doc-page-extractor 0.2.1__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of doc-page-extractor might be problematic. Click here for more details.

@@ -1,394 +0,0 @@
1
- """
2
- Conversation prompt templates.
3
-
4
- We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
- If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
- """
7
-
8
- import dataclasses
9
- from enum import IntEnum, auto
10
- from typing import Any, Dict, List, Tuple, Union
11
-
12
-
13
- class SeparatorStyle(IntEnum):
14
- """Separator styles."""
15
-
16
- ADD_COLON_SINGLE = auto()
17
- ADD_COLON_TWO = auto()
18
- ADD_COLON_SPACE_SINGLE = auto()
19
- NO_COLON_SINGLE = auto()
20
- NO_COLON_TWO = auto()
21
- ADD_NEW_LINE_SINGLE = auto()
22
- LLAMA2 = auto()
23
- CHATGLM = auto()
24
- CHATML = auto()
25
- CHATINTERN = auto()
26
- DOLLY = auto()
27
- RWKV = auto()
28
- PHOENIX = auto()
29
- ROBIN = auto()
30
- FALCON_CHAT = auto()
31
- CHATGLM3 = auto()
32
- INTERNVL_ZH = auto()
33
- MPT = auto()
34
-
35
-
36
- @dataclasses.dataclass
37
- class Conversation:
38
- """A class that manages prompt templates and keeps all conversation history."""
39
-
40
- # The name of this template
41
- name: str
42
- # The template of the system prompt
43
- system_template: str = '{system_message}'
44
- # The system message
45
- system_message: str = ''
46
- # The names of two roles
47
- roles: Tuple[str] = ('USER', 'ASSISTANT')
48
- # All messages. Each item is (role, message).
49
- messages: List[List[str]] = ()
50
- # The number of few shot examples
51
- offset: int = 0
52
- # The separator style and configurations
53
- sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
- sep: str = '\n'
55
- sep2: str = None
56
- # Stop criteria (the default one is EOS token)
57
- stop_str: Union[str, List[str]] = None
58
- # Stops generation if meeting any token in this list
59
- stop_token_ids: List[int] = None
60
-
61
- def get_prompt(self) -> str:
62
- """Get the prompt for generation."""
63
- system_prompt = self.system_template.format(system_message=self.system_message)
64
- if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
- ret = system_prompt + self.sep
66
- for role, message in self.messages:
67
- if message:
68
- ret += role + ': ' + message + self.sep
69
- else:
70
- ret += role + ':'
71
- return ret
72
- elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
- seps = [self.sep, self.sep2]
74
- ret = system_prompt + seps[0]
75
- for i, (role, message) in enumerate(self.messages):
76
- if message:
77
- ret += role + ': ' + message + seps[i % 2]
78
- else:
79
- ret += role + ':'
80
- return ret
81
- elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
- ret = system_prompt + self.sep
83
- for role, message in self.messages:
84
- if message:
85
- ret += role + ': ' + message + self.sep
86
- else:
87
- ret += role + ': ' # must be end with a space
88
- return ret
89
- elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
- ret = '' if system_prompt == '' else system_prompt + self.sep
91
- for role, message in self.messages:
92
- if message:
93
- ret += role + '\n' + message + self.sep
94
- else:
95
- ret += role + '\n'
96
- return ret
97
- elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
- ret = system_prompt
99
- for role, message in self.messages:
100
- if message:
101
- ret += role + message + self.sep
102
- else:
103
- ret += role
104
- return ret
105
- elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
- seps = [self.sep, self.sep2]
107
- ret = system_prompt
108
- for i, (role, message) in enumerate(self.messages):
109
- if message:
110
- ret += role + message + seps[i % 2]
111
- else:
112
- ret += role
113
- return ret
114
- elif self.sep_style == SeparatorStyle.RWKV:
115
- ret = system_prompt
116
- for i, (role, message) in enumerate(self.messages):
117
- if message:
118
- ret += (
119
- role
120
- + ': '
121
- + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
- )
123
