docling-ibm-models 1.3.0__py3-none-any.whl → 1.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -48,32 +48,6 @@ def validate_config(config):
48
48
  return True
49
49
 
50
50
 
51
- def parse_arguments():
52
- r"""
53
- Parse the input arguments
54
- A ValueError exception will be thrown in case the config file is invalid
55
- """
56
- parser = argparse.ArgumentParser(description="Train the TableModel")
57
- parser.add_argument(
58
- "-c", "--config", required=True, default=None, help="configuration file (JSON)"
59
- )
60
- args = parser.parse_args()
61
- config_filename = args.config
62
-
63
- assert os.path.isfile(config_filename), "FAILURE: Config file not found."
64
- return read_config(config_filename)
65
-
66
-
67
- def read_config(config_filename):
68
- with open(config_filename, "r") as fd:
69
- config = json.load(fd)
70
-
71
- # Validate the config file
72
- validate_config(config)
73
-
74
- return config
75
-
76
-
77
51
  def safe_get_parameter(input_dict, index_path, default=None, required=False):
78
52
  r"""
79
53
  Safe get parameter from a nested dictionary.
@@ -130,71 +104,3 @@ def get_prepared_data_filename(prepared_data_part, dataset_name):
130
104
  if "<POSTFIX>" in template:
131
105
  template = template.replace("<POSTFIX>", dataset_name)
132
106
  return template
133
-
134
-
135
- def create_dataset_and_model(config, purpose, fixed_padding=False):
136
- r"""
137
- Gets a model from configuration
138
-
139
- Parameters
140
- ---------
141
- config : Dictionary
142
- The configuration of the model
143
- purpose : string
144
- One of "train", "eval", "predict"
145
- fixed_padding : bool
146
- Parameter passed to the constructor of the DataLoader
147
-
148
- Returns
149
- -------
150
- In case a Model cannot be initialized return None, None, None. Otherwise:
151
-
152
- device : selected device
153
- dataset : Instance of the DataLoader
154
- model : Instance of the model
155
- """
156
- from docling_ibm_models.tableformer.data_management.tf_dataset import TFDataset
157
-
158
- model_type = config["model"]["type"]
159
- model = None
160
-
161
- # Get env vars:
162
- use_cpu_only = os.environ.get("USE_CPU_ONLY", False)
163
- use_cuda_only = not use_cpu_only
164
-
165
- # Use the cpu for the evaluation
166
- device = "cpu" # Default, run on CPU
167
- num_gpus = torch.cuda.device_count() # Check if GPU is available
168
- if use_cuda_only:
169
- device = "cuda:0" if num_gpus > 0 else "cpu" # Run on first available GPU
170
- else:
171
- device = "cpu"
172
-
173
- # Create the DataLoader
174
- # loader = DataLoader(config, purpose, fixed_padding=fixed_padding)
175
- dataset = TFDataset(config, purpose, fixed_padding=fixed_padding)
176
- dataset.set_device(device)
177
- dataset_val = None
178
- if config["train"]["validation"] and purpose == "train":
179
- dataset_val = TFDataset(config, "val", fixed_padding=fixed_padding)
180
- dataset_val.set_device(device)
181
- if model_type == "TableModel04_rs":
182
- from docling_ibm_models.tableformer.models.table04_rs.tablemodel04_rs import ( # noqa: F401
183
- TableModel04_rs,
184
- )
185
- # Find the model class and create an instance of it
186
- for candidate in BaseModel.__subclasses__():
187
- if candidate.__name__ == model_type:
188
- init_data = dataset.get_init_data()
189
- model = candidate(config, init_data, purpose, device)
190
-
191
- if model is None:
192
- logger.warn("Not found model: " + str(model_type))
193
- return None, None, None
194
-
195
- logger.info("Found model: " + str(model_type))
196
-
197
- if purpose == s.PREDICT_PURPOSE:
198
- return device, dataset, model
199
- else:
200
- return device, dataset, dataset_val, model
@@ -35,61 +35,6 @@ def _is_numpy_image(img):
35
35
  return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
36
36
 
37
37
 
38
- def to_tensor(pic):
39
- """Converts a numpy.ndarray (H x W x C) in the range
40
- [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
41
- Args:
42
- pic (np.ndarray, torch.Tensor): Image to be converted to tensor, (H x W x C[RGB]).
