dnt 0.2.4__py3-none-any.whl → 0.3.1.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dnt/__init__.py +3 -2
- dnt/analysis/__init__.py +3 -2
- dnt/analysis/count.py +54 -37
- dnt/analysis/interaction2.py +518 -0
- dnt/analysis/stop.py +22 -17
- dnt/analysis/stop2.py +289 -0
- dnt/analysis/stop3.py +758 -0
- dnt/detect/signal/detector.py +326 -0
- dnt/detect/timestamp.py +105 -0
- dnt/detect/yolov8/detector.py +179 -36
- dnt/detect/yolov8/segmentor.py +60 -2
- dnt/engine/__init__.py +8 -0
- dnt/engine/bbox_interp.py +83 -0
- dnt/engine/bbox_iou.py +20 -0
- dnt/engine/cluster.py +31 -0
- dnt/engine/iob.py +66 -0
- dnt/filter/filter.py +333 -2
- dnt/label/labeler.py +4 -4
- dnt/label/labeler2.py +631 -0
- dnt/shared/__init__.py +2 -1
- dnt/shared/data/coco.names +0 -0
- dnt/shared/data/openimages.names +0 -0
- dnt/shared/data/voc.names +0 -0
- dnt/shared/download.py +12 -0
- dnt/shared/synhcro.py +150 -0
- dnt/shared/util.py +17 -4
- dnt/third_party/fast-reid/__init__.py +1 -0
- dnt/third_party/fast-reid/configs/Base-AGW.yml +19 -0
- dnt/third_party/fast-reid/configs/Base-MGN.yml +12 -0
- dnt/third_party/fast-reid/configs/Base-SBS.yml +63 -0
- dnt/third_party/fast-reid/configs/Base-bagtricks.yml +76 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/DukeMTMC/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT17/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT17/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT17/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT20/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT20/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MOT20/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MSMT17/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R101-ibn.yml +13 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MSMT17/bagtricks_S50.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/MSMT17/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/Market1501/AGW_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/bagtricks_vit.yml +88 -0
- dnt/third_party/fast-reid/configs/Market1501/mgn_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_R101-ibn.yml +12 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_R50-ibn.yml +11 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_R50.yml +7 -0
- dnt/third_party/fast-reid/configs/Market1501/sbs_S50.yml +11 -0
- dnt/third_party/fast-reid/configs/VERIWild/bagtricks_R50-ibn.yml +35 -0
- dnt/third_party/fast-reid/configs/VeRi/sbs_R50-ibn.yml +35 -0
- dnt/third_party/fast-reid/configs/VehicleID/bagtricks_R50-ibn.yml +36 -0
- dnt/third_party/fast-reid/configs/__init__.py +0 -0
- dnt/third_party/fast-reid/fast_reid_interfece.py +175 -0
- dnt/third_party/fast-reid/fastreid/__init__.py +6 -0
- dnt/third_party/fast-reid/fastreid/config/__init__.py +15 -0
- dnt/third_party/fast-reid/fastreid/config/config.py +319 -0
- dnt/third_party/fast-reid/fastreid/config/defaults.py +329 -0
- dnt/third_party/fast-reid/fastreid/data/__init__.py +17 -0
- dnt/third_party/fast-reid/fastreid/data/build.py +194 -0
- dnt/third_party/fast-reid/fastreid/data/common.py +58 -0
- dnt/third_party/fast-reid/fastreid/data/data_utils.py +202 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/AirportALERT.py +50 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/__init__.py +43 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/bases.py +183 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/caviara.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/cuhk03.py +274 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/cuhk_sysu.py +58 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/dukemtmcreid.py +70 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/grid.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/iLIDS.py +45 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/lpw.py +49 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/market1501.py +89 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/msmt17.py +114 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/pes3d.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/pku.py +44 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/prai.py +43 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/prid.py +41 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/saivt.py +47 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/sensereid.py +47 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/shinpuhkan.py +48 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/sysu_mm.py +47 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/thermalworld.py +43 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/vehicleid.py +126 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/veri.py +69 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/veriwild.py +140 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/viper.py +45 -0
- dnt/third_party/fast-reid/fastreid/data/datasets/wildtracker.py +59 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/__init__.py +18 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/data_sampler.py +85 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/imbalance_sampler.py +67 -0
- dnt/third_party/fast-reid/fastreid/data/samplers/triplet_sampler.py +260 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/__init__.py +11 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/autoaugment.py +806 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/build.py +100 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/functional.py +180 -0