- ret += '\n\n'
124
- else:
125
- ret += role + ':'
126
- return ret
127
- elif self.sep_style == SeparatorStyle.LLAMA2:
128
- seps = [self.sep, self.sep2]
129
- if self.system_message:
130
- ret = system_prompt
131
- else:
132
- ret = '[INST] '
133
- for i, (role, message) in enumerate(self.messages):
134
- tag = self.roles[i % 2]
135
- if message:
136
- if i == 0:
137
- ret += message + ' '
138
- else:
139
- ret += tag + ' ' + message + seps[i % 2]
140
- else:
141
- ret += tag
142
- return ret
143
- elif self.sep_style == SeparatorStyle.CHATGLM:
144
- # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
- # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
- round_add_n = 1 if self.name == 'chatglm2' else 0
147
- if system_prompt:
148
- ret = system_prompt + self.sep
149
- else:
150
- ret = ''
151
-
152
- for i, (role, message) in enumerate(self.messages):
153
- if i % 2 == 0:
154
- ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
-
156
- if message:
157
- ret += f'{role}:{message}{self.sep}'
158
- else:
159
- ret += f'{role}:'
160
- return ret
161
- elif self.sep_style == SeparatorStyle.CHATML:
162
- ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
- for role, message in self.messages:
164
- if message:
165
- ret += role + '\n' + message + self.sep + '\n'
166
- else:
167
- ret += role + '\n'
168
- return ret
169
- elif self.sep_style == SeparatorStyle.CHATGLM3:
170
- ret = ''
171
- if self.system_message:
172
- ret += system_prompt
173
- for role, message in self.messages:
174
- if message:
175
- ret += role + '\n' + ' ' + message
176
- else:
177
- ret += role
178
- return ret
179
- elif self.sep_style == SeparatorStyle.CHATINTERN:
180
- # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
- seps = [self.sep, self.sep2]
182
- ret = system_prompt
183
- for i, (role, message) in enumerate(self.messages):
184
- # if i % 2 == 0:
185
- # ret += "<s>"
186
- if message:
187
- ret += role + ':' + message + seps[i % 2] + '\n'
188
- else:
189
- ret += role + ':'
190
- return ret
191
- elif self.sep_style == SeparatorStyle.DOLLY:
192
- seps = [self.sep, self.sep2]
193
- ret = system_prompt
194
- for i, (role, message) in enumerate(self.messages):
195
- if message:
196
- ret += role + ':\n' + message + seps[i % 2]
197
- if i % 2 == 1:
198
- ret += '\n\n'
199
- else:
200
- ret += role + ':\n'
201
- return ret
202
- elif self.sep_style == SeparatorStyle.PHOENIX:
203
- ret = system_prompt
204
- for role, message in self.messages:
205
- if message:
206
- ret += role + ': ' + '<s>' + message + '</s>'
207
- else:
208
- ret += role + ': ' + '<s>'
209
- return ret
210
- elif self.sep_style == SeparatorStyle.ROBIN:
211
- ret = system_prompt + self.sep
212
- for role, message in self.messages:
213
- if message:
214
- ret += role + ':\n' + message + self.sep
215
- else:
216
- ret += role + ':\n'
217
- return ret
218
- elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
- ret = ''
220
- if self.system_message:
221
- ret += system_prompt + self.sep
222
- for role, message in self.messages:
223
- if message:
224
- ret += role + ': ' + message + self.sep
225
- else:
226
- ret += role + ':'
227
-
228
- return ret
229
- elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
- seps = [self.sep, self.sep2]
231
- ret = self.system_message + seps[0]
232
- for i, (role, message) in enumerate(self.messages):
233
- if message:
234
- ret += role + ': ' + message + seps[i % 2]
235
- else:
236
- ret += role + ':'
237
- return ret
238
- elif self.sep_style == SeparatorStyle.MPT:
239
- ret = system_prompt + self.sep
240
- for role, message in self.messages:
241
- if message:
242
- if type(message) is tuple:
243
- message, _, _ = message
244
- ret += role + message + self.sep
245
- else:
246
- ret += role
247
- return ret
248
- else:
249
- raise ValueError(f'Invalid style: {self.sep_style}')
250
-
251
- def set_system_message(self, system_message: str):
252
- """Set the system message."""
