docling 1.19.1__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. docling/backend/abstract_backend.py +32 -37
  2. docling/backend/docling_parse_backend.py +16 -12
  3. docling/backend/docling_parse_v2_backend.py +240 -0
  4. docling/backend/html_backend.py +425 -0
  5. docling/backend/mspowerpoint_backend.py +375 -0
  6. docling/backend/msword_backend.py +509 -0
  7. docling/backend/pdf_backend.py +78 -0
  8. docling/backend/pypdfium2_backend.py +15 -10
  9. docling/cli/main.py +61 -60
  10. docling/datamodel/base_models.py +73 -193
  11. docling/datamodel/document.py +364 -318
  12. docling/datamodel/pipeline_options.py +13 -0
  13. docling/datamodel/settings.py +1 -0
  14. docling/document_converter.py +215 -252
  15. docling/models/base_model.py +25 -0
  16. docling/models/base_ocr_model.py +10 -5
  17. docling/models/ds_glm_model.py +209 -20
  18. docling/models/easyocr_model.py +4 -1
  19. docling/models/layout_model.py +73 -61
  20. docling/models/page_assemble_model.py +21 -5
  21. docling/models/page_preprocessing_model.py +57 -0
  22. docling/models/table_structure_model.py +34 -32
  23. docling/models/tesseract_ocr_cli_model.py +8 -5
  24. docling/models/tesseract_ocr_model.py +8 -5
  25. docling/pipeline/base_pipeline.py +190 -0
  26. docling/pipeline/simple_pipeline.py +59 -0
  27. docling/pipeline/standard_pdf_pipeline.py +198 -0
  28. docling/utils/export.py +4 -3
  29. docling/utils/layout_utils.py +17 -11
  30. docling-2.0.0.dist-info/METADATA +149 -0
  31. docling-2.0.0.dist-info/RECORD +42 -0
  32. docling/pipeline/base_model_pipeline.py +0 -18
  33. docling/pipeline/standard_model_pipeline.py +0 -66
  34. docling-1.19.1.dist-info/METADATA +0 -380
  35. docling-1.19.1.dist-info/RECORD +0 -34
  36. {docling-1.19.1.dist-info → docling-2.0.0.dist-info}/LICENSE +0 -0
  37. {docling-1.19.1.dist-info → docling-2.0.0.dist-info}/WHEEL +0 -0
  38. {docling-1.19.1.dist-info → docling-2.0.0.dist-info}/entry_points.txt +0 -0
@@ -1,380 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: docling
3
- Version: 1.19.1
4
- Summary: Docling PDF conversion package
5
- Home-page: https://github.com/DS4SD/docling
6
- License: MIT
7
- Keywords: docling,convert,document,pdf,layout model,segmentation,table structure,table former
8
- Author: Christoph Auer
9
- Author-email: cau@zurich.ibm.com
10
- Requires-Python: >=3.10,<4.0
11
- Classifier: Development Status :: 5 - Production/Stable
12
- Classifier: Intended Audience :: Developers
13
- Classifier: Intended Audience :: Science/Research
14
- Classifier: License :: OSI Approved :: MIT License
15
- Classifier: Operating System :: MacOS :: MacOS X
16
- Classifier: Operating System :: POSIX :: Linux
17
- Classifier: Programming Language :: Python :: 3
18
- Classifier: Programming Language :: Python :: 3.10
19
- Classifier: Programming Language :: Python :: 3.11
20
- Classifier: Programming Language :: Python :: 3.12
21
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
22
- Provides-Extra: tesserocr
23
- Requires-Dist: certifi (>=2024.7.4)
24
- Requires-Dist: deepsearch-glm (>=0.22.0,<0.23.0)
25
- Requires-Dist: docling-core (>=1.7.1,<2.0.0)
26
- Requires-Dist: docling-ibm-models (>=2.0.0,<3.0.0)
27
- Requires-Dist: docling-parse (>=1.4.1,<2.0.0)
28
- Requires-Dist: easyocr (>=1.7,<2.0)
29
- Requires-Dist: filetype (>=1.2.0,<2.0.0)
30
- Requires-Dist: huggingface_hub (>=0.23,<1)
31
