doc-page-extractor 0.0.10__py3-none-any.whl → 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of doc-page-extractor might be problematic. Click here for more details.

@@ -1,5 +1,15 @@
1
1
  from .extractor import DocExtractor
2
2
  from .clipper import clip, clip_from_image
3
3
  from .plot import plot
4
- from .types import ExtractedResult, OCRFragment, LayoutClass, Layout
5
- from .rectangle import Point, Rectangle
4
+ from .rectangle import Point, Rectangle
5
+ from .types import (
6
+ ExtractedResult,
7
+ OCRFragment,
8
+ LayoutClass,
9
+ TableLayoutParsedFormat,
10
+ Layout,
11
+ BaseLayout,
12
+ PlainLayout,
13
+ FormulaLayout,
14
+ TableLayout,
15
+ )
@@ -1,6 +1,6 @@
1
1
  import os
2
2
 
3
- from typing import Literal
3
+ from typing import Literal, Generator
4
4
  from pathlib import Path
5
5
  from PIL.Image import Image
6
6
  from doclayout_yolo import YOLOv10
@@ -9,10 +9,22 @@ from .ocr import OCR
9
9
  from .ocr_corrector import correct_fragments
10
10
  from .raw_optimizer import RawOptimizer
11
11
  from .rectangle import intersection_area, Rectangle
12
- from .types import ExtractedResult, OCRFragment, LayoutClass, Layout
13
12
  from .downloader import download
13
+ from .table import Table
14
+ from .latex import LaTeX
14
15
  from .layout_order import LayoutOrder
15
16
  from .overlap import merge_fragments_as_line, remove_overlap_layouts
17
+ from .clipper import clip_from_image
18
+ from .types import (
19
+ ExtractedResult,
20
+ OCRFragment,
21
+ TableLayoutParsedFormat,
22
+ Layout,
23
+ LayoutClass,
24
+ PlainLayout,
25
+ TableLayout,
26
+ FormulaLayout,
27
+ )
16
28
 
17
29
 
18
30
  class DocExtractor:
@@ -21,12 +33,26 @@ class DocExtractor:
21
33
  model_dir_path: str,
22
34
  device: Literal["cpu", "cuda"] = "cpu",
23
35
  ocr_for_each_layouts: bool = True,
36
+ extract_formula: bool = True,
37
+ extract_table_format: TableLayoutParsedFormat | None = None,
24
38
  ):
25
39
  self._model_dir_path: str = model_dir_path
26
40
  self._device: Literal["cpu", "cuda"] = device
27
41
  self._ocr_for_each_layouts: bool = ocr_for_each_layouts
28
- self._ocr: OCR = OCR(device, model_dir_path)
42
+ self._extract_formula: bool = extract_formula
43
+ self._extract_table_format: TableLayoutParsedFormat | None = extract_table_format
29
44
  self._yolo: YOLOv10 | None = None
45
+ self._ocr: OCR = OCR(
46
+ device=device,
47
+ model_dir_path=os.path.join(model_dir_path, "onnx_ocr"),
48
+ )
49
+ self._table: Table = Table(
50
+ device=device,
51
+ model_path=os.path.join(model_dir_path, "struct_eqtable"),
52
+ )
53
+ self._latex: LaTeX = LaTeX(
54
+ model_path=os.path.join(model_dir_path, "latex"),
55
+ )
30
56
  self._layout_order: LayoutOrder = LayoutOrder(
31
57
  model_path=os.path.join(model_dir_path, "layoutreader"),
32
58
  )
@@ -40,7 +66,7 @@ class DocExtractor:
40
66
  raw_optimizer = RawOptimizer(image, adjust_points)
41
67
  fragments = list(self._ocr.search_fragments(raw_optimizer.image_np))
42
68
  raw_optimizer.receive_raw_fragments(fragments)
43
- layouts = self._get_layouts(raw_optimizer.image)
69
+ layouts = list(self._yolo_extract_layouts(raw_optimizer.image))
44
70
  layouts = self._layouts_matched_by_fragments(fragments, layouts)
45
71
  layouts = remove_overlap_layouts(layouts)
46
72
 
@@ -50,6 +76,8 @@ class DocExtractor:
50
76
  layouts = self._layout_order.sort(layouts, raw_optimizer.image.size)
51
77
  layouts = [layout for layout in layouts if self._should_keep_layout(layout)]
52
78
 