253
- self.system_message = system_message
254
-
255
- def append_message(self, role: str, message: str):
256
- """Append a new message."""
257
- self.messages.append([role, message])
258
-
259
- def update_last_message(self, message: str):
260
- """Update the last output.
261
-
262
- The last message is typically set to be None when constructing the prompt,
263
- so we need to update it in-place after getting the response from a model.
264
- """
265
- self.messages[-1][1] = message
266
-
267
- def to_gradio_chatbot(self):
268
- """Convert the conversation to gradio chatbot format."""
269
- ret = []
270
- for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
- if i % 2 == 0:
272
- ret.append([msg, None])
273
- else:
274
- ret[-1][-1] = msg
275
- return ret
276
-
277
- def to_openai_api_messages(self):
278
- """Convert the conversation to OpenAI chat completion format."""
279
- ret = [{'role': 'system', 'content': self.system_message}]
280
-
281
- for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
- if i % 2 == 0:
283
- ret.append({'role': 'user', 'content': msg})
284
- else:
285
- if msg is not None:
286
- ret.append({'role': 'assistant', 'content': msg})
287
- return ret
288
-
289
- def copy(self):
290
- return Conversation(
291
- name=self.name,
292
- system_template=self.system_template,
293
- system_message=self.system_message,
294
- roles=self.roles,
295
- messages=[[x, y] for x, y in self.messages],
296
- offset=self.offset,
297
- sep_style=self.sep_style,
298
- sep=self.sep,
299
- sep2=self.sep2,
300
- stop_str=self.stop_str,
301
- stop_token_ids=self.stop_token_ids,
302
- )
303
-
304
- def dict(self):
305
- return {
306
- 'template_name': self.name,
307
- 'system_message': self.system_message,
308
- 'roles': self.roles,
309
- 'messages': self.messages,
310
- 'offset': self.offset,
311
- }
312
-
313
-
314
- # A global registry for all conversation templates
315
- conv_templates: Dict[str, Conversation] = {}
316
-
317
-
318
- def register_conv_template(template: Conversation, override: bool = False):
319
- """Register a new conversation template."""
320
- if not override:
321
- assert (
322
- template.name not in conv_templates
323
- ), f'{template.name} has been registered.'
324
-
325
- conv_templates[template.name] = template
326
-
327
-
328
- def get_conv_template(name: str) -> Conversation:
329
- """Get a conversation template."""
330
- return conv_templates[name].copy()
331
-
332
-
333
- # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
334
- # is that during training, the preprocessing function for the Hermes-2 template doesn't add
335
- # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
336
- # Therefore, they are completely equivalent during inference.
337
- register_conv_template(
338
- Conversation(
339
- name='Hermes-2',
340
- system_template='<|im_start|>system\n{system_message}',
341
- # note: The new system prompt was not used here to avoid changes in benchmark performance.
342
- # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
343
- # system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
344
- system_message='You are a Table Image to LaTeX/Markdown/HMTL Code converter.',
345
- roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
346
- sep_style=SeparatorStyle.MPT,
347
- sep='<|im_end|>',
348
- stop_token_ids=[
349
- 2,
350
- 6,
351
- 7,
352
- 8,
353
- ],
354
- stop_str='<|endoftext|>',
355
- )
356
- )
357
-
358
-
359
- register_conv_template(
360
- Conversation(
361
- name='internlm2-chat',
362
- system_template='<|im_start|>system\n{system_message}',
363
- # note: The new system prompt was not used here to avoid changes in benchmark performance.