- Requires-Dist: pandas (>=2.1.4,<3.0.0)
32
- Requires-Dist: pyarrow (>=16.1.0,<17.0.0)
33
- Requires-Dist: pydantic (>=2.0.0,<3.0.0)
34
- Requires-Dist: pydantic-settings (>=2.3.0,<3.0.0)
35
- Requires-Dist: pypdfium2 (>=4.30.0,<5.0.0)
36
- Requires-Dist: requests (>=2.32.3,<3.0.0)
37
- Requires-Dist: rtree (>=1.3.0,<2.0.0)
38
- Requires-Dist: scipy (>=1.14.1,<2.0.0)
39
- Requires-Dist: tesserocr (>=2.7.1,<3.0.0) ; extra == "tesserocr"
40
- Requires-Dist: torch (>=2.2.2,<2.3.0) ; sys_platform == "darwin" and platform_machine == "x86_64"
41
- Requires-Dist: torch (>=2.2.2,<3.0.0) ; sys_platform != "darwin" or platform_machine != "x86_64"
42
- Requires-Dist: torchvision (>=0,<1) ; sys_platform != "darwin" or platform_machine != "x86_64"
43
- Requires-Dist: torchvision (>=0.17.2,<0.18.0) ; sys_platform == "darwin" and platform_machine == "x86_64"
44
- Requires-Dist: typer (>=0.12.5,<0.13.0)
45
- Project-URL: Repository, https://github.com/DS4SD/docling
46
- Description-Content-Type: text/markdown
47
-
48
- <p align="center">
49
- <a href="https://github.com/ds4sd/docling">
50
- <img loading="lazy" alt="Docling" src="https://github.com/DS4SD/docling/raw/main/logo.png" width="150" />
51
- </a>
52
- </p>
53
-
54
- # Docling
55
-
56
- [![arXiv](https://img.shields.io/badge/arXiv-2408.09869-b31b1b.svg)](https://arxiv.org/abs/2408.09869)
57
- [![PyPI version](https://img.shields.io/pypi/v/docling)](https://pypi.org/project/docling/)
58
- ![Python](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12-blue)
59
- [![Poetry](https://img.shields.io/endpoint?url=https://python-poetry.org/badge/v0.json)](https://python-poetry.org/)
60
- [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
61
- [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
62
- [![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)
63
- [![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://github.com/pre-commit/pre-commit)
64
- [![License MIT](https://img.shields.io/github/license/DS4SD/docling)](https://opensource.org/licenses/MIT)
65
-
66
- Docling bundles PDF document conversion to JSON and Markdown in an easy, self-contained package.
67
-
68
- ## Features
69
- * ⚡ Converts any PDF document to JSON or Markdown format, stable and lightning fast
70
- * 📑 Understands detailed page layout, reading order and recovers table structures
71
- * 📝 Extracts metadata from the document, such as title, authors, references and language
72
- * 🔍 Includes OCR support for scanned PDFs
73
- * 🤖 Integrates easily with LLM app / RAG frameworks like 🦙 LlamaIndex and 🦜🔗 LangChain
74
- * 💻 Provides a simple and convenient CLI
75
-
76
- ## Installation
77
-
78
- To use Docling, simply install `docling` from your package manager, e.g. pip:
79
- ```bash
80
- pip install docling
81
- ```
82
-
83
- Works on macOS, Linux and Windows environments. Both x86_64 and arm64 architectures.
84
-
85
- <details>
86
- <summary><b>Alternative PyTorch distributions</b></summary>
87
-
88
- The Docling models depend on the [PyTorch](https://pytorch.org/) library.
89
- Depending on your architecture, you might want to use a different distribution of `torch`.
90
- For example, you might want support for different accelerator or for a cpu-only version.
91
- All the different ways for installing `torch` are listed on their website <https://pytorch.org/>.
92
-
93
- One common situation is the installation on Linux systems with cpu-only support.
