|
+
] = {}
|
120
|
+
|
121
|
+
# ---------------------------- Public API ---------------------------------
|
122
|
+
|
123
|
+
@validate_call(config=ConfigDict(strict=True))
|
124
|
+
def extract(
|
125
|
+
self,
|
126
|
+
source: Union[Path, str, DocumentStream],
|
127
|
+
template: ExtractionTemplateType,
|
128
|
+
headers: Optional[Dict[str, str]] = None,
|
129
|
+
raises_on_error: bool = True,
|
130
|
+
max_num_pages: int = sys.maxsize,
|
131
|
+
max_file_size: int = sys.maxsize,
|
132
|
+
page_range: PageRange = DEFAULT_PAGE_RANGE,
|
133
|
+
) -> ExtractionResult:
|
134
|
+
all_res = self.extract_all(
|
135
|
+
source=[source],
|
136
|
+
headers=headers,
|
137
|
+
raises_on_error=raises_on_error,
|
138
|
+
max_num_pages=max_num_pages,
|
139
|
+
max_file_size=max_file_size,
|
140
|
+
page_range=page_range,
|
141
|
+
template=template,
|
142
|
+
)
|
143
|
+
return next(all_res)
|
144
|
+
|
145
|
+
@validate_call(config=ConfigDict(strict=True))
|
146
|
+
def extract_all(
|
147
|
+
self,
|
148
|
+
source: Iterable[Union[Path, str, DocumentStream]],
|
149
|
+
template: ExtractionTemplateType,
|
150
|
+
headers: Optional[Dict[str, str]] = None,
|
151
|
+
raises_on_error: bool = True,
|
152
|
+
max_num_pages: int = sys.maxsize,
|
153
|
+
max_file_size: int = sys.maxsize,
|
154
|
+
page_range: PageRange = DEFAULT_PAGE_RANGE,
|
155
|
+
) -> Iterator[ExtractionResult]:
|
156
|
+
warnings.warn(
|
157
|
+
"The extract API is currently experimental and may change without prior notice.\n"
|
158
|
+
"Only PDF and image formats are supported.",
|
159
|
+
UserWarning,
|
160
|
+
stacklevel=2,
|
161
|
+
)
|
162
|
+
|
163
|
+
limits = DocumentLimits(
|
164
|
+
max_num_pages=max_num_pages,
|
165
|
+
max_file_size=max_file_size,
|
166
|
+
page_range=page_range,
|
167
|
+
)
|
168
|
+
conv_input = _DocumentConversionInput(
|
169
|
+
path_or_stream_iterator=source, limits=limits, headers=headers
|
170
|
+
)
|
171
|
+
|
172
|
+
ext_res_iter = self._extract(
|
173
|
+
conv_input, raises_on_error=raises_on_error, template=template
|
174
|
+
)
|
175
|
+
|
176
|
+
had_result = False
|
177
|
+
for ext_res in ext_res_iter:
|
178
|
+
had_result = True
|
179
|
+
if raises_on_error and ext_res.status not in {
|
180
|
+
ConversionStatus.SUCCESS,
|
181
|
+
ConversionStatus.PARTIAL_SUCCESS,
|
182
|
+
}:
|
183
|
+
raise ConversionError(
|
184
|
+
f"Extraction failed for: {ext_res.input.file} with status: {ext_res.status}"
|
185
|
+
)
|
186
|
+
else:
|
187
|
+
yield ext_res
|
188
|
+
|
189
|
+
if not had_result and raises_on_error:
|
190
|
+
raise ConversionError(
|
191
|
+
"Extraction failed because the provided file has no recognizable format or it wasn't in the list of allowed formats."