79
+ self._parse_table_and_formula_layouts(layouts, raw_optimizer)
80
+
53
81
  for layout in layouts:
54
82
  layout.fragments = merge_fragments_as_line(layout.fragments)
55
83
 
@@ -62,7 +90,7 @@ class DocExtractor:
62
90
  adjusted_image=raw_optimizer.adjusted_image,
63
91
  )
64
92
 
65
- def _get_layouts(self, source: Image) -> list[Layout]:
93
+ def _yolo_extract_layouts(self, source: Image) -> Generator[Layout, None, None]:
66
94
  # about source parameter to see:
67
95
  # https://github.com/opendatalab/DocLayout-YOLO/blob/7c4be36bc61f11b67cf4a44ee47f3c41e9800a91/doclayout_yolo/data/build.py#L157-L175
68
96
  det_res = self._get_yolo().predict(
@@ -72,7 +100,6 @@ class DocExtractor:
72
100
  device=self._device # Device to use (e.g., "cuda" or "cpu")
73
101
  )
74
102
  boxes = det_res[0].__dict__["boxes"]
75
- layouts: list[Layout] = []
76
103
 
77
104
  for cls_id, rect in zip(boxes.cls, boxes.xyxy):
78
105
  cls_id = cls_id.item()
@@ -89,9 +116,12 @@ class DocExtractor:
89
116
  lb=(x1, y2),
90
117
  rb=(x2, y2),
91
118
  )
92
- layouts.append(Layout(cls, rect, []))
93
-
94
- return layouts
119
+ if cls == LayoutClass.TABLE:
120
+ yield TableLayout(cls=cls, rect=rect, fragments=[], parsed=None)
121
+ elif cls == LayoutClass.ISOLATE_FORMULA:
122
+ yield FormulaLayout(cls=cls, rect=rect, fragments=[], latex=None)
123
+ else:
124
+ yield PlainLayout(cls=cls, rect=rect, fragments=[])
95
125
 
96
126
  def _layouts_matched_by_fragments(self, fragments: list[OCRFragment], layouts: list[Layout]):
97
127
  layouts_group = self._split_layouts_by_group(layouts)
@@ -107,6 +137,17 @@ class DocExtractor:
107
137
  for layout in layouts:
108
138
  correct_fragments(self._ocr, source, layout)
109
139
 
140
+ def _parse_table_and_formula_layouts(self, layouts: list[Layout], raw_optimizer: RawOptimizer):
141
+ for layout in layouts:
142
+ if isinstance(layout, FormulaLayout) and self._extract_formula:
143
+ image = clip_from_image(raw_optimizer.image, layout.rect)
144
+ layout.latex = self._latex.extract(image)
145
+ elif isinstance(layout, TableLayout) and self._extract_table_format is not None:
146
+ image = clip_from_image(raw_optimizer.image, layout.rect)
147
+ parsed = self._table.predict(image, self._extract_table_format)
148
+ if parsed is not None:
149
+ layout.parsed = (parsed, self._extract_table_format)
150
+
110
151
  def _split_layouts_by_group(self, layouts: list[Layout]):
111
152
  texts_layouts: list[Layout] = []
112
153
  abandon_layouts: list[Layout] = []
@@ -149,9 +190,11 @@ class DocExtractor:
149
190
 