94
- In this case, we suggest the installation of Docling with the following options
95
-
96
- ```bash
97
- # Example for installing on the Linux cpu-only version
98
- pip install docling --extra-index-url https://download.pytorch.org/whl/cpu
99
- ```
100
- </details>
101
-
102
- <details>
103
- <summary><b>Alternative OCR engines</b></summary>
104
-
105
- Docling supports multiple OCR engines for processing scanned documents. The current version provides
106
- the following engines.
107
-
108
- | Engine | Installation | Usage |
109
- | ------ | ------------ | ----- |
110
- | [EasyOCR](https://github.com/JaidedAI/EasyOCR) | Default in Docling or via `pip install easyocr`. | `EasyOcrOptions` |
111
- | Tesseract | System dependency. See description for Tesseract and Tesserocr below. | `TesseractOcrOptions` |
112
- | Tesseract CLI | System dependency. See description below. | `TesseractCliOcrOptions` |
113
-
114
- The Docling `DocumentConverter` allows to choose the OCR engine with the `ocr_options` settings. For example
115
-
116
- ```python
117
- from docling.datamodel.base_models import ConversionStatus, PipelineOptions
118
- from docling.datamodel.pipeline_options import PipelineOptions, EasyOcrOptions, TesseractOcrOptions
119
- from docling.document_converter import DocumentConverter
120
-
121
- pipeline_options = PipelineOptions()
122
- pipeline_options.do_ocr = True
123
- pipeline_options.ocr_options = TesseractOcrOptions() # Use Tesseract
124
-
125
- doc_converter = DocumentConverter(
126
- pipeline_options=pipeline_options,
127
- )
128
- ```
129
-
130
- #### Tesseract installation
131
-
132
- [Tesseract](https://github.com/tesseract-ocr/tesseract) is a popular OCR engine which is available
133
- on most operating systems. For using this engine with Docling, Tesseract must be installed on your
134
- system, using the packaging tool of your choice. Below we provide example commands.
135
- After installing Tesseract you are expected to provide the path to its language files using the
136
- `TESSDATA_PREFIX` environment variable (note that it must terminate with a slash `/`).
137
-
138
- For macOS, we reccomend using [Homebrew](https://brew.sh/).
139
-
140
- ```console
141
- brew install tesseract leptonica pkg-config
142
- TESSDATA_PREFIX=/opt/homebrew/share/tessdata/
143
- echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
144
- ```
145
-
146
- For Debian-based systems.
147
-
148
- ```console
149
- apt-get install tesseract-ocr tesseract-ocr-eng libtesseract-dev libleptonica-dev pkg-config
150
- TESSDATA_PREFIX=$(dpkg -L tesseract-ocr-eng | grep tessdata$)
151
- echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
152
- ```
153
-
154
- For RHEL systems.
155
-
156
- ```console
157
- dnf install tesseract tesseract-devel tesseract-langpack-eng leptonica-devel
158
- TESSDATA_PREFIX=/usr/share/tesseract/tessdata/
159
- echo "Set TESSDATA_PREFIX=${TESSDATA_PREFIX}"
160
- ```
161
-
162
- #### Linking to Tesseract
163
- The most efficient usage of the Tesseract library is via linking. Docling is using
164
- the [Tesserocr](https://github.com/sirfz/tesserocr) package for this.
165
-
166
- If you get into installation issues of Tesserocr, we suggest using the following
167
- installation options:
168
-
169
- ```console
170
- pip uninstall tesserocr
171
- pip install --no-binary :all: tesserocr
172
- ```
173
- </details>
174
-
175
- <details>
176
- <summary><b>Docling development setup</b></summary>
177
-
178
- To develop for Docling (features, bugfixes etc.), install as follows from your local clone's root dir:
179
- ```bash
180
- poetry install --all-extras
181
- ```
182
- </details>
183
-
184
- ## Getting started
185
-
186
- ### Convert a single document
187
-
188
- To convert invidual PDF documents, use `convert_single()`, for example:
189
- ```python
190
- from docling.document_converter import DocumentConverter
191
-
192
- source = "https://arxiv.org/pdf/2408.09869" # PDF path or URL
193
- converter = DocumentConverter()
194
- result = converter.convert_single(source)
195
- print(result.render_as_markdown()) # output: "## Docling Technical Report[...]"
