docling-ibm-models 3.1.1__py3-none-any.whl → 3.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- docling_ibm_models/code_formula_model/code_formula_predictor.py +223 -0
- docling_ibm_models/code_formula_model/models/sam.py +514 -0
- docling_ibm_models/code_formula_model/models/sam_opt.py +237 -0
- docling_ibm_models/code_formula_model/models/sam_opt_image_processor.py +31 -0
- {docling_ibm_models-3.1.1.dist-info → docling_ibm_models-3.2.0.dist-info}/METADATA +3 -2
- {docling_ibm_models-3.1.1.dist-info → docling_ibm_models-3.2.0.dist-info}/RECORD +8 -4
- {docling_ibm_models-3.1.1.dist-info → docling_ibm_models-3.2.0.dist-info}/LICENSE +0 -0
- {docling_ibm_models-3.1.1.dist-info → docling_ibm_models-3.2.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,223 @@
|
|
1
|
+
#
|
2
|
+
# Copyright IBM Corp. 2024 - 2024
|
3
|
+
# SPDX-License-Identifier: MIT
|
4
|
+
#
|
5
|
+
import logging
|
6
|
+
from typing import List, Union
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
import torch
|
10
|
+
from PIL import Image
|
11
|
+
from transformers import AutoTokenizer
|
12
|
+
|
13
|
+
from docling_ibm_models.code_formula_model.models.sam_opt import SamOPTForCausalLM
|
14
|
+
from docling_ibm_models.code_formula_model.models.sam_opt_image_processor import (
|
15
|
+
SamOptImageProcessor,
|
16
|
+
)
|
17
|
+
|
18
|
+
_log = logging.getLogger(__name__)
|
19
|
+
|
20
|
+
|
21
|
+
class CodeFormulaPredictor:
|
22
|
+
"""
|
23
|
+
Code and Formula Predictor using a multi-modal vision-language model.
|
24
|
+
|
25
|
+
This class enables the prediction of code or LaTeX representations
|
26
|
+
from input images of code snippets or mathematical formulas.
|
27
|
+
|
28
|
+
Attributes
|
29
|
+
----------
|
30
|
+
_device : str
|
31
|
+
The device on which the model is loaded (e.g., 'cpu' or 'cuda').
|
32
|
+
_num_threads : int
|
33
|
+
Number of threads used for inference when running on CPU.
|
34
|
+
_tokenizer : transformers.PreTrainedTokenizer
|
35
|
+
Tokenizer for processing textual inputs to the model.
|
36
|
+
_model : transformers.PreTrainedModel
|
37
|
+
Pretrained multi-modal vision-language model.
|
38
|
+
_image_processor : transformers.ImageProcessor
|
39
|
+
Processor for normalizing and preparing input images.
|
40
|
+
_temperature : float
|
41
|
+
Sampling temperature for generation; controls randomness in predictions.
|
42
|
+
"""
|
43
|
+
|
44
|
+
def __init__(
|
45
|
+
self,
|
46
|
+
artifacts_path: str,
|
47
|
+
device: str = "cpu",
|
48
|
+
num_threads: int = 4,
|
49
|
+
):
|
50
|
+
"""
|
51
|
+
Initializes the CodeFormulaPredictor with the specified model artifacts.
|
52
|
+
|
53
|
+
Parameters
|
54
|
+
----------
|
55
|
+
artifacts_path : str
|
56
|
+
Path to the directory containing the pretrained model files.
|
57
|
+
device : str, optional
|
58
|
+
Device to run the inference on ('cpu' or 'cuda'), by default "cpu".
|
59
|
+
num_threads : int, optional
|
60
|
+
Number of threads for CPU inference, by default 4.
|
61
|
+
"""
|
62
|
+
self._device = device
|
63
|
+
self._num_threads = num_threads
|
64
|
+
if device == "cpu":
|
65
|
+
torch.set_num_threads(self._num_threads)
|
66
|
+
|
67
|
+
self._tokenizer = AutoTokenizer.from_pretrained(
|
68
|
+
artifacts_path, use_fast=True, padding_side="left"
|
69
|
+
)
|
70
|
+
self._model = SamOPTForCausalLM.from_pretrained(artifacts_path).to(self._device)
|
71
|
+
self._model.eval()
|
72
|
+
|
73
|
+
self._image_processor = SamOptImageProcessor.from_pretrained(artifacts_path)
|
74
|
+
|
75
|
+
_log.debug("CodeFormulaModel settings: {}".format(self.info()))
|
76
|
+
|
77
|
+
def info(self) -> dict:
|
78
|
+
"""
|
79
|
+
Retrieves configuration details of the CodeFormulaPredictor instance.
|
80
|
+
|
81
|
+
Returns
|
82
|
+
-------
|
83
|
+
dict
|
84
|
+
A dictionary containing configuration details such as the device and
|
85
|
+
the number of threads used.
|
86
|
+
"""
|
87
|
+
info = {
|
88
|
+
"device": self._device,
|
89
|
+
"num_threads": self._num_threads,
|
90
|
+
}
|
91
|
+
return info
|
92
|
+
|
93
|
+
def _get_prompt(self, label: str) -> str:
|
94
|
+
"""
|
95
|
+
Constructs the prompt for the model based on the input label.
|
96
|
+
|
97
|
+
Parameters
|
98
|
+
----------
|
99
|
+
label : str
|
100
|
+
The type of input, either 'code' or 'formula'.
|
101
|
+
|
102
|
+
Returns
|
103
|
+
-------
|
104
|
+
str
|
105
|
+
The constructed prompt including necessary tokens and query.
|
106
|
+
|
107
|
+
Raises
|
108
|
+
------
|
109
|
+
NotImplementedError
|
110
|
+
If the label is not 'code' or 'formula'.