43
- Returns:
44
- Tensor: Converted image.
45
- """
46
-
47
- if _is_numpy_image(pic):
48
- if len(pic.shape) == 2:
49
- pic = cv2.cvtColor(pic, cv2.COLOR_GRAY2RGB)
50
- img = torch.from_numpy(pic.transpose((2, 0, 1)))
51
- # backward compatibility
52
- if isinstance(img, torch.ByteTensor) or img.max() > 1:
53
- return img.float().div(255)
54
- else:
55
- return img
56
- elif _is_tensor_image(pic):
57
- return pic
58
-
59
- else:
60
- try:
61
- return to_tensor(np.array(pic))
62
- except Exception:
63
- raise TypeError("pic should be ndarray. Got {}".format(type(pic)))
64
-
65
-
66
- def to_cv_image(pic, mode=None):
67
- """Convert a tensor to an ndarray.
68
- Args:
69
- pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
70
- mode (str): color space and pixel depth of input data (optional)
71
- for example: cv2.COLOR_RGB2BGR.
72
- Returns:
73
- np.array: Image converted to PIL Image.
74
- """
75
- if not (_is_numpy_image(pic) or _is_tensor_image(pic)):
76
- raise TypeError("pic should be Tensor or ndarray. Got {}.".format(type(pic)))
77
-
78
- npimg = pic
79
- if isinstance(pic, torch.FloatTensor):
80
- pic = pic.mul(255).byte()
81
- if torch.is_tensor(pic):
82
- npimg = np.squeeze(np.transpose(pic.numpy(), (1, 2, 0)))
83
-
84
- if not isinstance(npimg, np.ndarray):
85
- raise TypeError("Input pic must be a torch.Tensor or NumPy ndarray")
86
- if mode is None:
87
- return npimg
88
-
89
- else:
90
- return cv2.cvtColor(npimg, mode)
91
-
92
-
93
38
  def normalize(tensor, mean, std):
94
39
  """Normalize a tensor image with mean and standard deviation.
95
40
  See ``Normalize`` for more details.
@@ -128,6 +73,7 @@ def resize(img, size, interpolation="BILINEAR"):
128
73
  if not (isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)):
129
74
  raise TypeError("Got inappropriate size arg: {}".format(size))
130
75
 
76
+ # TODO(Nikos): Try to remove the opencv dependency
131
77
  if isinstance(size, int):
132
78
  h, w, c = img.shape
133
79
  if (w <= h and w == size) or (h <= w and h == size):
@@ -149,426 +95,3 @@ def resize(img, size, interpolation="BILINEAR"):
149
95
  return cv2.resize(
150
96
  img, dsize=(int(ow), int(oh)), interpolation=INTER_MODE[interpolation]
151
97
  )
152
-
153
-
154
- def to_rgb_bgr(pic):
155
- """Converts a color image stored in BGR sequence to RGB (BGR to RGB)
156
- or stored in RGB sequence to BGR (RGB to BGR).
157
- Args:
158
- pic (np.ndarray, torch.Tensor): Image to be converted, (H x W x 3).
159
- Returns:
160
- Tensor: Converted image.
161
- """
162
-
163
- if _is_numpy_image(pic) or _is_tensor_image(pic):
164
- img = pic[:, :, [2, 1, 0]]
165
- return img
166
- else:
167
- try:
168
- return to_rgb_bgr(np.array(pic))
169
- except Exception:
170
- raise TypeError("pic should be numpy.ndarray or torch.Tensor.")
171
-
172
-
173
- def pad(img, padding, fill=(0, 0, 0), padding_mode="constant"):
174
- """Pad the given CV Image on all sides with speficified padding mode and fill value.
175
- Args:
176
- img (np.ndarray): Image to be padded.