196
- print(result.render_as_doctags()) # output: "<document><title><page_1><loc_20>..."
197
- ```
198
-
199
- ### Convert a batch of documents
200
-
201
- For an example of batch-converting documents, see [batch_convert.py](https://github.com/DS4SD/docling/blob/main/examples/batch_convert.py).
202
-
203
- From a local repo clone, you can run it with:
204
-
205
- ```
206
- python examples/batch_convert.py
207
- ```
208
- The output of the above command will be written to `./scratch`.
209
-
210
- ### CLI
211
-
212
- You can also use Docling directly from your command line to convert individual files —be it local or by URL— or whole directories.
213
-
214
- A simple example would look like this:
215
- ```console
216
- docling https://arxiv.org/pdf/2206.01062
217
- ```
218
-
219
- To see all available options (export formats etc.) run `docling --help`.
220
-
221
- <details>
222
- <summary><b>CLI reference</b></summary>
223
-
224
- Here are the available options as of this writing (for an up-to-date listing, run `docling --help`):
225
-
226
- ```console
227
- $ docling --help
228
-
229
- Usage: docling [OPTIONS] source
230
-
231
- ╭─ Arguments ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
232
- │ * input_sources source PDF files to convert. Can be local file / directory paths or URL. [default: None] [required] │
233
- ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
234
- ╭─ Options ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
235
- │ --json --no-json If enabled the document is exported as JSON. [default: no-json] │
236
- │ --md --no-md If enabled the document is exported as Markdown. [default: md] │
237
- │ --txt --no-txt If enabled the document is exported as Text. [default: no-txt] │
238
- │ --doctags --no-doctags If enabled the document is exported as Doc Tags. [default: no-doctags] │
239
- │ --ocr --no-ocr If enabled, the bitmap content will be processed using OCR. [default: ocr] │
240
- │ --backend [pypdfium2|docling] The PDF backend to use. [default: docling] │
241
- │ --output PATH Output directory where results are saved. [default: .] │
242
- │ --version Show version information. │
243
- │ --help Show this message and exit. │
244
- ╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
245
- ```
246
- </details>
247
-
248
- ### RAG
249
- Check out the following examples showcasing RAG using Docling with standard LLM application frameworks:
250
- - [Basic RAG pipeline with 🦙 LlamaIndex](https://github.com/DS4SD/docling/tree/main/examples/rag_llamaindex.ipynb)
251
- - [Basic RAG pipeline with 🦜🔗 LangChain](https://github.com/DS4SD/docling/tree/main/examples/rag_langchain.ipynb)
252
-
253
- ## Advanced features
254
-
255
- ### Adjust pipeline features
256
-
257
- The example file [custom_convert.py](https://github.com/DS4SD/docling/blob/main/examples/custom_convert.py) contains multiple ways
258
- one can adjust the conversion pipeline and features.
259
-
260
-
261
- #### Control pipeline options
262
-
263
- You can control if table structure recognition or OCR should be performed by arguments passed to `DocumentConverter`:
264
- ```python
265
- doc_converter = DocumentConverter(
266
- artifacts_path=artifacts_path,
267
- pipeline_options=PipelineOptions(
268
- do_table_structure=False, # controls if table structure is recovered
269
- do_ocr=True, # controls if OCR is applied (ignores programmatic content)
270
- ),
271
- )
272
- ```
273
-
274
- #### Control table extraction options
275
-
276
- You can control if table structure recognition should map the recognized structure back to PDF cells (default) or use text cells from the structure prediction itself.
277
- This can improve output quality if you find that multiple columns in extracted tables are erroneously merged into one.
278
-
279
-
280
- ```python
281
- from docling.datamodel.pipeline_options import PipelineOptions
282
-
283
- pipeline_options = PipelineOptions(do_table_structure=True)
284
- pipeline_options.table_structure_options.do_cell_matching = False # uses text cells predicted from table structure model
285
-
286
- doc_converter = DocumentConverter(
287
- artifacts_path=artifacts_path,
288
- pipeline_options=pipeline_options,
289
- )
290
- ```
291
-
292
- Since docling 1.16.0: You can control which TableFormer mode you want to use. Choose between `TableFormerMode.FAST` (default) and `TableFormerMode.ACCURATE` (better, but slower) to receive better quality with difficult table structures.