|
111
|
+
"""
|
112
|
+
if label == "code":
|
113
|
+
query = "<code_image_to_text>"
|
114
|
+
elif label == "formula":
|
115
|
+
query = "<equation>"
|
116
|
+
else:
|
117
|
+
raise NotImplementedError("Label must be either code or formula")
|
118
|
+
|
119
|
+
prompt = (
|
120
|
+
"A chat between a curious user and an artificial intelligence"
|
121
|
+
" assistant. The assistant gives helpful, detailed, and polite answers to"
|
122
|
+
" the user's questions. USER:"
|
123
|
+
)
|
124
|
+
prompt += (
|
125
|
+
"<img>" + "<imgpad>" * 256 + "</img>" + "\n" + " ASSISTANT:" + "\n" + query
|
126
|
+
)
|
127
|
+
|
128
|
+
return prompt
|
129
|
+
|
130
|
+
@torch.inference_mode()
|
131
|
+
def predict(
|
132
|
+
self,
|
133
|
+
images: List[Union[Image.Image, np.ndarray]],
|
134
|
+
labels: List[str],
|
135
|
+
temperature: float = 0.1,
|
136
|
+
) -> List[str]:
|
137
|
+
"""
|
138
|
+
Predicts the textual representation of input images (code or LaTeX).
|
139
|
+
|
140
|
+
Parameters
|
141
|
+
----------
|
142
|
+
images : List[Union[Image.Image, np.ndarray]]
|
143
|
+
List of images to be processed, provided as PIL Image objects or numpy arrays.
|
144
|
+
labels : List[str]
|
145
|
+
List of labels indicating the type of each image ('code' or 'formula').
|
146
|
+
temperature : float, optional
|
147
|
+
Sampling temperature for generation, by default set to 0.1.
|
148
|
+
|
149
|
+
Returns
|
150
|
+
-------
|
151
|
+
List[str]
|
152
|
+
List of predicted textual outputs for each input image in the given input
|
153
|
+
order.
|
154
|
+
|
155
|
+
Raises
|
156
|
+
------
|
157
|
+
TypeError
|
158
|
+
If any of the input images is not of a supported type (PIL Image or numpy array).
|
159
|
+
Excpetion
|
160
|
+
In case the temperature is an invalid number.
|
161
|
+
"""
|
162
|
+
if (type(temperature) != float and type(temperature) != int) or temperature < 0:
|
163
|
+
raise Exception("Temperature must be a number greater or equal to 0.")
|
164
|
+
|
165
|
+
do_sample = True
|
166
|
+
if temperature == 0:
|
167
|
+
do_sample = False
|
168
|
+
temperature = None
|
169
|
+
|
170
|
+
if len(labels) != len(images):
|
171
|
+
raise Exception(
|
172
|
+
"The number of images must be the same as the number of labels."
|
173
|
+
)
|
174
|
+
|
175
|
+
images_tmp = []
|
176
|
+
for image in images:
|
177
|
+
if isinstance(image, Image.Image):
|
178
|
+
image = image.convert("RGB")
|
179
|
+
elif isinstance(image, np.ndarray):
|
180
|
+
image = Image.fromarray(image).convert("RGB")
|
181
|
+
else:
|
182
|
+
raise TypeError("Not supported input image format")
|
183
|
+
images_tmp.append(image)
|
184
|
+
images = images_tmp
|
185
|
+
|
186
|
+
images_tensor = torch.stack([self._image_processor(img) for img in images]).to(
|
187
|
+
self._device
|
188
|
+
)
|
189
|
+
|
190
|
+
prompts = [self._get_prompt(label) for label in labels]
|
191
|
+
|
192
|
+
tokenized = self._tokenizer(prompts, padding=True, return_tensors="pt")
|
193
|
+
tokenized = {k: v.to(self._device) for k, v in tokenized.items()}
|
194
|
+
|
195
|
+
prompt_ids = tokenized["input_ids"]
|
196
|
+
attention_mask = tokenized["attention_mask"]
|
197
|
+
|
198
|
+
if self._device == "cpu":
|
199
|
+
output_ids_list = self._model.generate(
|
200
|
+
input_ids=prompt_ids,
|
201
|
+
attention_mask=attention_mask,
|
202
|
+
images=images_tensor,
|
203
|
+
do_sample=do_sample,
|
204
|
+
temperature=temperature,
|
205
|
+
max_new_tokens=4096 - prompt_ids.shape[1],
|
206
|
+
use_cache=True,
|
207
|
+
)
|
208
|
+
else:
|
209
|
+
with torch.autocast(device_type=self._device, dtype=torch.bfloat16):
|
210
|
+
output_ids_list = self._model.generate(
|
211
|
+
prompt_ids,
|
212
|
+
images=images_tensor,
|
213
|
+
do_sample=do_sample,
|
214
|
+
temperature=temperature,
|
215
|
+
max_new_tokens=4096 - prompt_ids.shape[1],
|
216
|
+
use_cache=True,
|
217
|
+
)
|
218
|
+
|
219
|
+
outputs = self._tokenizer.batch_decode(
|
220
|
+
output_ids_list[:, prompt_ids.shape[1] :], skip_special_tokens=True
|
221
|
+
)