364
- # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
365
- system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
366
- roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
367
- sep_style=SeparatorStyle.MPT,
368
- sep='<|im_end|>',
369
- stop_token_ids=[
370
- 2,
371
- 92543,
372
- 92542
373
- ]
374
- )
375
- )
376
-
377
-
378
- register_conv_template(
379
- Conversation(
380
- name='phi3-chat',
381
- system_template='<|system|>\n{system_message}',
382
- # note: The new system prompt was not used here to avoid changes in benchmark performance.
383
- # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
384
- system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
385
- roles=('<|user|>\n', '<|assistant|>\n'),
386
- sep_style=SeparatorStyle.MPT,
387
- sep='<|end|>',
388
- stop_token_ids=[
389
- 2,
390
- 32000,
391
- 32007
392
- ]
393
- )
394
- )
@@ -1,198 +0,0 @@
1
- import torch
2
-
3
- from torch import nn
4
- from transformers import AutoModel, AutoTokenizer, AutoImageProcessor, GenerationConfig
5
-
6
- from .conversation import get_conv_template
7
-
8
- class InternVL(nn.Module):
9
- def __init__(
10
- self,
11
- model_path='U4R/StructTable-InternVL2-1B',
12
- max_new_tokens=1024,
13
- max_time=30,
14
- flash_attn=True,
15
- cache_dir=None,
16
- local_files_only=None,
17
- **kwargs,
18
- ):
19
- super().__init__()
20
- self.model_path = model_path
21
- self.max_new_tokens = max_new_tokens
22
- self.max_generate_time = max_time
23
- self.flash_attn = flash_attn
24
- self.cache_dir = cache_dir
25
- self.local_files_only = local_files_only
26
-
27
- # init model and image processor from ckpt path
28
- self.init_tokenizer(model_path)
29
- self.init_image_processor(model_path)
30
- self.init_model(model_path)
31
-
32
- self.prompt_template = {
33
- 'latex': '<latex>',
34
- 'html': '<html>',
35
- 'markdown': '<markdown>',
36
- }
37
- # support output format
38
- self.supported_output_format = ['latex', 'html', 'markdown']
39
-
40
- def init_model(self, model_path):
41
- self.model = AutoModel.from_pretrained(
42
- pretrained_model_name_or_path=model_path,
43
- trust_remote_code=True,
44
- torch_dtype=torch.bfloat16,
45
- low_cpu_mem_usage=True,
46
- use_flash_attn=self.flash_attn,
47
- cache_dir=self.cache_dir,
48
- local_files_only=self.local_files_only,
49
- )
50
- self.model.eval()
51
-
52
- def init_image_processor(self, image_processor_path):
53
- self.image_processor = AutoImageProcessor.from_pretrained(
54
- pretrained_model_name_or_path=image_processor_path,
55
- trust_remote_code=True,
56
- cache_dir=self.cache_dir,
57
- local_files_only=self.local_files_only,
58
- )
59
-
60
- def init_tokenizer(self, tokenizer_path):
61
- self.tokenizer = AutoTokenizer.from_pretrained(
62
- pretrained_model_name_or_path=tokenizer_path,
63
- trust_remote_code=True,
64
- use_fast=False,
65
- cache_dir=self.cache_dir,
66
- local_files_only=self.local_files_only,
67
- )
68
-
69
- self.image_context_token = '<IMG_CONTEXT>'
70
- self.image_token_num = 256
71
- self.image_start_token = '<img>'
72
- self.image_end_token = '</img>'
73
- self.img_context_token_id = self.tokenizer.convert_tokens_to_ids(self.image_context_token)
74
-
75
- def format_image_tokens(self, path_num):
76
- return f'{self.image_start_token}{self.image_context_token* self.image_token_num * path_num}{self.image_end_token}'
77
-
78
- def forward(self, images, output_format='latex', **kwargs):
79