293
-
294
- ```python
295
- from docling.datamodel.pipeline_options import PipelineOptions, TableFormerMode
296
-
297
- pipeline_options = PipelineOptions(do_table_structure=True)
298
- pipeline_options.table_structure_options.mode = TableFormerMode.ACCURATE # use more accurate TableFormer model
299
-
300
- doc_converter = DocumentConverter(
301
- artifacts_path=artifacts_path,
302
- pipeline_options=pipeline_options,
303
- )
304
- ```
305
-
306
- ### Impose limits on the document size
307
-
308
- You can limit the file size and number of pages which should be allowed to process per document:
309
- ```python
310
- conv_input = DocumentConversionInput.from_paths(
311
- paths=[Path("./test/data/2206.01062.pdf")],
312
- limits=DocumentLimits(max_num_pages=100, max_file_size=20971520)
313
- )
314
- ```
315
-
316
- ### Convert from binary PDF streams
317
-
318
- You can convert PDFs from a binary stream instead of from the filesystem as follows:
319
- ```python
320
- buf = BytesIO(your_binary_stream)
321
- docs = [DocumentStream(filename="my_doc.pdf", stream=buf)]
322
- conv_input = DocumentConversionInput.from_streams(docs)
323
- results = doc_converter.convert(conv_input)
324
- ```
325
- ### Limit resource usage
326
-
327
- You can limit the CPU threads used by Docling by setting the environment variable `OMP_NUM_THREADS` accordingly. The default setting is using 4 CPU threads.
328
-
329
- ### Chunking
330
-
331
- You can perform a hierarchy-aware chunking of a Docling document as follows:
332
-
333
- ```python
334
- from docling.document_converter import DocumentConverter
335
- from docling_core.transforms.chunker import HierarchicalChunker
336
-
337
- doc = DocumentConverter().convert_single("https://arxiv.org/pdf/2206.01062").output
338
- chunks = list(HierarchicalChunker().chunk(doc))
339
- print(chunks[0])
340
- # ChunkWithMetadata(
341
- # path='#/main-text/1',
342
- # text='DocLayNet: A Large Human-Annotated Dataset [...]',
343
- # page=1,
344
- # bbox=[107.30, 672.38, 505.19, 709.08],
345
- # [...]
346
- # )
347
- ```
348
-
349
-
350
- ## Technical report
351
-
352
- For more details on Docling's inner workings, check out the [Docling Technical Report](https://arxiv.org/abs/2408.09869).
353
-
354
- ## Contributing
355
-
356
- Please read [Contributing to Docling](https://github.com/DS4SD/docling/blob/main/CONTRIBUTING.md) for details.
357
-
358
-
359
- ## References
360
-
361
- If you use Docling in your projects, please consider citing the following:
362
-
363
- ```bib
364
- @techreport{Docling,
365
- author = {Deep Search Team},
366
- month = {8},
367
- title = {Docling Technical Report},
368
- url = {https://arxiv.org/abs/2408.09869},
369
- eprint = {2408.09869},
370
- doi = {10.48550/arXiv.2408.09869},
371
- version = {1.0.0},
372
- year = {2024}
373
- }
374
- ```
375
-
376
- ## License
377
-
378
- The Docling codebase is under MIT license.
379
- For individual model usage, please refer to the model licenses found in the original packages.