|
222
|
+
|
223
|
+
return outputs
|
@@ -0,0 +1,514 @@
|
|
1
|
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2
|
+
# All rights reserved.
|
3
|
+
#
|
4
|
+
# This file was originally developed by Meta Platforms, Inc. as part of
|
5
|
+
# the Segment Anything project (https://github.com/facebookresearch/segment-anything).
|
6
|
+
# It has been adapted by contributors from the Vary-toy project
|
7
|
+
# (https://github.com/Ucas-HaoranWei/Vary-toy).
|
8
|
+
#
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10
|
+
# you may not use this file except in compliance with the License.
|
11
|
+
# You may obtain a copy of the License at:
|
12
|
+
#
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14
|
+
#
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18
|
+
# See the License for the specific language governing permissions and
|
19
|
+
# limitations under the License.
|
20
|
+
|
21
|
+
|
22
|
+
from functools import partial
|
23
|
+
from typing import Optional, Tuple, Type
|
24
|
+
|
25
|
+
import torch
|
26
|
+
import torch.nn as nn
|
27
|
+
import torch.nn.functional as F
|
28
|
+
|
29
|
+
|
30
|
+
class MLPBlock(nn.Module):
|
31
|
+
def __init__(
|
32
|
+
self,
|
33
|
+
embedding_dim: int,
|
34
|
+
mlp_dim: int,
|
35
|
+
act: Type[nn.Module] = nn.GELU,
|
36
|
+
) -> None:
|
37
|
+
super().__init__()
|
38
|
+
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
39
|
+
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
40
|
+
self.act = act()
|
41
|
+
|
42
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
43
|
+
return self.lin2(self.act(self.lin1(x)))
|
44
|
+
|
45
|
+
|
46
|
+
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
47
|
+
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
48
|
+
class LayerNorm2d(nn.Module):
|
49
|
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
50
|
+
super().__init__()
|
51
|
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
52
|
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
53
|
+
self.eps = eps
|
54
|
+
|
55
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
56
|
+
u = x.mean(1, keepdim=True)
|
57
|
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
58
|
+
x = (x - u) / torch.sqrt(s + self.eps)
|
59
|
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
60
|
+
return x
|
61
|
+
|
62
|
+
|
63
|
+
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
64
|
+
class ImageEncoderViT(nn.Module):
|
65
|
+
def __init__(
|
66
|
+
self,
|
67
|
+
img_size: int = 1024,
|
68
|
+
patch_size: int = 16,
|
69
|
+
in_chans: int = 3,
|
70
|
+
embed_dim: int = 768,
|
71
|
+
depth: int = 12,
|
72
|
+
num_heads: int = 12,
|
73
|
+
mlp_ratio: float = 4.0,
|
74
|
+
out_chans: int = 256,
|
75
|
+
qkv_bias: bool = True,
|
76
|
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
77
|
+
act_layer: Type[nn.Module] = nn.GELU,
|
78
|
+
use_abs_pos: bool = True,
|
79
|
+
use_rel_pos: bool = False,
|
80
|
+
rel_pos_zero_init: bool = True,
|
81
|
+
window_size: int = 0,
|
82
|
+
global_attn_indexes: Tuple[int, ...] = (),
|
83
|
+
) -> None:
|
84
|
+
"""
|
85
|
+
Args:
|
86
|
+
img_size (int): Input image size.
|
87
|
+
patch_size (int): Patch size.
|
88
|
+
in_chans (int): Number of input image channels.
|
89
|
+
embed_dim (int): Patch embedding dimension.
|
90
|
+
depth (int): Depth of ViT.
|
91
|
+
num_heads (int): Number of attention heads in each ViT block.
|
92
|
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
93
|
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
94
|
+
norm_layer (nn.Module): Normalization layer.
|
95
|
+
act_layer (nn.Module): Activation layer.
|
96
|
+
use_abs_pos (bool): If True, use absolute positional embeddings.
|
97
|
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
98
|
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
99
|
+
window_size (int): Window size for window attention blocks.
|
100
|
+
global_attn_indexes (list): Indexes for blocks using global attention.
|
101
|
+
"""
|
102
|
+
super().__init__()
|
103
|
+
self.img_size = img_size
|
104
|
+
|
105
|
+
self.patch_embed = PatchEmbed(
|
106
|
+
kernel_size=(patch_size, patch_size),
|
107
|
+
stride=(patch_size, patch_size),
|
108
|
+
in_chans=in_chans,
|
109
|
+
embed_dim=embed_dim,
|
110
|
+
)
|
111
|
+
|
112
|
+
self.pos_embed: Optional[nn.Parameter] = None
|
113
|
+
if use_abs_pos:
|
114
|
+
self.pos_embed = nn.Parameter(
|
115
|
+
torch.zeros(
|
116
|
+
1, img_size // patch_size, img_size // patch_size, embed_dim
|
117
|
+
)
|
118
|
+
)
|
119
|
+
|
120
|
+
self.blocks = nn.ModuleList()
|
121
|
+
for i in range(depth):
|
122
|
+
block = Block(
|
123
|
+
dim=embed_dim,
|
124
|
+
num_heads=num_heads,
|
125
|
+
mlp_ratio=mlp_ratio,
|
126
|
+
qkv_bias=qkv_bias,
|
127
|
+
norm_layer=norm_layer,
|
128
|
+
act_layer=act_layer,
|
129
|
+
use_rel_pos=use_rel_pos,
|
130
|
+
rel_pos_zero_init=rel_pos_zero_init,
|
131
|
+
window_size=window_size if i not in global_attn_indexes else 0,
|
132
|
+
input_size=(img_size // patch_size, img_size // patch_size),
|
133
|
+
)
|
134
|
+
self.blocks.append(block)
|
135
|
+
|
136
|
+
self.neck = nn.Sequential(
|
137
|
+
nn.Conv2d(
|
138
|
+
embed_dim,
|
139
|
+
out_chans,
|
140
|
+
kernel_size=1,
|
141
|
+
bias=False,
|
142
|
+
),
|
143
|
+
LayerNorm2d(out_chans),
|
144
|
+
nn.Conv2d(
|
145
|
+
out_chans,
|
146
|
+
out_chans,
|
147
|
+
kernel_size=3,
|
148
|
+
padding=1,
|
149
|
+
bias=False,
|
150
|
+
),
|
151
|
+
LayerNorm2d(out_chans),
|
152
|
+
)
|
153
|
+
|
154
|
+
self.net_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1, bias=False)
|
155
|
+
self.net_3 = nn.Conv2d(
|
156
|
+
512, 1024, kernel_size=3, stride=2, padding=1, bias=False
|
157
|
+
)
|
158
|
+
|
159
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
160
|
+
x = self.patch_embed(x)
|
161
|
+
if self.pos_embed is not None:
|
162
|
+
x = x + self.pos_embed
|
163
|
+
|
164
|
+
for blk in self.blocks:
|
165
|
+
x = blk(x)
|
166
|
+
|
167
|
+
x = self.neck(x.permute(0, 3, 1, 2))
|
168
|
+
x = self.net_2(x)
|
169
|
+
x = self.net_3(x)
|
170
|
+
|
171
|
+
return x
|
172
|
+
|
173
|
+
|
174
|
+
class Block(nn.Module):
|
175
|
+
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
176
|
+
|
177
|
+
def __init__(
|
178
|
+
self,
|
179
|
+
dim: int,
|
180
|
+
num_heads: int,
|
181
|
+
mlp_ratio: float = 4.0,
|
182
|
+
qkv_bias: bool = True,
|
183
|
+
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
184
|
+
act_layer: Type[nn.Module] = nn.GELU,
|
185
|
+
use_rel_pos: bool = False,
|
186
|
+
rel_pos_zero_init: bool = True,
|
187
|
+
window_size: int = 0,
|
188
|
+
input_size: Optional[Tuple[int, int]] = None,
|
189
|
+
) -> None:
|
190
|
+
"""
|
191
|
+
Args:
|
192
|
+
dim (int): Number of input channels.