150
191
  def _get_yolo(self) -> YOLOv10:
151
192
  if self._yolo is None:
193
+ base_path = os.path.join(self._model_dir_path, "yolo")
194
+ os.makedirs(base_path, exist_ok=True)
152
195
  yolo_model_url = "https://huggingface.co/opendatalab/PDF-Extract-Kit-1.0/resolve/main/models/Layout/YOLO/doclayout_yolo_ft.pt"
153
196
  yolo_model_name = "doclayout_yolo_ft.pt"
154
- yolo_model_path = Path(os.path.join(self._model_dir_path, yolo_model_name))
197
+ yolo_model_path = Path(os.path.join(base_path, yolo_model_name))
155
198
  if not yolo_model_path.exists():
156
199
  download(yolo_model_url, yolo_model_path)
157
200
  self._yolo = YOLOv10(str(yolo_model_path))
@@ -0,0 +1,57 @@
1
+ import os
2
+ import torch
3
+ import requests
4
+
5
+ from munch import Munch
6
+ from pix2tex.cli import LatexOCR
7
+ from PIL.Image import Image
8
+ from .utils import expand_image
9
+
10
+
11
+ class LaTeX:
12
+ def __init__(self, model_path: str):
13
+ self._model_path: str = model_path
14
+ self._model: LatexOCR | None = None
15
+
16
+ def extract(self, image: Image) -> str | None:
17
+ image = expand_image(image, 0.1) # 添加边缘提高识别准确率
18
+ model = self._get_model()
19
+ with torch.no_grad():
20
+ return model(image)
21
+
22
+ def _get_model(self) -> LatexOCR:
23
+ if self._model is None:
24
+ if not os.path.exists(self._model_path):
25
+ self._download_model()
26
+
27
+ self._model = LatexOCR(Munch({
28
+ "config": os.path.join("settings", "config.yaml"),
29
+ "checkpoint": os.path.join(self._model_path, "weights.pth"),
30
+ "no_cuda": True,
31
+ "no_resize": False,
32
+ }))
33
+ return self._model
34
+
35
+ # from https://github.com/lukas-blecher/LaTeX-OCR/blob/5c1ac929bd19a7ecf86d5fb8d94771c8969fcb80/pix2tex/model/checkpoints/get_latest_checkpoint.py#L37-L45
36
+ def _download_model(self):
37
+ os.makedirs(self._model_path, exist_ok=True)
38
+ tag = "v0.0.1"
39
+ files: list[tuple[str, str]] = (
40
+ ("weights.pth", f"https://github.com/lukas-blecher/LaTeX-OCR/releases/download/{tag}/weights.pth"),
41
+ ("image_resizer.pth", f"https://github.com/lukas-blecher/LaTeX-OCR/releases/download/{tag}/image_resizer.pth")
42
+ )
43
+ for file_name, url in files:
44
+ file_path = os.path.join(self._model_path, file_name)
45
+ try:
46
+ with open(file_path, "wb") as file:
47
+ response = requests.get(url, stream=True, timeout=15)
48
+ response.raise_for_status()
49
+ for chunk in response.iter_content(chunk_size=8192):
50
+ if chunk: # 过滤掉保持连接的新块
51
+ file.write(chunk)
52
+ file.flush()
53
+
54
+ except BaseException as e:
55
+ if os.path.exists(file_path):
56
+ os.remove(file_path)
57
+ raise e
@@ -0,0 +1,49 @@
1
+ from .pix2s import Pix2Struct, Pix2StructTensorRT
2
+ from .internvl import InternVL, InternVL_LMDeploy
3
+
4
+ from transformers import AutoConfig
5
+
6
+
7
+ __ALL_MODELS__ = {
8
+ 'Pix2Struct': Pix2Struct,
9
+ 'Pix2StructTensorRT': Pix2StructTensorRT,
10
+ 'InternVL': InternVL,
11
+ 'InternVL_LMDeploy': InternVL_LMDeploy,
12
+ }
13
+
14
+
15
+ def get_model_name(model_path):
16
+ model_config = AutoConfig.from_pretrained(
17
+ model_path,
18
+ trust_remote_code=True,
19
+ )
20
+
21
+ if 'Pix2Struct' in model_config.architectures[0]:
22
+ model_name = 'Pix2Struct'
23
+ elif 'InternVL' in model_config.architectures[0]:
24
+ model_name = 'InternVL'
25
+ else:
26
+ raise ValueError(f"Unsupported model type: {model_config.architectures[0]}")
27
+
28
+ return model_name
29
+
30
+
31
+ def build_model(
32
+ model_ckpt='U4R/StructTable-InternVL2-1B',
33
+ cache_dir=None,
34
+ local_files_only=None,
35
+ **kwargs,
36
+ ):
37
+ model_name = get_model_name(model_ckpt)
38
+ if model_name == 'InternVL' and kwargs.get('lmdeploy', False):
39
+ model_name = 'InternVL_LMDeploy'
40
+ elif model_name == 'Pix2Struct' and kwargs.get('tensorrt_path', None):
41
+ model_name = 'Pix2StructTensorRT'
42
+
43
+ model = __ALL_MODELS__[model_name](
44
+ model_ckpt,
45
+ cache_dir=cache_dir,
46
+ local_files_only=local_files_only,
47
+ **kwargs
48
+ )
49
+ return model
@@ -0,0 +1,2 @@
1