177
- padding (int or tuple): Padding on each border. If a single int is provided this
178
- is used to pad all borders. If tuple of length 2 is provided this is the padding
179
- on left/right and top/bottom respectively. If a tuple of length 4 is provided
180
- this is the padding for the left, top, right and bottom borders
181
- respectively.
182
- fill (int, tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
183
- length 3, it is used to fill R, G, B channels respectively.
184
- This value is only used when the padding_mode is constant
185
- padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric.
186
- Default is constant.
187
- constant: pads with a constant value, this value is specified with fill
188
- edge: pads with the last value on the edge of the image
189
- reflect: pads with reflection of image (without repeating the last value on the edge)
190
- padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
191
- will result in [3, 2, 1, 2, 3, 4, 3, 2]
192
- symmetric: pads with reflection of image (repeating the last value on the edge)
193
- padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
194
- will result in [2, 1, 1, 2, 3, 4, 4, 3]
195
- Returns:
196
- CV Image: Padded image.
197
- """
198
- if not _is_numpy_image(img):
199
- raise TypeError("img should be CV Image. Got {}".format(type(img)))
200
-
201
- if not isinstance(padding, (numbers.Number, tuple)):
202
- raise TypeError("Got inappropriate padding arg")
203
- if not isinstance(fill, (numbers.Number, str, tuple)):
204
- raise TypeError("Got inappropriate fill arg")
205
- if not isinstance(padding_mode, str):
206
- raise TypeError("Got inappropriate padding_mode arg")
207
-
208
- if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
209
- raise ValueError("Padding must be an int or a 2, or 4 element tuple")
210
-
211
- assert padding_mode in [
212
- "constant",
213
- "edge",
214
- "reflect",
215
- "symmetric",
216
- ], "Padding mode should be either constant, edge, reflect or symmetric"
217
-
218
- if isinstance(padding, int):
219
- pad_left = pad_right = pad_top = pad_bottom = padding
220
- if isinstance(padding, Sequence) and len(padding) == 2:
221
- pad_left = pad_right = padding[0]
222
- pad_top = pad_bottom = padding[1]
223
- if isinstance(padding, Sequence) and len(padding) == 4:
224
- pad_left, pad_top, pad_right, pad_bottom = padding
225
-
226
- if isinstance(fill, numbers.Number):
227
- fill = (fill,) * (2 * len(img.shape) - 3)
228
-
229
- if padding_mode == "constant":
230
- assert (len(fill) == 3 and len(img.shape) == 3) or (
231
- len(fill) == 1 and len(img.shape) == 2
232
- ), "channel of image is {} but length of fill is {}".format(
233
- img.shape[-1], len(fill)
234
- )
235
-
236
- img = cv2.copyMakeBorder(
237
- src=img,
238
- top=pad_top,
239
- bottom=pad_bottom,
240
- left=pad_left,
241
- right=pad_right,
242
- borderType=PAD_MOD[padding_mode],
243
- value=fill,
244
- )
245
- return img
246
-
247
-
248
- def crop(img, x, y, h, w):
249
- """Crop the given CV Image.
250
- Args:
251
- img (np.ndarray): Image to be cropped.
252
- x: Upper pixel coordinate.
253
- y: Left pixel coordinate.
254
- h: Height of the cropped image.
255
- w: Width of the cropped image.
256
- Returns:
257
- CV Image: Cropped image.
258
- """
259
- assert _is_numpy_image(img), "img should be CV Image. Got {}".format(type(img))
260
- assert h > 0 and w > 0, "h={} and w={} should greater than 0".format(h, w)
261
-
262
- x1, y1, x2, y2 = round(x), round(y), round(x + h), round(y + w)
263
-
264
- # try:
265
- # check_point1 = img[x1, y1, ...]
266
- # check_point2 = img[x2-1, y2-1, ...]