|
192
|
+
)
|
193
|
+
|
194
|
+
# --------------------------- Internal engine ------------------------------
|
195
|
+
|
196
|
+
def _extract(
|
197
|
+
self,
|
198
|
+
conv_input: _DocumentConversionInput,
|
199
|
+
raises_on_error: bool,
|
200
|
+
template: ExtractionTemplateType,
|
201
|
+
) -> Iterator[ExtractionResult]:
|
202
|
+
start_time = time.monotonic()
|
203
|
+
|
204
|
+
for input_batch in chunkify(
|
205
|
+
conv_input.docs(self.extraction_format_to_options),
|
206
|
+
settings.perf.doc_batch_size,
|
207
|
+
):
|
208
|
+
_log.info("Going to extract document batch...")
|
209
|
+
process_func = partial(
|
210
|
+
self._process_document_extraction,
|
211
|
+
raises_on_error=raises_on_error,
|
212
|
+
template=template,
|
213
|
+
)
|
214
|
+
|
215
|
+
if (
|
216
|
+
settings.perf.doc_batch_concurrency > 1
|
217
|
+
and settings.perf.doc_batch_size > 1
|
218
|
+
):
|
219
|
+
with ThreadPoolExecutor(
|
220
|
+
max_workers=settings.perf.doc_batch_concurrency
|
221
|
+
) as pool:
|
222
|
+
for item in pool.map(
|
223
|
+
process_func,
|
224
|
+
input_batch,
|
225
|
+
):
|
226
|
+
yield item
|
227
|
+
else:
|
228
|
+
for item in map(
|
229
|
+
process_func,
|
230
|
+
input_batch,
|
231
|
+
):
|
232
|
+
elapsed = time.monotonic() - start_time
|
233
|
+
start_time = time.monotonic()
|
234
|
+
_log.info(
|
235
|
+
f"Finished extracting document {item.input.file.name} in {elapsed:.2f} sec."
|
236
|
+
)
|
237
|
+
yield item
|
238
|
+
|
239
|
+
def _process_document_extraction(
|
240
|
+
self,
|
241
|
+
in_doc: InputDocument,
|
242
|
+
raises_on_error: bool,
|
243
|
+
template: ExtractionTemplateType,
|
244
|
+
) -> ExtractionResult:
|
245
|
+
valid = (
|
246
|
+
self.allowed_formats is not None and in_doc.format in self.allowed_formats
|
247
|
+
)
|
248
|
+
if valid:
|
249
|
+
return self._execute_extraction_pipeline(
|
250
|
+
in_doc, raises_on_error=raises_on_error, template=template
|
251
|
+
)
|
252
|
+
else:
|
253
|
+
error_message = f"File format not allowed: {in_doc.file}"
|
254
|
+
if raises_on_error:
|
255
|
+
raise ConversionError(error_message)
|
256
|
+
else:
|
257
|
+
error_item = ErrorItem(
|
258
|
+
component_type=DoclingComponentType.USER_INPUT,
|
259
|
+
module_name="",
|
260
|
+
error_message=error_message,
|
261
|
+
)
|
262
|
+
return ExtractionResult(
|
263
|
+
input=in_doc, status=ConversionStatus.SKIPPED, errors=[error_item]
|
264
|
+
)
|
265
|
+
|
266
|
+
def _execute_extraction_pipeline(
|
267
|
+
self,
|
268
|
+
in_doc: InputDocument,
|
269
|
+
raises_on_error: bool,
|
270
|
+
template: ExtractionTemplateType,
|
271
|
+
) -> ExtractionResult:
|
272
|
+
if not in_doc.valid:
|
273
|
+
if raises_on_error:
|
274
|
+
raise ConversionError(f"Input document {in_doc.file} is not valid.")
|
275
|
+
else:
|
276
|
+
return ExtractionResult(input=in_doc, status=ConversionStatus.FAILURE)
|
277
|
+
|
278
|
+
pipeline = self._get_pipeline(in_doc.format)
|
279
|
+
if pipeline is None:
|
280
|
+
if raises_on_error:
|
281
|
+
raise ConversionError(
|
282
|
+
f"No extraction pipeline could be initialized for {in_doc.file}."