- dnt/third_party/fast-reid/fastreid/data/transforms/transforms.py +161 -0
- dnt/third_party/fast-reid/fastreid/engine/__init__.py +15 -0
- dnt/third_party/fast-reid/fastreid/engine/defaults.py +490 -0
- dnt/third_party/fast-reid/fastreid/engine/hooks.py +534 -0
- dnt/third_party/fast-reid/fastreid/engine/launch.py +103 -0
- dnt/third_party/fast-reid/fastreid/engine/train_loop.py +357 -0
- dnt/third_party/fast-reid/fastreid/evaluation/__init__.py +6 -0
- dnt/third_party/fast-reid/fastreid/evaluation/clas_evaluator.py +81 -0
- dnt/third_party/fast-reid/fastreid/evaluation/evaluator.py +176 -0
- dnt/third_party/fast-reid/fastreid/evaluation/query_expansion.py +46 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank.py +200 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/__init__.py +20 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/setup.py +32 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rank_cylib/test_cython.py +106 -0
- dnt/third_party/fast-reid/fastreid/evaluation/reid_evaluation.py +143 -0
- dnt/third_party/fast-reid/fastreid/evaluation/rerank.py +73 -0
- dnt/third_party/fast-reid/fastreid/evaluation/roc.py +90 -0
- dnt/third_party/fast-reid/fastreid/evaluation/testing.py +88 -0
- dnt/third_party/fast-reid/fastreid/layers/__init__.py +19 -0
- dnt/third_party/fast-reid/fastreid/layers/activation.py +59 -0
- dnt/third_party/fast-reid/fastreid/layers/any_softmax.py +80 -0
- dnt/third_party/fast-reid/fastreid/layers/batch_norm.py +205 -0
- dnt/third_party/fast-reid/fastreid/layers/context_block.py +113 -0
- dnt/third_party/fast-reid/fastreid/layers/drop.py +161 -0
- dnt/third_party/fast-reid/fastreid/layers/frn.py +199 -0
- dnt/third_party/fast-reid/fastreid/layers/gather_layer.py +30 -0
- dnt/third_party/fast-reid/fastreid/layers/helpers.py +31 -0
- dnt/third_party/fast-reid/fastreid/layers/non_local.py +54 -0
- dnt/third_party/fast-reid/fastreid/layers/pooling.py +124 -0
- dnt/third_party/fast-reid/fastreid/layers/se_layer.py +25 -0
- dnt/third_party/fast-reid/fastreid/layers/splat.py +109 -0
- dnt/third_party/fast-reid/fastreid/layers/weight_init.py +122 -0
- dnt/third_party/fast-reid/fastreid/modeling/__init__.py +23 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/__init__.py +18 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/build.py +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenet.py +195 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/mobilenetv3.py +283 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/osnet.py +525 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/__init__.py +4 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/config.py +396 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B0_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B1_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B2_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B3_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B4_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet/EN-B5_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/effnet.py +281 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnet.py +596 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-1.6GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-12GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-16GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-200MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-3.2GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-32GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-4.0GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-400MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-6.4GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-600MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-8.0GF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnetx/RegNetX-800MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-1.6GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-12GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-16GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-200MF_dds_8gpu.yaml +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-3.2GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-32GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-4.0GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-400MF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-6.4GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-600MF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-8.0GF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/regnet/regnety/RegNetY-800MF_dds_8gpu.yaml +27 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/repvgg.py +309 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/resnest.py +365 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/resnet.py +364 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/resnext.py +335 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/shufflenet.py +203 -0
- dnt/third_party/fast-reid/fastreid/modeling/backbones/vision_transformer.py +399 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/__init__.py +11 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/build.py +25 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/clas_head.py +36 -0
- dnt/third_party/fast-reid/fastreid/modeling/heads/embedding_head.py +151 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/__init__.py +12 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/circle_loss.py +71 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/cross_entroy_loss.py +54 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/focal_loss.py +92 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/triplet_loss.py +113 -0