+ from .internvl import InternVL
2
+ from .internvl_lmdeploy import InternVL_LMDeploy
@@ -0,0 +1,394 @@
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+ """
7
+
8
+ import dataclasses
9
+ from enum import IntEnum, auto
10
+ from typing import Any, Dict, List, Tuple, Union
11
+
12
+
13
+ class SeparatorStyle(IntEnum):
14
+ """Separator styles."""
15
+
16
+ ADD_COLON_SINGLE = auto()
17
+ ADD_COLON_TWO = auto()
18
+ ADD_COLON_SPACE_SINGLE = auto()
19
+ NO_COLON_SINGLE = auto()
20
+ NO_COLON_TWO = auto()
21
+ ADD_NEW_LINE_SINGLE = auto()
22
+ LLAMA2 = auto()
23
+ CHATGLM = auto()
24
+ CHATML = auto()
25
+ CHATINTERN = auto()
26
+ DOLLY = auto()
27
+ RWKV = auto()
28
+ PHOENIX = auto()
29
+ ROBIN = auto()
30
+ FALCON_CHAT = auto()
31
+ CHATGLM3 = auto()
32
+ INTERNVL_ZH = auto()
33
+ MPT = auto()
34
+
35
+
36
+ @dataclasses.dataclass
37
+ class Conversation:
38
+ """A class that manages prompt templates and keeps all conversation history."""
39
+
40
+ # The name of this template
41
+ name: str
42
+ # The template of the system prompt
43
+ system_template: str = '{system_message}'
44
+ # The system message
45
+ system_message: str = ''
46
+ # The names of two roles
47
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
48
+ # All messages. Each item is (role, message).
49
+ messages: List[List[str]] = ()
50
+ # The number of few shot examples
51
+ offset: int = 0
52
+ # The separator style and configurations
53
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
54
+ sep: str = '\n'
55
+ sep2: str = None
56
+ # Stop criteria (the default one is EOS token)
57
+ stop_str: Union[str, List[str]] = None
58
+ # Stops generation if meeting any token in this list
59
+ stop_token_ids: List[int] = None
60
+
61
+ def get_prompt(self) -> str:
62
+ """Get the prompt for generation."""
63
+ system_prompt = self.system_template.format(system_message=self.system_message)
64
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
65
+ ret = system_prompt + self.sep
66
+ for role, message in self.messages:
67
+ if message:
68
+ ret += role + ': ' + message + self.sep
69
+ else:
70
+ ret += role + ':'
71
+ return ret
72
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
73
+ seps = [self.sep, self.sep2]
74
+ ret = system_prompt + seps[0]
75
+ for i, (role, message) in enumerate(self.messages):
76
+ if message:
77
+ ret += role + ': ' + message + seps[i % 2]
78
+ else:
79
+ ret += role + ':'
80
+ return ret
81
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
82
+ ret = system_prompt + self.sep
83
+ for role, message in self.messages:
84
+ if message:
85
+ ret += role + ': ' + message + self.sep
86
+ else:
87
+ ret += role + ': ' # must be end with a space
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
90
+ ret = '' if system_prompt == '' else system_prompt + self.sep
91
+ for role, message in self.messages:
92
+ if message:
93
+ ret += role + '\n' + message + self.sep
94
+ else:
95
+ ret += role + '\n'
96
+ return ret
97
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
98
+ ret = system_prompt
99
+ for role, message in self.messages:
100
+ if message:
101
+ ret += role + message + self.sep
102
+ else:
103
+ ret += role
104
+ return ret
105
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
106
+ seps = [self.sep, self.sep2]
107
+ ret = system_prompt
108
+ for i, (role, message) in enumerate(self.messages):
109
+ if message:
110
+ ret += role + message + seps[i % 2]
111
+ else:
112
+ ret += role
113
+ return ret
114
+ elif self.sep_style == SeparatorStyle.RWKV:
115
+ ret = system_prompt
116
+ for i, (role, message) in enumerate(self.messages):
117
+ if message:
118
+ ret += (
119
+ role
120
+ + ': '
121
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
122
+ )
123
+ ret += '\n\n'
124
+ else:
125
+ ret += role + ':'
126
+ return ret
127
+ elif self.sep_style == SeparatorStyle.LLAMA2:
128
+ seps = [self.sep, self.sep2]
129
+ if self.system_message:
130
+ ret = system_prompt
131
+ else:
132
+ ret = '[INST] '
133