267
- # except IndexError:
268
- # img = cv2.copyMakeBorder(img, - min(0, x1), max(x2 - img.shape[0], 0),
269
- # -min(0, y1), max(y2 - img.shape[1], 0),
270
- # cv2.BORDER_CONSTANT, value=[0, 0, 0])
271
- # y2 += -min(0, y1)
272
- # y1 += -min(0, y1)
273
- # x2 += -min(0, x1)
274
- # x1 += -min(0, x1)
275
- #
276
- # finally:
277
- # return img[x1:x2, y1:y2, ...].copy()
278
- return img[x1:x2, y1:y2, ...].copy()
279
-
280
-
281
- def center_crop(img, output_size):
282
- if isinstance(output_size, numbers.Number):
283
- output_size = (int(output_size), int(output_size))
284
- h, w, _ = img.shape
285
- th, tw = output_size
286
- i = int(round((h - th) * 0.5))
287
- j = int(round((w - tw) * 0.5))
288
- return crop(img, i, j, th, tw)
289
-
290
-
291
- def resized_crop(img, i, j, h, w, size, interpolation="BILINEAR"):
292
- """Crop the given CV Image and resize it to desired size. Notably used in RandomResizedCrop.
293
- Args:
294
- img (np.ndarray): Image to be cropped.
295
- i: Upper pixel coordinate.
296
- j: Left pixel coordinate.
297
- h: Height of the cropped image.
298
- w: Width of the cropped image.
299
- size (sequence or int): Desired output size. Same semantics as ``scale``.
300
- interpolation (str, optional): Desired interpolation. Default is
301
- ``BILINEAR``.
302
- Returns:
303
- np.ndarray: Cropped image.
304
- """
305
- assert _is_numpy_image(img), "img should be CV Image"
306
- img = crop(img, i, j, h, w)
307
- img = resize(img, size, interpolation)
308
- return img
309
-
310
-
311
- def hflip(img):
312
- """Horizontally flip the given PIL Image.
313
- Args:
314
- img (np.ndarray): Image to be flipped.
315
- Returns:
316
- np.ndarray: Horizontall flipped image.
317
- """
318
- if not _is_numpy_image(img):
319
- raise TypeError("img should be CV Image. Got {}".format(type(img)))
320
-
321
- return cv2.flip(img, 1)
322
-
323
-
324
- def vflip(img):
325
- """Vertically flip the given PIL Image.
326
- Args:
327
- img (CV Image): Image to be flipped.
328
- Returns:
329
- PIL Image: Vertically flipped image.
330
- """
331
- if not _is_numpy_image(img):
332
- raise TypeError("img should be PIL Image. Got {}".format(type(img)))
333
-
334
- return cv2.flip(img, 0)
335
-
336
-
337
- def five_crop(img, size):
338
- """Crop the given CV Image into four corners and the central crop.
339
- .. Note::
340
- This transform returns a tuple of images and there may be a
341
- mismatch in the number of inputs and targets your ``Dataset`` returns.
342
- Args:
343
- size (sequence or int): Desired output size of the crop. If size is an
344
- int instead of sequence like (h, w), a square crop (size, size) is
345
- made.
346
- Returns:
347
- tuple: tuple (tl, tr, bl, br, center) corresponding top left,
348
- top right, bottom left, bottom right and center crop.
349
- """
350
- if isinstance(size, numbers.Number):
351
- size = (int(size), int(size))
352
- else:
353
- assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
354
-
355
- h, w, _ = img.shape
356
- crop_h, crop_w = size
357
- if crop_w > w or crop_h > h:
358
- raise ValueError(
359
- "Requested crop size {} is bigger than input size {}".format(size, (h, w))
360
- )
361
- tl = crop(img, 0, 0, crop_h, crop_w)
362
- tr = crop(img, 0, w - crop_w, crop_h, crop_w)
363
- bl = crop(img, h - crop_h, 0, crop_h, crop_w)
364
- br = crop(img, h - crop_h, w - crop_w, crop_h, crop_w)
365
- center = center_crop(img, (crop_h, crop_w))
366
- return (tl, tr, bl, br, center)
367
-
368
-
369
- def ten_crop(img, size, vertical_flip=False):
370
- """Crop the given CV Image into four corners and the central crop plus the
371
- flipped version of these (horizontal flipping is used by default).
372
- .. Note::
373
- This transform returns a tuple of images and there may be a
374
- mismatch in the number of inputs and targets your ``Dataset`` returns.