- # process image to tokens
80
- if not isinstance(images, list):
81
- images = [images]
82
-
83
- pixel_values_list = []
84
- for image in images:
85
- path_images = self.dynamic_preprocess(
86
- image, image_size=448, max_num=12
87
- )
88
- pixel_values = self.image_processor(
89
- path_images,
90
- return_tensors='pt'
91
- )['pixel_values'].to(torch.bfloat16)
92
- pixel_values_list.append(pixel_values)
93
-
94
- batch_size = len(pixel_values_list)
95
- conversation_list = []
96
- for bs_idx in range(batch_size):
97
- pixel_values= pixel_values_list[bs_idx].to(torch.bfloat16)
98
-
99
- image_tokens = self.format_image_tokens(pixel_values.shape[0])
100
- question = '<image>\n' + self.prompt_template[output_format]
101
- answer = None
102
-
103
- template = get_conv_template(self.model.config.template)
104
- template.append_message(template.roles[0], question)
105
- template.append_message(template.roles[1], answer)
106
- conversation = template.get_prompt()
107
- conversation = conversation.replace('<image>', image_tokens, 1)
108
- conversation_list.append(conversation)
109
-
110
- device = next(self.parameters()).device
111
- self.tokenizer.padding_side = 'left'
112
- model_inputs = self.tokenizer(
113
- conversation_list,
114
- return_tensors='pt',
115
- padding=True,
116
- max_length=self.tokenizer.model_max_length,
117
- truncation=True,
118
- ).to(device)
119
- pixel_values = torch.cat(pixel_values_list, axis=0).to(device)
120
-
121
- # generation config
122
- generation_config = dict(
123
- max_new_tokens=self.max_new_tokens,
124
- max_time=self.max_generate_time,
125
- img_context_token_id=self.img_context_token_id,
126
- pad_token_id=self.tokenizer.pad_token_id,
127
- eos_token_id=self.tokenizer.eos_token_id,
128
- do_sample=False,
129
- no_repeat_ngram_size=20,
130
- )
131
-
132
- # generate text from image tokens
133
- model_output = self.model.generate(
134
- pixel_values=pixel_values,
135
- input_ids=model_inputs.input_ids,
136
- attention_mask=model_inputs.attention_mask,
137
- **generation_config,
138
- # **kwargs
139
- )
140
-
141
- batch_decode_texts = self.tokenizer.batch_decode(
142
- model_output,
143
- skip_special_tokens=True
144
- )
145
- return batch_decode_texts
146
-
147
- def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
148
- best_ratio_diff = float('inf')
149
- best_ratio = (1, 1)
150
- area = width * height
151
- for ratio in target_ratios:
152
- target_aspect_ratio = ratio[0] / ratio[1]
153
- ratio_diff = abs(aspect_ratio - target_aspect_ratio)
154
- if ratio_diff < best_ratio_diff:
155
- best_ratio_diff = ratio_diff
156
- best_ratio = ratio
157
- elif ratio_diff == best_ratio_diff:
158
- if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
159
- best_ratio = ratio
160
- return best_ratio
161
-
162
- def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=True):
163
- orig_width, orig_height = image.size
164
- aspect_ratio = orig_width / orig_height
165
-
166
- # calculate the existing image aspect ratio
167
- target_ratios = set(
168
- (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
169
- i * j <= max_num and i * j >= min_num)
170
- target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
171
-
172
- # find the closest aspect ratio to the target
173
- target_aspect_ratio = self.find_closest_aspect_ratio(
174
- aspect_ratio, target_ratios, orig_width, orig_height, image_size)
175
-
176
- # calculate the target width and height
177