|
193
|
+
num_heads (int): Number of attention heads in each ViT block.
|
194
|
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
195
|
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
196
|
+
norm_layer (nn.Module): Normalization layer.
|
197
|
+
act_layer (nn.Module): Activation layer.
|
198
|
+
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
199
|
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
200
|
+
window_size (int): Window size for window attention blocks. If it equals 0, then
|
201
|
+
use global attention.
|
202
|
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
203
|
+
positional parameter size.
|
204
|
+
"""
|
205
|
+
super().__init__()
|
206
|
+
self.norm1 = norm_layer(dim)
|
207
|
+
self.attn = Attention(
|
208
|
+
dim,
|
209
|
+
num_heads=num_heads,
|
210
|
+
qkv_bias=qkv_bias,
|
211
|
+
use_rel_pos=use_rel_pos,
|
212
|
+
rel_pos_zero_init=rel_pos_zero_init,
|
213
|
+
input_size=input_size if window_size == 0 else (window_size, window_size),
|
214
|
+
)
|
215
|
+
|
216
|
+
self.norm2 = norm_layer(dim)
|
217
|
+
self.mlp = MLPBlock(
|
218
|
+
embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
|
219
|
+
)
|
220
|
+
|
221
|
+
self.window_size = window_size
|
222
|
+
|
223
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
224
|
+
shortcut = x
|
225
|
+
x = self.norm1(x)
|
226
|
+
if self.window_size > 0:
|
227
|
+
H, W = x.shape[1], x.shape[2]
|
228
|
+
x, pad_hw = window_partition(x, self.window_size)
|
229
|
+
|
230
|
+
x = self.attn(x)
|
231
|
+
if self.window_size > 0:
|
232
|
+
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
233
|
+
|
234
|
+
x = shortcut + x
|
235
|
+
x = x + self.mlp(self.norm2(x))
|
236
|
+
|
237
|
+
return x
|
238
|
+
|
239
|
+
|
240
|
+
class Attention(nn.Module):
|
241
|
+
"""Multi-head Attention block with relative position embeddings."""
|
242
|
+
|
243
|
+
def __init__(
|
244
|
+
self,
|
245
|
+
dim: int,
|
246
|
+
num_heads: int = 8,
|
247
|
+
qkv_bias: bool = True,
|
248
|
+
use_rel_pos: bool = False,
|
249
|
+
rel_pos_zero_init: bool = True,
|
250
|
+
input_size: Optional[Tuple[int, int]] = None,
|
251
|
+
) -> None:
|
252
|
+
"""
|
253
|
+
Args:
|
254
|
+
dim (int): Number of input channels.
|
255
|
+
num_heads (int): Number of attention heads.
|
256
|
+
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
257
|
+
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
258
|
+
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
259
|
+
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
260
|
+
positional parameter size.
|
261
|
+
"""
|
262
|
+
super().__init__()
|
263
|
+
self.num_heads = num_heads
|
264
|
+
head_dim = dim // num_heads
|
265
|
+
self.scale = head_dim**-0.5
|
266
|
+
|
267
|
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
268
|
+
self.proj = nn.Linear(dim, dim)
|
269
|
+
|
270
|
+
self.use_rel_pos = use_rel_pos
|
271
|
+
if self.use_rel_pos:
|
272
|
+
assert (
|
273
|
+
input_size is not None
|
274
|
+
), "Input size must be provided if using relative positional encoding."
|
275
|
+
# initialize relative positional embeddings
|
276
|
+
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
277
|
+
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
278
|
+
|
279
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
280
|
+
B, H, W, _ = x.shape
|
281
|
+
# qkv with shape (3, B, nHead, H * W, C)
|
282
|
+
qkv = (
|
283
|
+
self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
284
|
+
)
|
285
|
+
# q, k, v with shape (B * nHead, H * W, C)
|
286
|
+
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
287
|
+
|
288
|
+
attn = (q * self.scale) @ k.transpose(-2, -1)
|
289
|
+
|
290
|
+
if self.use_rel_pos:
|
291
|
+
attn = add_decomposed_rel_pos(
|
292
|
+
attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
|
293
|
+
)
|
294
|
+
|
295
|
+
attn = attn.softmax(dim=-1)
|
296
|
+
x = (
|
297
|
+
(attn @ v)
|
298
|
+
.view(B, self.num_heads, H, W, -1)
|
299
|
+
.permute(0, 2, 3, 1, 4)
|
300
|
+
.reshape(B, H, W, -1)
|
301
|
+
)
|
302
|
+
x = self.proj(x)
|
303
|
+
|
304
|
+
return x
|
305
|
+
|
306
|
+
|
307
|
+
def window_partition(
|
308
|
+
x: torch.Tensor, window_size: int
|
309
|
+
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
310
|
+
"""
|
311
|
+
Partition into non-overlapping windows with padding if needed.
|
312
|
+
Args:
|
313
|
+
x (tensor): input tokens with [B, H, W, C].
|
314
|
+
window_size (int): window size.