375
- Args:
376
- size (sequence or int): Desired output size of the crop. If size is an
377
- int instead of sequence like (h, w), a square crop (size, size) is
378
- made.
379
- vertical_flip (bool): Use vertical flipping instead of horizontal
380
- Returns:
381
- tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip,
382
- br_flip, center_flip) corresponding top left, top right,
383
- bottom left, bottom right and center crop and same for the
384
- flipped image.
385
- """
386
- if isinstance(size, numbers.Number):
387
- size = (int(size), int(size))
388
- else:
389
- assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
390
-
391
- first_five = five_crop(img, size)
392
-
393
- if vertical_flip:
394
- img = vflip(img)
395
- else:
396
- img = hflip(img)
397
-
398
- second_five = five_crop(img, size)
399
- return first_five + second_five
400
-
401
-
402
- def adjust_brightness(img, brightness_factor):
403
- """Adjust brightness of an Image.
404
- Args:
405
- img (np.ndarray): CV Image to be adjusted.
406
- brightness_factor (float): How much to adjust the brightness. Can be
407
- any non negative number. 0 gives a black image, 1 gives the
408
- original image while 2 increases the brightness by a factor of 2.
409
- Returns:
410
- np.ndarray: Brightness adjusted image.
411
- """
412
- if not _is_numpy_image(img):
413
- raise TypeError("img should be CV Image. Got {}".format(type(img)))
414
-
415
- im = img.astype(np.float32) * brightness_factor
416
- im = im.clip(min=0, max=255)
417
- return im.astype(img.dtype)
418
-
419
-
420
- def adjust_contrast(img, contrast_factor):
421
- """Adjust contrast of an Image.
422
- Args:
423
- img (np.ndarray): CV Image to be adjusted.
424
- contrast_factor (float): How much to adjust the contrast. Can be any
425
- non negative number. 0 gives a solid gray image, 1 gives the
426
- original image while 2 increases the contrast by a factor of 2.
427
- Returns:
428
- np.ndarray: Contrast adjusted image.
429
- """
430
- if not _is_numpy_image(img):
431
- raise TypeError("img should be CV Image. Got {}".format(type(img)))
432
- im = img.astype(np.float32)
433
- mean = round(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY).mean())
434
- im = (1 - contrast_factor) * mean + contrast_factor * im
435
- im = im.clip(min=0, max=255)
436
- return im.astype(img.dtype)
437
-
438
-
439
- def adjust_saturation(img, saturation_factor):
440
- """Adjust color saturation of an image.
441
- Args:
442
- img (np.ndarray): CV Image to be adjusted.
443
- saturation_factor (float): How much to adjust the saturation. 0 will
444
- give a gray image, 1 will give the original image while
445
- 2 will enhance the saturation by a factor of 2.
446
- Returns:
447
- np.ndarray: Saturation adjusted image.
448
- """
449
- if not _is_numpy_image(img):
450
- raise TypeError("img should be PIL Image. Got {}".format(type(img)))
451
-
452
- im = img.astype(np.float32)
453
- degenerate = cv2.cvtColor(cv2.cvtColor(im, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB)
454
- im = (1 - saturation_factor) * degenerate + saturation_factor * im
455
- im = im.clip(min=0, max=255)
456
- return im.astype(img.dtype)
457
-
458
-
459
- def adjust_hue(img, hue_factor):
460
- """Adjust hue of an image.
461
- The image hue is adjusted by converting the image to HSV and
462
- cyclically shifting the intensities in the hue channel (H).
463
- The image is then converted back to original image mode.
464
- `hue_factor` is the amount of shift in H channel and must be in the
465
- interval `[-0.5, 0.5]`.
466
- See https://en.wikipedia.org/wiki/Hue for more details on Hue.
467
- Args:
468
- img (np.ndarray): CV Image to be adjusted.
469
- hue_factor (float): How much to shift the hue channel. Should be in
470
- [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
471
- HSV space in positive and negative direction respectively.
472
- 0 means no shift. Therefore, both -0.5 and 0.5 will give an image
473
- with complementary colors while 0 gives the original image.