- target_width = image_size * target_aspect_ratio[0]
178
- target_height = image_size * target_aspect_ratio[1]
179
- blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
180
-
181
- # resize the image
182
- resized_img = image.resize((target_width, target_height))
183
- processed_images = []
184
- for i in range(blocks):
185
- box = (
186
- (i % (target_width // image_size)) * image_size,
187
- (i // (target_width // image_size)) * image_size,
188
- ((i % (target_width // image_size)) + 1) * image_size,
189
- ((i // (target_width // image_size)) + 1) * image_size
190
- )
191
- # split the image
192
- split_img = resized_img.crop(box)
193
- processed_images.append(split_img)
194
- assert len(processed_images) == blocks
195
- if use_thumbnail and len(processed_images) != 1:
196
- thumbnail_img = image.resize((image_size, image_size))
197
- processed_images.append(thumbnail_img)
198
- return processed_images
@@ -1,81 +0,0 @@
1
- import torch
2
- from torch import nn
3
-
4
- from transformers import AutoTokenizer
5
- try:
6
- from lmdeploy import pipeline, GenerationConfig, PytorchEngineConfig, ChatTemplateConfig
7
- except:
8
- print("\033[93mimport lmdeploy failed, if do not use lmdeploy, ignore this message\033[0m")
9
-
10
-
11
- class InternVL_LMDeploy(nn.Module):
12
- def __init__(
13
- self,
14
- model_path='U4R/StructTable-InternVL2-1B',
15
- max_new_tokens=1024,
16
- batch_size=4,
17
- cache_dir=None,
18
- local_files_only=None,
19
- **kwargs,
20
- ):
21
- super().__init__()
22
- self.model_path = model_path
23
- self.max_new_tokens = max_new_tokens
24
- self.max_batch_size = batch_size
25
- self.cache_dir = cache_dir
26
- self.local_files_only = local_files_only
27
-
28
- # init model and tokenizer from ckpt path
29
- self.init_tokenizer(model_path)
30
- self.init_model(model_path)
31
-
32
- self.prompt_template = {
33
- 'latex': '<latex>',
34
- 'html': '<html>',
35
- 'markdown': '<markdown>',
36
- }
37
- # support output format
38
- self.supported_output_format = ['latex', 'html', 'markdown']
39
-
40
- def init_tokenizer(self, tokenizer_path):
41
- self.tokenizer = AutoTokenizer.from_pretrained(
42
- pretrained_model_name_or_path=tokenizer_path,
43
- trust_remote_code=True,
44
- use_fast=False,
45
- cache_dir=self.cache_dir,
46
- local_files_only=self.local_files_only,
47
- )
48
-
49
- def init_model(self, model_path):
50
- engine_config = PytorchEngineConfig(
51
- dtype='bfloat16',
52
- max_batch_size=self.max_batch_size,
53
- cache_max_entry_count=0.1
54
- )
55
- self.pipeline = pipeline(
56
- model_path,
57
- backend_config=engine_config,
58
- chat_template_config=ChatTemplateConfig(model_name='internvl2-internlm2')
59
- )
60
-
61
- def forward(self, images, output_format='latex', **kwargs):
62
- # process image to tokens
63
- if not isinstance(images, list):
64
- images = [images]
65
-
66
- prompts = [self.prompt_template[output_format]] * len(images)
67
- generation_config = GenerationConfig(
68
- max_new_tokens=self.max_new_tokens,
69
- do_sample=False,
70
- temperature=1.0,
71
- stop_token_ids=[self.tokenizer.eos_token_id],
72
- )
73
-
74
- responses = self.pipeline(
75
- [(x, y) for x, y in zip(prompts, images)],
76
- gen_config=generation_config,
77
- )
78
- batch_decode_texts = [responce.text for responce in responses]
79
- return batch_decode_texts
80
-
81
-
@@ -1,3 +0,0 @@
1
- from .pix2s import Pix2Struct
2
- from .pix2s_trt import Pix2StructTensorRT
3
-