|
315
|
+
|
316
|
+
Returns:
|
317
|
+
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
318
|
+
(Hp, Wp): padded height and width before partition
|
319
|
+
"""
|
320
|
+
B, H, W, C = x.shape
|
321
|
+
|
322
|
+
pad_h = (window_size - H % window_size) % window_size
|
323
|
+
pad_w = (window_size - W % window_size) % window_size
|
324
|
+
if pad_h > 0 or pad_w > 0:
|
325
|
+
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
326
|
+
Hp, Wp = H + pad_h, W + pad_w
|
327
|
+
|
328
|
+
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
329
|
+
windows = (
|
330
|
+
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
331
|
+
)
|
332
|
+
return windows, (Hp, Wp)
|
333
|
+
|
334
|
+
|
335
|
+
def window_unpartition(
|
336
|
+
windows: torch.Tensor,
|
337
|
+
window_size: int,
|
338
|
+
pad_hw: Tuple[int, int],
|
339
|
+
hw: Tuple[int, int],
|
340
|
+
) -> torch.Tensor:
|
341
|
+
"""
|
342
|
+
Window unpartition into original sequences and removing padding.
|
343
|
+
Args:
|
344
|
+
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
345
|
+
window_size (int): window size.
|
346
|
+
pad_hw (Tuple): padded height and width (Hp, Wp).
|
347
|
+
hw (Tuple): original height and width (H, W) before padding.
|
348
|
+
|
349
|
+
Returns:
|
350
|
+
x: unpartitioned sequences with [B, H, W, C].
|
351
|
+
"""
|
352
|
+
Hp, Wp = pad_hw
|
353
|
+
H, W = hw
|
354
|
+
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
355
|
+
x = windows.view(
|
356
|
+
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
357
|
+
)
|
358
|
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
359
|
+
|
360
|
+
if Hp > H or Wp > W:
|
361
|
+
x = x[:, :H, :W, :].contiguous()
|
362
|
+
return x
|
363
|
+
|
364
|
+
|
365
|
+
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
366
|
+
"""
|
367
|
+
Get relative positional embeddings according to the relative positions of
|
368
|
+
query and key sizes.
|
369
|
+
Args:
|
370
|
+
q_size (int): size of query q.
|
371
|
+
k_size (int): size of key k.
|
372
|
+
rel_pos (Tensor): relative position embeddings (L, C).
|
373
|
+
|
374
|
+
Returns:
|
375
|
+
Extracted positional embeddings according to relative positions.
|
376
|
+
"""
|
377
|
+
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
378
|
+
# Interpolate rel pos if needed.
|
379
|
+
if rel_pos.shape[0] != max_rel_dist:
|
380
|
+
# Interpolate rel pos.
|
381
|
+
rel_pos_resized = F.interpolate(
|
382
|
+
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
383
|
+
size=max_rel_dist,
|
384
|
+
mode="linear",
|
385
|
+
)
|
386
|
+
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
387
|
+
else:
|
388
|
+
rel_pos_resized = rel_pos
|
389
|
+
|
390
|
+
# Scale the coords with short length if shapes for q and k are different.
|
391
|
+
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
392
|
+
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
393
|
+
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
394
|
+
|
395
|
+
return rel_pos_resized[relative_coords.long()]
|
396
|
+
|
397
|
+
|
398
|
+
def add_decomposed_rel_pos(
|
399
|
+
attn: torch.Tensor,
|
400
|
+
q: torch.Tensor,
|
401
|
+
rel_pos_h: torch.Tensor,
|
402
|
+
rel_pos_w: torch.Tensor,
|
403
|
+
q_size: Tuple[int, int],
|
404
|
+
k_size: Tuple[int, int],
|
405
|
+
) -> torch.Tensor:
|
406
|
+
"""
|
407
|
+
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
408
|
+
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
409
|
+
Args:
|
410
|
+
attn (Tensor): attention map.
|
411
|
+
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
412
|
+
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
413
|
+
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
414
|
+
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
415
|
+
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
416
|
+
|
417
|
+
Returns:
|
418
|
+
attn (Tensor): attention map with added relative positional embeddings.
|
419
|
+
"""
|
420
|
+
q_h, q_w = q_size
|
421
|
+
k_h, k_w = k_size
|
422
|
+
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
423
|
+
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
424
|
+
|
425
|
+
B, _, dim = q.shape
|
426
|
+
r_q = q.reshape(B, q_h, q_w, dim)
|
427
|
+
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
428
|
+
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
429
|
+
|
430
|
+
attn = (
|
431
|
+
attn.view(B, q_h, q_w, k_h, k_w)
|
432
|
+
+ rel_h[:, :, :, :, None]
|
433
|
+
+ rel_w[:, :, :, None, :]
|
434
|
+
).view(B, q_h * q_w, k_h * k_w)
|
435
|
+
|
436
|
+
return attn
|
437
|
+
|
438
|
+
|
439
|
+
class PatchEmbed(nn.Module):
|
440
|
+
"""
|
441
|
+
Image to Patch Embedding.
|
442
|
+
"""
|
443
|
+
|
444
|
+
def __init__(
|
445
|
+
self,
|
446
|
+
kernel_size: Tuple[int, int] = (16, 16),
|
447
|
+
stride: Tuple[int, int] = (16, 16),
|
448
|
+
padding: Tuple[int, int] = (0, 0),
|
449
|
+
in_chans: int = 3,
|
450
|
+
embed_dim: int = 768,
|
451
|
+
) -> None:
|
452
|
+
"""
|
453
|
+
Args:
|
454
|
+
kernel_size (Tuple): kernel size of the projection layer.
|
455
|
+
stride (Tuple): stride of the projection layer.
|
456
|
+
padding (Tuple): padding size of the projection layer.
|
457
|
+
in_chans (int): Number of input image channels.
|
458
|
+
embed_dim (int): Patch embedding dimension.