+ for i, (role, message) in enumerate(self.messages):
134
+ tag = self.roles[i % 2]
135
+ if message:
136
+ if i == 0:
137
+ ret += message + ' '
138
+ else:
139
+ ret += tag + ' ' + message + seps[i % 2]
140
+ else:
141
+ ret += tag
142
+ return ret
143
+ elif self.sep_style == SeparatorStyle.CHATGLM:
144
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
145
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
146
+ round_add_n = 1 if self.name == 'chatglm2' else 0
147
+ if system_prompt:
148
+ ret = system_prompt + self.sep
149
+ else:
150
+ ret = ''
151
+
152
+ for i, (role, message) in enumerate(self.messages):
153
+ if i % 2 == 0:
154
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
155
+
156
+ if message:
157
+ ret += f'{role}:{message}{self.sep}'
158
+ else:
159
+ ret += f'{role}:'
160
+ return ret
161
+ elif self.sep_style == SeparatorStyle.CHATML:
162
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
163
+ for role, message in self.messages:
164
+ if message:
165
+ ret += role + '\n' + message + self.sep + '\n'
166
+ else:
167
+ ret += role + '\n'
168
+ return ret
169
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
170
+ ret = ''
171
+ if self.system_message:
172
+ ret += system_prompt
173
+ for role, message in self.messages:
174
+ if message:
175
+ ret += role + '\n' + ' ' + message
176
+ else:
177
+ ret += role
178
+ return ret
179
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
180
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
181
+ seps = [self.sep, self.sep2]
182
+ ret = system_prompt
183
+ for i, (role, message) in enumerate(self.messages):
184
+ # if i % 2 == 0:
185
+ # ret += "<s>"
186
+ if message:
187
+ ret += role + ':' + message + seps[i % 2] + '\n'
188
+ else:
189
+ ret += role + ':'
190
+ return ret
191
+ elif self.sep_style == SeparatorStyle.DOLLY:
192
+ seps = [self.sep, self.sep2]
193
+ ret = system_prompt
194
+ for i, (role, message) in enumerate(self.messages):
195
+ if message:
196
+ ret += role + ':\n' + message + seps[i % 2]
197
+ if i % 2 == 1:
198
+ ret += '\n\n'
199
+ else:
200
+ ret += role + ':\n'
201
+ return ret
202
+ elif self.sep_style == SeparatorStyle.PHOENIX:
203
+ ret = system_prompt
204
+ for role, message in self.messages:
205
+ if message:
206
+ ret += role + ': ' + '<s>' + message + '</s>'
207
+ else:
208
+ ret += role + ': ' + '<s>'
209
+ return ret
210
+ elif self.sep_style == SeparatorStyle.ROBIN:
211
+ ret = system_prompt + self.sep
212
+ for role, message in self.messages:
213
+ if message:
214
+ ret += role + ':\n' + message + self.sep
215
+ else:
216
+ ret += role + ':\n'
217
+ return ret
218
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
219
+ ret = ''
220
+ if self.system_message:
221
+ ret += system_prompt + self.sep
222
+ for role, message in self.messages:
223
+ if message:
224
+ ret += role + ': ' + message + self.sep
225
+ else:
226
+ ret += role + ':'
227
+
228
+ return ret
229
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
230
+ seps = [self.sep, self.sep2]
231
+ ret = self.system_message + seps[0]
232
+ for i, (role, message) in enumerate(self.messages):
233
+ if message:
234
+ ret += role + ': ' + message + seps[i % 2]
235
+ else:
236
+ ret += role + ':'
237
+ return ret
238
+ elif self.sep_style == SeparatorStyle.MPT:
239
+ ret = system_prompt + self.sep
240
+ for role, message in self.messages:
241
+ if message:
242
+ if type(message) is tuple:
243
+ message, _, _ = message
244
+ ret += role + message + self.sep
245
+ else:
246
+ ret += role
247
+ return ret
248
+ else:
249
+ raise ValueError(f'Invalid style: {self.sep_style}')
250
+
251
+ def set_system_message(self, system_message: str):
252
+ """Set the system message."""
253
+ self.system_message = system_message
254
+
255
+ def append_message(self, role: str, message: str):
256
+ """Append a new message."""
257
+ self.messages.append([role, message])
258
+
259
+ def update_last_message(self, message: str):
260
+ """Update the last output.
261
+
262
+ The last message is typically set to be None when constructing the prompt,