380
-
@@ -1,34 +0,0 @@
1
- docling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- docling/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- docling/backend/abstract_backend.py,sha256=clJtGxLedpLriEhpx7oyxjmlwMLPorkv-1tdfZm9GdA,1546
4
- docling/backend/docling_parse_backend.py,sha256=RUWWZbx2cUotZeeTkc-Lbg2k8MVFXFxaDjM4sPfaFZE,7475
5
- docling/backend/pypdfium2_backend.py,sha256=bIIImVM73wmcVcKMqjl4JF8CD-Qj2W5rZbI4G7clU4s,8877
6
- docling/cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
- docling/cli/main.py,sha256=Q_5HTL2O20bMlF-U8Ac8ev4iqgLPyrwlHEyLAq6rezg,7913
8
- docling/datamodel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
9
- docling/datamodel/base_models.py,sha256=ihBfPvVhxnEGmrzBMma_2RlOyObpaBAb7O5oBFBlIks,8833
10
- docling/datamodel/document.py,sha256=8iHylLaty-ZVYGzYmP61dZPtduzEyiRM79Tx3gS9UEU,16195
11
- docling/datamodel/pipeline_options.py,sha256=KTjos_AheIUDlMm4xsV9V1cvM5cI3ZG43z-WXAP_FXU,1931
12
- docling/datamodel/settings.py,sha256=t5g6wrEJnPa9gBzMMl8ppgBRUYz-8xgopEtfMS0ZH28,733
13
- docling/document_converter.py,sha256=V0Q5hCRyTbmavhQBN48biBttxpvPyoAPmFRhSePv2vE,11149
14
- docling/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- docling/models/base_ocr_model.py,sha256=a89dLaT2vV5lTSNeetlCY9OnUd4LP4My_ZRky_fpVgo,4530
16
- docling/models/ds_glm_model.py,sha256=VXGmj8cW0WKMz1He4tp1lZhXHkS8Z39U1G-ujkc7deU,3368
17
- docling/models/easyocr_model.py,sha256=fmfTvOfqo97n_xYQDPRMKlvMOs9QqgLgSTqwBDrjK_8,3010
18
- docling/models/layout_model.py,sha256=5wCohyzGK1p5F5cTRY5QWbW2AI4eevXobJDJdSLhX7k,11272
19
- docling/models/page_assemble_model.py,sha256=8eoG2WiFxPxq9TPvM-wkngb2gkr0tdtCRVXg1JcTETo,5550
20
- docling/models/table_structure_model.py,sha256=iHJjWdKCpTcH3l_ElMWnC5pt6tkUpIuByed304Fdq9w,6009
21
- docling/models/tesseract_ocr_cli_model.py,sha256=B7zPkpKgpfTTUWXm-_zvw7x0yvzVd85WguawFVDwdqI,5529
22
- docling/models/tesseract_ocr_model.py,sha256=PqQv1Hv3GC1FByjegWvjNFw15Jcw-mT25_MvFr3hAHQ,4575
23
- docling/pipeline/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
- docling/pipeline/base_model_pipeline.py,sha256=rrMog3EuiR5Gx9OWtfMj24rQvHCrWkxZ3g9OIr7LPSQ,607
25
- docling/pipeline/standard_model_pipeline.py,sha256=SVyMYmP1YLzYqDqagjn-pWugnjS7bp9YbmlV-VcenpI,2589
26
- docling/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
- docling/utils/export.py,sha256=bKLdbeUcR-rQsGPV1IqJkCHKMCv7X2QOHyxmjNuH3HE,4655
28
- docling/utils/layout_utils.py,sha256=FOFbL0hKzUoWXdZaeUvEtFqKv0IkPifIr4sdGW4suKs,31804
29
- docling/utils/utils.py,sha256=llhXSbIDNZ1MHOwBEfLHBAoJIAYI7QlPIonlI1jLUJ0,1208
30
- docling-1.19.1.dist-info/LICENSE,sha256=mBb7ErEcM8VS9OhiGHnQ2kk75HwPhr54W1Oiz3965MY,1088
31
- docling-1.19.1.dist-info/METADATA,sha256=hCQeq3JVB16CfTwtjjwnX5u9bWYjD0CsSbn9h1tZZTM,16800
32
- docling-1.19.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
- docling-1.19.1.dist-info/entry_points.txt,sha256=VOSzV77znM52dz5ysaDuJ0ijl1cnfrh1ZPg8od5OcTs,48
34
- docling-1.19.1.dist-info/RECORD,,