|
459
|
+
"""
|
460
|
+
super().__init__()
|
461
|
+
|
462
|
+
self.proj = nn.Conv2d(
|
463
|
+
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
464
|
+
)
|
465
|
+
|
466
|
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
467
|
+
x = self.proj(x)
|
468
|
+
# B C H W -> B H W C
|
469
|
+
x = x.permute(0, 2, 3, 1)
|
470
|
+
return x
|
471
|
+
|
472
|
+
|
473
|
+
def build_sam_vit_b(checkpoint=None, image_size=1024):
|
474
|
+
return _build_sam(
|
475
|
+
encoder_embed_dim=768,
|
476
|
+
encoder_depth=12,
|
477
|
+
encoder_num_heads=12,
|
478
|
+
encoder_global_attn_indexes=[2, 5, 8, 11],
|
479
|
+
checkpoint=checkpoint,
|
480
|
+
image_size=image_size,
|
481
|
+
)
|
482
|
+
|
483
|
+
|
484
|
+
def _build_sam(
|
485
|
+
encoder_embed_dim,
|
486
|
+
encoder_depth,
|
487
|
+
encoder_num_heads,
|
488
|
+
encoder_global_attn_indexes,
|
489
|
+
checkpoint=None,
|
490
|
+
image_size=1024,
|
491
|
+
):
|
492
|
+
prompt_embed_dim = 256
|
493
|
+
vit_patch_size = 16
|
494
|
+
image_encoder = ImageEncoderViT(
|
495
|
+
depth=encoder_depth,
|
496
|
+
embed_dim=encoder_embed_dim,
|
497
|
+
img_size=image_size,
|
498
|
+
mlp_ratio=4,
|
499
|
+
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
500
|
+
num_heads=encoder_num_heads,
|
501
|
+
patch_size=vit_patch_size,
|
502
|
+
qkv_bias=True,
|
503
|
+
use_rel_pos=True,
|
504
|
+
global_attn_indexes=encoder_global_attn_indexes,
|
505
|
+
window_size=14,
|
506
|
+
out_chans=prompt_embed_dim,
|
507
|
+
)
|
508
|
+
|
509
|
+
if checkpoint is not None:
|
510
|
+
# with open(checkpoint, "rb") as f:
|
511
|
+
state_dict = torch.load(checkpoint)
|
512
|
+
|
513
|
+
image_encoder.load_state_dict(state_dict, strict=True)
|
514
|
+
return image_encoder
|
@@ -0,0 +1,237 @@
|
|
1
|
+
# Copyright 2023 Haotian Liu
|
2
|
+
#
|
3
|
+
# This file is part of the Vary project, originally located at:
|
4
|
+
# https://github.com/Ucas-HaoranWei/Vary-toy/blob/main/Vary-master/vary/model/vary_opt.py
|
5
|
+
#
|
6
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7
|
+
# you may not use this file except in compliance with the License.
|
8
|
+
# You may obtain a copy of the License at
|
9
|
+
#
|
10
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11
|
+
#
|
12
|
+
# Unless required by applicable law or agreed to in writing, software
|
13
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15
|
+
# See the License for the specific language governing permissions and
|
16
|
+
# limitations under the License.
|
17
|
+
|
18
|
+
|
19
|
+
from typing import List, Optional, Tuple, Union
|
20
|
+
|
21
|
+
import torch
|
22
|
+
import torch.nn as nn
|
23
|
+
from transformers import (
|
24
|
+
AutoConfig,
|
25
|
+
AutoModelForCausalLM,
|
26
|
+
OPTConfig,
|
27
|
+
OPTForCausalLM,
|
28
|
+
OPTModel,
|
29
|
+
)
|
30
|
+
from transformers.modeling_outputs import (
|
31
|
+
BaseModelOutputWithPast,
|
32
|
+
CausalLMOutputWithPast,
|
33
|
+
)
|
34
|
+
|
35
|
+
from docling_ibm_models.code_formula_model.models.sam import build_sam_vit_b
|
36
|
+
|
37
|
+
|
38
|
+
class SamOptConfig(OPTConfig):
|
39
|
+
model_type = "sam_opt"
|
40
|
+
|
41
|
+
def __init__(
|
42
|
+
self,
|
43
|
+
sam_image_size=1024,
|
44
|
+
sam_mm_projector_in=1024,
|
45
|
+
sam_mm_projector_out=768,
|
46
|
+
**kwargs,
|
47
|
+
):
|
48
|
+
super().__init__(**kwargs)
|
49
|
+
self.sam_image_size = sam_image_size
|
50
|
+
self.sam_mm_projector_in = sam_mm_projector_in
|
51
|
+
self.sam_mm_projector_out = sam_mm_projector_out
|
52
|
+
|
53
|
+
|
54
|
+
class SamOPTModel(OPTModel):
|
55
|
+
config_class = SamOptConfig
|
56
|
+
|
57
|
+
def __init__(self, config: OPTConfig):
|
58
|
+
super(SamOPTModel, self).__init__(config)
|
59
|
+
self.vision_tower = build_sam_vit_b(image_size=config.sam_image_size)
|
60
|
+
|
61
|
+
self.mm_projector = nn.Linear(
|
62
|
+
config.sam_mm_projector_in, config.sam_mm_projector_out
|
63
|
+
)
|
64
|
+
|
65
|
+
def embed_tokens(self, x):
|
66
|
+
return self.get_input_embeddings()(x)
|
67
|
+
|
68
|
+
def forward(
|
69
|
+
self,
|
70
|
+
input_ids: torch.LongTensor = None,
|
71
|
+
attention_mask: Optional[torch.Tensor] = None,
|
72
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
73
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
74
|
+
use_cache: Optional[bool] = None,
|
75
|
+
output_attentions: Optional[bool] = None,
|
76
|
+
output_hidden_states: Optional[bool] = None,
|
77
|
+
images: torch.FloatTensor = None,
|
78
|
+
return_dict: Optional[bool] = None,
|
79
|
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
80
|
+
|
81
|
+
if inputs_embeds is None:
|
82
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
83
|
+
|
84
|
+
vision_tower = getattr(self, "vision_tower", None)
|
85
|
+