263
+ so we need to update it in-place after getting the response from a model.
264
+ """
265
+ self.messages[-1][1] = message
266
+
267
+ def to_gradio_chatbot(self):
268
+ """Convert the conversation to gradio chatbot format."""
269
+ ret = []
270
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
271
+ if i % 2 == 0:
272
+ ret.append([msg, None])
273
+ else:
274
+ ret[-1][-1] = msg
275
+ return ret
276
+
277
+ def to_openai_api_messages(self):
278
+ """Convert the conversation to OpenAI chat completion format."""
279
+ ret = [{'role': 'system', 'content': self.system_message}]
280
+
281
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
282
+ if i % 2 == 0:
283
+ ret.append({'role': 'user', 'content': msg})
284
+ else:
285
+ if msg is not None:
286
+ ret.append({'role': 'assistant', 'content': msg})
287
+ return ret
288
+
289
+ def copy(self):
290
+ return Conversation(
291
+ name=self.name,
292
+ system_template=self.system_template,
293
+ system_message=self.system_message,
294
+ roles=self.roles,
295
+ messages=[[x, y] for x, y in self.messages],
296
+ offset=self.offset,
297
+ sep_style=self.sep_style,
298
+ sep=self.sep,
299
+ sep2=self.sep2,
300
+ stop_str=self.stop_str,
301
+ stop_token_ids=self.stop_token_ids,
302
+ )
303
+
304
+ def dict(self):
305
+ return {
306
+ 'template_name': self.name,
307
+ 'system_message': self.system_message,
308
+ 'roles': self.roles,
309
+ 'messages': self.messages,
310
+ 'offset': self.offset,
311
+ }
312
+
313
+
314
+ # A global registry for all conversation templates
315
+ conv_templates: Dict[str, Conversation] = {}
316
+
317
+
318
+ def register_conv_template(template: Conversation, override: bool = False):
319
+ """Register a new conversation template."""
320
+ if not override:
321
+ assert (
322
+ template.name not in conv_templates
323
+ ), f'{template.name} has been registered.'
324
+
325
+ conv_templates[template.name] = template
326
+
327
+
328
+ def get_conv_template(name: str) -> Conversation:
329
+ """Get a conversation template."""
330
+ return conv_templates[name].copy()
331
+
332
+
333
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
334
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
335
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
336
+ # Therefore, they are completely equivalent during inference.
337
+ register_conv_template(
338
+ Conversation(
339
+ name='Hermes-2',
340
+ system_template='<|im_start|>system\n{system_message}',
341
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
342
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
343
+ # system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
344
+ system_message='You are a Table Image to LaTeX/Markdown/HMTL Code converter.',
345
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
346
+ sep_style=SeparatorStyle.MPT,
347
+ sep='<|im_end|>',
348
+ stop_token_ids=[
349
+ 2,
350
+ 6,
351
+ 7,
352
+ 8,
353
+ ],
354
+ stop_str='<|endoftext|>',
355
+ )
356
+ )
357
+
358
+
359
+ register_conv_template(
360
+ Conversation(
361
+ name='internlm2-chat',
362
+ system_template='<|im_start|>system\n{system_message}',
363
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
364
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
365
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
366
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
367
+ sep_style=SeparatorStyle.MPT,
368
+ sep='<|im_end|>',
369
+ stop_token_ids=[
370
+ 2,
371
+ 92543,
372
+ 92542
373
+ ]
374
+ )
375
+ )
376
+
377
+
378
+ register_conv_template(
379
+ Conversation(
380
+ name='phi3-chat',
381
+ system_template='<|system|>\n{system_message}',
382
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
383
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
384
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
385
+ roles=('<|user|>\n', '<|assistant|>\n'),
386
+ sep_style=SeparatorStyle.MPT,
387
+ sep='<|end|>',
388
+ stop_token_ids=[
389
+ 2,
390
+ 32000,
391
+ 32007
392
+ ]
393
+ )
394
+ )