|
283
|
+
)
|
284
|
+
else:
|
285
|
+
return ExtractionResult(input=in_doc, status=ConversionStatus.FAILURE)
|
286
|
+
|
287
|
+
return pipeline.execute(
|
288
|
+
in_doc, raises_on_error=raises_on_error, template=template
|
289
|
+
)
|
290
|
+
|
291
|
+
def _get_pipeline(
|
292
|
+
self, doc_format: InputFormat
|
293
|
+
) -> Optional[BaseExtractionPipeline]:
|
294
|
+
"""Retrieve or initialize a pipeline, reusing instances based on class and options."""
|
295
|
+
fopt = self.extraction_format_to_options.get(doc_format)
|
296
|
+
if fopt is None or fopt.pipeline_options is None:
|
297
|
+
return None
|
298
|
+
|
299
|
+
pipeline_class = fopt.pipeline_cls
|
300
|
+
pipeline_options = fopt.pipeline_options
|
301
|
+
options_hash = self._get_pipeline_options_hash(pipeline_options)
|
302
|
+
|
303
|
+
cache_key = (pipeline_class, options_hash)
|
304
|
+
with _PIPELINE_CACHE_LOCK:
|
305
|
+
if cache_key not in self._initialized_pipelines:
|
306
|
+
_log.info(
|
307
|
+
f"Initializing extraction pipeline for {pipeline_class.__name__} with options hash {options_hash}"
|
308
|
+
)
|
309
|
+
self._initialized_pipelines[cache_key] = pipeline_class(
|
310
|
+
pipeline_options=pipeline_options # type: ignore[arg-type]
|
311
|
+
)
|
312
|
+
else:
|
313
|
+
_log.debug(
|
314
|
+
f"Reusing cached extraction pipeline for {pipeline_class.__name__} with options hash {options_hash}"
|
315
|
+
)
|
316
|
+
|
317
|
+
return self._initialized_pipelines[cache_key]
|
318
|
+
|
319
|
+
@staticmethod
|
320
|
+
def _get_pipeline_options_hash(pipeline_options: PipelineOptions) -> str:
|
321
|
+
"""Generate a stable hash of pipeline options to use as part of the cache key."""
|
322
|
+
options_str = str(pipeline_options.model_dump())
|
323
|
+
return hashlib.md5(
|
324
|
+
options_str.encode("utf-8"), usedforsecurity=False
|
325
|
+
).hexdigest()
|
docling/models/layout_model.py
CHANGED
@@ -91,7 +91,7 @@ class LayoutModel(BasePageModel):
|
|
91
91
|
local_dir: Optional[Path] = None,
|
92
92
|
force: bool = False,
|
93
93
|
progress: bool = False,
|
94
|
-
layout_model_config: LayoutModelConfig =
|
94
|
+
layout_model_config: LayoutModelConfig = LayoutOptions().model_spec, # use default
|
95
95
|
) -> Path:
|
96
96
|
return download_hf_model(
|
97
97
|
repo_id=layout_model_config.repo_id,
|
@@ -122,8 +122,8 @@ class LayoutModel(BasePageModel):
|
|
122
122
|
left_clusters = [c for c in clusters if c.label not in exclude_labels]
|
123
123
|
right_clusters = [c for c in clusters if c.label in exclude_labels]
|
124
124
|
# Create a deep copy of the original image for both sides
|
125
|
-
left_image =
|
126
|
-
right_image =
|
125
|
+
left_image = page.image.copy()
|
126
|
+
right_image = page.image.copy()
|
127
127
|
|
128
128
|
# Draw clusters on both images
|
129
129
|
draw_clusters(left_image, left_clusters, scale_x, scale_y)
|
@@ -90,7 +90,7 @@ class PagePreprocessingModel(BasePageModel):
|
|
90
90
|
|
91
91
|
# DEBUG code:
|
92
92
|
def draw_text_boxes(image, cells, show: bool = False):
|
93
|
-
draw = ImageDraw.Draw(image)
|
93
|
+
draw = ImageDraw.Draw(image.copy())
|
94
94
|
for c in cells:
|
95
95
|
x0, y0, x1, y1 = (
|
96
96
|
c.to_bounding_box().l,
|