im_start_token = getattr(self.config, "im_start_token", -1)
|
86
|
+
|
87
|
+
if input_ids.shape[1] != 1 or self.training:
|
88
|
+
with torch.set_grad_enabled(self.training):
|
89
|
+
image_features = vision_tower(images)
|
90
|
+
image_features = image_features.flatten(2).permute(0, 2, 1)
|
91
|
+
image_features = self.mm_projector(image_features)
|
92
|
+
|
93
|
+
new_input_embeds = []
|
94
|
+
for cur_input_ids, cur_input_embeds, cur_image_features in zip(
|
95
|
+
input_ids, inputs_embeds, image_features
|
96
|
+
):
|
97
|
+
image_start_token_position = torch.where(
|
98
|
+
cur_input_ids == im_start_token
|
99
|
+
)[0].item()
|
100
|
+
|
101
|
+
cur_image_features = cur_image_features.to(
|
102
|
+
device=cur_input_embeds.device
|
103
|
+
)
|
104
|
+
num_patches = cur_image_features.shape[0]
|
105
|
+
cur_input_embeds = torch.cat(
|
106
|
+
(
|
107
|
+
cur_input_embeds[: image_start_token_position + 1],
|
108
|
+
cur_image_features,
|
109
|
+
cur_input_embeds[
|
110
|
+
image_start_token_position + num_patches + 1 :
|
111
|
+
],
|
112
|
+
),
|
113
|
+
dim=0,
|
114
|
+
)
|
115
|
+
|
116
|
+
new_input_embeds.append(cur_input_embeds)
|
117
|
+
|
118
|
+
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
119
|
+
|
120
|
+
return super(SamOPTModel, self).forward(
|
121
|
+
input_ids=None,
|
122
|
+
attention_mask=attention_mask,
|
123
|
+
past_key_values=past_key_values,
|
124
|
+
inputs_embeds=inputs_embeds,
|
125
|
+
use_cache=use_cache,
|
126
|
+
output_attentions=output_attentions,
|
127
|
+
output_hidden_states=output_hidden_states,
|
128
|
+
return_dict=return_dict,
|
129
|
+
)
|
130
|
+
|
131
|
+
|
132
|
+
class SamOPTForCausalLM(OPTForCausalLM):
|
133
|
+
config_class = SamOptConfig
|
134
|
+
|
135
|
+
def __init__(self, config):
|
136
|
+
super(OPTForCausalLM, self).__init__(config)
|
137
|
+
self.model = SamOPTModel(config)
|
138
|
+
|
139
|
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
140
|
+
|
141
|
+
self.post_init()
|
142
|
+
|
143
|
+
def get_model(self):
|
144
|
+
return self.model
|
145
|
+
|
146
|
+
def forward(
|
147
|
+
self,
|
148
|
+
input_ids: Optional[torch.LongTensor] = None,
|
149
|
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
150
|
+
attention_mask: Optional[torch.FloatTensor] = None,
|
151
|
+
token_type_ids: Optional[torch.LongTensor] = None,
|
152
|
+
position_ids: Optional[torch.LongTensor] = None,
|
153
|
+
head_mask: Optional[torch.FloatTensor] = None,
|
154
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
155
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
156
|
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
157
|
+
labels: Optional[torch.LongTensor] = None,
|
158
|
+
use_cache: Optional[bool] = None,
|
159
|
+
output_attentions: Optional[bool] = None,
|
160
|
+
output_hidden_states: Optional[bool] = None,
|
161
|
+
images: Optional[torch.FloatTensor] = None,
|
162
|
+
return_dict: Optional[bool] = None,
|
163
|
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
164
|
+
output_attentions = (
|
165
|
+
output_attentions
|
166
|
+
if output_attentions is not None
|
167
|
+
else self.config.output_attentions
|
168
|
+
)
|
169
|
+
output_hidden_states = (
|
170
|
+
output_hidden_states
|
171
|
+
if output_hidden_states is not None
|
172
|
+
else self.config.output_hidden_states
|
173
|
+
)
|
174
|
+
|
175
|
+
outputs = self.model(
|
176
|
+
input_ids=input_ids,
|
177
|
+
past_key_values=past_key_values,
|
178
|
+
attention_mask=attention_mask,
|
179
|
+
inputs_embeds=inputs_embeds,
|
180
|
+
use_cache=use_cache,
|
181
|
+
output_attentions=output_attentions,
|
182
|
+
output_hidden_states=output_hidden_states,
|
183
|
+
images=images,
|
184
|
+
return_dict=return_dict,
|
185
|
+
)
|
186
|
+
|
187
|
+
hidden_states = outputs[0]
|
188
|
+
logits = self.lm_head(hidden_states).contiguous()
|
189
|
+
|
190
|
+
return CausalLMOutputWithPast(
|
191
|
+
loss=None,
|
192
|
+
logits=logits,
|
193
|
+
past_key_values=outputs.past_key_values,
|
194
|
+
hidden_states=outputs.hidden_states,
|
195
|
+
attentions=outputs.attentions,
|
196
|
+
)
|
197
|
+
|
198
|
+
def prepare_inputs_for_generation(
|
199
|
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
200
|
+
):
|
201
|
+
token_type_ids = kwargs.get("token_type_ids", None)
|
202
|
+
if past_key_values:
|
203
|
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
204
|
+
if token_type_ids is not None:
|
205
|
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
206
|
+
|
207
|
+
attention_mask = kwargs.get("attention_mask", None)
|
208
|
+
position_ids = kwargs.get("position_ids", None)
|
209
|
+
|
210
|
+
if attention_mask is not None and position_ids is None:
|
211
|
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
212