474
- Returns:
475
- np.ndarray: Hue adjusted image.
476
- """
477
- if not (-0.5 <= hue_factor <= 0.5):
478
- raise ValueError("hue_factor is not in [-0.5, 0.5].")
479
-
480
- if not _is_numpy_image(img):
481
- raise TypeError("img should be CV Image. Got {}".format(type(img)))
482
-
483
- im = img.astype(np.uint8)
484
- hsv = cv2.cvtColor(im, cv2.COLOR_RGB2HSV_FULL)
485
- hsv[..., 0] += np.uint8(hue_factor * 255)
486
-
487
- im = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB_FULL)
488
- return im.astype(img.dtype)
489
-
490
-
491
- def adjust_gamma(img, gamma, gain=1):
492
- """Perform gamma correction on an image.
493
- Also known as Power Law Transform. Intensities in RGB mode are adjusted
494
- based on the following equation:
495
- I_out = 255 * gain * ((I_in / 255) ** gamma)
496
- See https://en.wikipedia.org/wiki/Gamma_correction for more details.
497
- Args:
498
- img (np.ndarray): CV Image to be adjusted.
499
- gamma (float): Non negative real number. gamma larger than 1 make the
500
- shadows darker, while gamma smaller than 1 make dark regions
501
- lighter.
502
- gain (float): The constant multiplier.
503
- """
504
- if not _is_numpy_image(img):
505
- raise TypeError("img should be CV Image. Got {}".format(type(img)))
506
-
507
- if gamma < 0:
508
- raise ValueError("Gamma should be a non-negative real number")
509
-
510
- im = img.astype(np.float32)
511
- im = 255.0 * gain * np.power(im / 255.0, gamma)
512
- im = im.clip(min=0.0, max=255.0)
513
- return im.astype(img.dtype)
514
-
515
-
516
- def to_grayscale(img, num_output_channels=1):
517
- """Convert image to grayscale version of image.
518
- Args:
519
- img (np.ndarray): Image to be converted to grayscale.
520
- Returns:
521
- CV Image: Grayscale version of the image.
522
- if num_output_channels == 1 : returned image is single channel
523
- if num_output_channels == 3 : returned image is 3 channel with r == g == b
524
- """
525
- if not _is_numpy_image(img):
526
- raise TypeError("img should be CV Image. Got {}".format(type(img)))
527
-
528
- if num_output_channels == 1:
529
- img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
530
- elif num_output_channels == 3:
531
- img = cv2.cvtColor(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB)
532
- else:
533
- raise ValueError("num_output_channels should be either 1 or 3")
534
-
535
- return img
536
-
537
-
538
- def gaussian_noise(img: np.ndarray, mean, std):
539
- imgtype = img.dtype
540
- gauss = np.random.normal(mean, std, img.shape).astype(np.float32)
541
- noisy = np.clip((1 + gauss) * img.astype(np.float32), 0, 255)
542
- return noisy.astype(imgtype)
543
-
544
-
545
- def poisson_noise(img):
546
- imgtype = img.dtype
547
- img = img.astype(np.float32) / 255.0
548
- vals = len(np.unique(img))
549
- vals = 2 ** np.ceil(np.log2(vals))
550
- noisy = 255 * np.clip(
551
- np.random.poisson(img.astype(np.float32) * vals) / float(vals), 0, 1
552
- )
553
- return noisy.astype(imgtype)
554
-
555
-
556
- def salt_and_pepper(img, prob=0.01):
557
- """Adds "Salt & Pepper" noise to an image.
558
- prob: probability (threshold) that controls level of noise
559
- """
560
- imgtype = img.dtype
561
- rnd = np.random.rand(img.shape[0], img.shape[1])
562
- noisy = img.copy()
563
- noisy[rnd < prob / 2] = 0.0
564
- noisy[rnd > 1 - prob / 2] = 255.0
565
- return noisy.astype(imgtype)
566
-
567
-
568
- def cv_transform(img):
569
- img = salt_and_pepper(img)
570
- return to_tensor(img)
571
-
572
-
573
- def pil_transform(img):
574
- return functional.to_tensor(img)