|
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
213
|
+
if past_key_values:
|
214
|
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
215
|
+
else:
|
216
|
+
position_ids = None
|
217
|
+
|
218
|
+
if inputs_embeds is not None and past_key_values is None:
|
219
|
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
220
|
+
else:
|
221
|
+
model_inputs = {"input_ids": input_ids}
|
222
|
+
|
223
|
+
model_inputs.update(
|
224
|
+
{
|
225
|
+
"past_key_values": past_key_values,
|
226
|
+
"use_cache": kwargs.get("use_cache"),
|
227
|
+
"position_ids": position_ids,
|
228
|
+
"attention_mask": attention_mask,
|
229
|
+
"token_type_ids": token_type_ids,
|
230
|
+
"images": kwargs.get("images", None),
|
231
|
+
}
|
232
|
+
)
|
233
|
+
return model_inputs
|
234
|
+
|
235
|
+
|
236
|
+
AutoConfig.register("sam_opt", SamOptConfig)
|
237
|
+
AutoModelForCausalLM.register(SamOptConfig, SamOPTForCausalLM)
|
@@ -0,0 +1,31 @@
|
|
1
|
+
#
|
2
|
+
# Copyright IBM Corp. 2024 - 2024
|
3
|
+
# SPDX-License-Identifier: MIT
|
4
|
+
#
|
5
|
+
from PIL import Image
|
6
|
+
from torchvision.transforms import functional as F
|
7
|
+
from transformers import AutoImageProcessor
|
8
|
+
from transformers.image_processing_utils import ImageProcessingMixin
|
9
|
+
|
10
|
+
|
11
|
+
class SamOptImageProcessor(ImageProcessingMixin):
|
12
|
+
|
13
|
+
def __init__(self, size=(1024, 1024), mean=None, std=None, **kwargs):
|
14
|
+
super().__init__(**kwargs)
|
15
|
+
self.size = size
|
16
|
+
self.mean = mean
|
17
|
+
self.std = std
|
18
|
+
|
19
|
+
def __call__(self, image):
|
20
|
+
if not isinstance(image, Image.Image):
|
21
|
+
raise ValueError("Input must be a PIL Image")
|
22
|
+
|
23
|
+
image = F.resize(image, self.size)
|
24
|
+
image = F.to_tensor(image)
|
25
|
+
|
26
|
+
image = F.normalize(image, mean=self.mean, std=self.std)
|
27
|
+
|
28
|
+
return image
|
29
|
+
|
30
|
+
|
31
|
+
AutoImageProcessor.register(SamOptImageProcessor, SamOptImageProcessor)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: docling-ibm-models
|
3
|
-
Version: 3.
|
3
|
+
Version: 3.2.0
|
4
4
|
Summary: This package contains the AI models used by the Docling PDF conversion package
|
5
5
|
License: MIT
|
6
6
|
Keywords: docling,convert,document,pdf,layout model,segmentation,table structure,table former
|
@@ -30,7 +30,8 @@ Requires-Dist: safetensors[torch] (>=0.4.3,<1)
|
|
30
30
|
Requires-Dist: torch (>=2.2.2,<3.0.0)
|
31
31
|
Requires-Dist: torchvision (>=0,<1)
|
32
32
|
Requires-Dist: tqdm (>=4.64.0,<5.0.0)
|
33
|
-
Requires-Dist: transformers (>=4.42.0,<
|
33
|
+
Requires-Dist: transformers (>=4.42.0,<4.43.0) ; sys_platform == "darwin" and platform_machine == "x86_64"
|
34
|
+
Requires-Dist: transformers (>=4.42.0,<5.0.0) ; sys_platform != "darwin" or platform_machine != "x86_64"
|
34
35
|
Description-Content-Type: text/markdown
|
35
36
|
|
36
37
|
[](https://pypi.org/project/docling-ibm-models/)
|
@@ -1,3 +1,7 @@
|
|
1
|
+
docling_ibm_models/code_formula_model/code_formula_predictor.py,sha256=vU18PzmG77htQFEabS2nKbJqNikbWk_BDaA7sqKQuqc,7358
|
2
|
+
docling_ibm_models/code_formula_model/models/sam.py,sha256=6MXf1ae_wRWJ4b1luISWXBRKyoQie7YbpY-qwq1OJJA,17841
|
3
|
+
docling_ibm_models/code_formula_model/models/sam_opt.py,sha256=qQjmZZgInmKWBp8qcpYZjR2pr5jzjpYRp404RcsJyZM,8333
|
4
|
+
docling_ibm_models/code_formula_model/models/sam_opt_image_processor.py,sha256=rA06J4vCK3s9qgfDreJJCcIYUyJzihBk0kHPskfUPGc,868
|
1
5
|
docling_ibm_models/layoutmodel/layout_predictor.py,sha256=ArVgs7FBOiu23TC-JoybcaTp7F7a4BgYC8uRVxTgx4E,5681
|
2
6
|
docling_ibm_models/tableformer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
7
|
docling_ibm_models/tableformer/common.py,sha256=2zgGZBFf4fXytEaXrZR2NU6FWdX2kxO0DHlGZmuvpNQ,3230
|
@@ -22,7 +26,7 @@ docling_ibm_models/tableformer/utils/app_profiler.py,sha256=Pb7o1zcikKXh7ninaNt4
|
|
22
26
|
docling_ibm_models/tableformer/utils/mem_monitor.py,sha256=ycZ07fUBVVKKLTVGF54jGPDM2aTkKuZWk1kMbOS0wwQ,6353
|
23
27
|
docling_ibm_models/tableformer/utils/torch_utils.py,sha256=uN0rK9mSXy1ewBnBnILrWebJhhVU4N-XJZBqNiLJwlQ,8893
|
24
28
|
docling_ibm_models/tableformer/utils/utils.py,sha256=8Bxf1rEn977lFbY9NX0r5xh9PvxIRipQZX_EZW92XfA,10980
|
25
|
-
docling_ibm_models-3.
|
26
|
-
docling_ibm_models-3.
|
27
|
-
docling_ibm_models-3.
|
28
|
-
docling_ibm_models-3.
|
29
|
+
docling_ibm_models-3.2.0.dist-info/LICENSE,sha256=mBb7ErEcM8VS9OhiGHnQ2kk75HwPhr54W1Oiz3965MY,1088
|
30
|
+
docling_ibm_models-3.2.0.dist-info/METADATA,sha256=3XWPmwMvKxWm_9mq4_LZV3ffVRN-e_le6WGI2gfOZww,7347
|
31
|
+
docling_ibm_models-3.2.0.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
32
|
+
docling_ibm_models-3.2.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|