- dnt/third_party/fast-reid/fastreid/modeling/losses/utils.py +48 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/__init__.py +14 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/baseline.py +188 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/build.py +26 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/distiller.py +140 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/mgn.py +394 -0
- dnt/third_party/fast-reid/fastreid/modeling/meta_arch/moco.py +126 -0
- dnt/third_party/fast-reid/fastreid/solver/__init__.py +8 -0
- dnt/third_party/fast-reid/fastreid/solver/build.py +348 -0
- dnt/third_party/fast-reid/fastreid/solver/lr_scheduler.py +66 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/__init__.py +10 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/lamb.py +123 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/radam.py +149 -0
- dnt/third_party/fast-reid/fastreid/solver/optim/swa.py +246 -0
- dnt/third_party/fast-reid/fastreid/utils/__init__.py +6 -0
- dnt/third_party/fast-reid/fastreid/utils/checkpoint.py +503 -0
- dnt/third_party/fast-reid/fastreid/utils/collect_env.py +158 -0
- dnt/third_party/fast-reid/fastreid/utils/comm.py +255 -0
- dnt/third_party/fast-reid/fastreid/utils/compute_dist.py +200 -0
- dnt/third_party/fast-reid/fastreid/utils/env.py +119 -0
- dnt/third_party/fast-reid/fastreid/utils/events.py +461 -0
- dnt/third_party/fast-reid/fastreid/utils/faiss_utils.py +127 -0
- dnt/third_party/fast-reid/fastreid/utils/file_io.py +520 -0
- dnt/third_party/fast-reid/fastreid/utils/history_buffer.py +71 -0
- dnt/third_party/fast-reid/fastreid/utils/logger.py +211 -0
- dnt/third_party/fast-reid/fastreid/utils/params.py +103 -0
- dnt/third_party/fast-reid/fastreid/utils/precision_bn.py +94 -0
- dnt/third_party/fast-reid/fastreid/utils/registry.py +66 -0
- dnt/third_party/fast-reid/fastreid/utils/summary.py +120 -0
- dnt/third_party/fast-reid/fastreid/utils/timer.py +68 -0
- dnt/third_party/fast-reid/fastreid/utils/visualizer.py +278 -0
- dnt/track/__init__.py +2 -0
- dnt/track/botsort/__init__.py +4 -0
- dnt/track/botsort/bot_tracker/__init__.py +3 -0
- dnt/track/botsort/bot_tracker/basetrack.py +60 -0
- dnt/track/botsort/bot_tracker/bot_sort.py +473 -0
- dnt/track/botsort/bot_tracker/gmc.py +316 -0
- dnt/track/botsort/bot_tracker/kalman_filter.py +269 -0
- dnt/track/botsort/bot_tracker/matching.py +194 -0
- dnt/track/botsort/bot_tracker/mc_bot_sort.py +505 -0
- dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/evaluation.py +14 -4
- dnt/track/{dsort/utils → botsort/bot_tracker/tracking_utils}/io.py +19 -36
- dnt/track/botsort/bot_tracker/tracking_utils/timer.py +37 -0
- dnt/track/botsort/inference.py +96 -0
- dnt/track/config.py +120 -0
- dnt/track/dsort/configs/bagtricks_R50.yml +7 -0
- dnt/track/dsort/configs/deep_sort.yaml +0 -0
- dnt/track/dsort/configs/fastreid.yaml +1 -1
- dnt/track/dsort/deep_sort/deep/checkpoint/ckpt.t7 +0 -0
- dnt/track/dsort/deep_sort/deep/feature_extractor.py +87 -8
- dnt/track/dsort/deep_sort/deep_sort.py +31 -20
- dnt/track/dsort/deep_sort/sort/detection.py +2 -1
- dnt/track/dsort/deep_sort/sort/iou_matching.py +0 -2
- dnt/track/dsort/deep_sort/sort/linear_assignment.py +0 -3
- dnt/track/dsort/deep_sort/sort/nn_matching.py +5 -5
- dnt/track/dsort/deep_sort/sort/preprocessing.py +1 -2
- dnt/track/dsort/deep_sort/sort/track.py +2 -1
- dnt/track/dsort/deep_sort/sort/tracker.py +1 -1
- dnt/track/dsort/dsort.py +43 -33
- dnt/track/re_class.py +117 -0
- dnt/track/sort/sort.py +9 -6
- dnt/track/tracker.py +213 -32
- dnt-0.3.1.8.dist-info/METADATA +117 -0
- dnt-0.3.1.8.dist-info/RECORD +315 -0
- {dnt-0.2.4.dist-info → dnt-0.3.1.8.dist-info}/WHEEL +1 -1
- dnt/analysis/yield.py +0 -9
- dnt/track/dsort/deep_sort/deep/evaluate.py +0 -15
- dnt/track/dsort/deep_sort/deep/original_model.py +0 -106
- dnt/track/dsort/deep_sort/deep/test.py +0 -77
- dnt/track/dsort/deep_sort/deep/train.py +0 -189
- dnt/track/dsort/utils/asserts.py +0 -13
- dnt/track/dsort/utils/draw.py +0 -36
- dnt/track/dsort/utils/json_logger.py +0 -383
- dnt/track/dsort/utils/log.py +0 -17
- dnt/track/dsort/utils/parser.py +0 -35
- dnt/track/dsort/utils/tools.py +0 -39
- dnt-0.2.4.dist-info/METADATA +0 -35
- dnt-0.2.4.dist-info/RECORD +0 -64
- /dnt/{track/dsort/utils → third_party/fast-reid/checkpoint}/__init__.py +0 -0
- {dnt-0.2.4.dist-info → dnt-0.3.1.8.dist-info/licenses}/LICENSE +0 -0
- {dnt-0.2.4.dist-info → dnt-0.3.1.8.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,255 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This file contains primitives for multi-gpu communication.
|
|
3
|
+
This is useful when doing distributed training.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import functools
|
|
7
|
+
import logging
|
|
8
|
+
import numpy as np
|
|
9
|
+
import pickle
|
|
10
|
+
import torch
|
|
11
|
+
import torch.distributed as dist
|
|
12
|
+
|
|
13
|
+
_LOCAL_PROCESS_GROUP = None
|
|
14
|
+
"""
|
|
15
|
+
A torch process group which only includes processes that on the same machine as the current process.
|
|
16
|
+
This variable is set when processes are spawned by `launch()` in "engine/launch.py".
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def get_world_size() -> int:
|
|
21
|
+
if not dist.is_available():
|
|
22
|
+
return 1
|
|
23
|
+
if not dist.is_initialized():
|
|
24
|
+
return 1
|
|
25
|
+
return dist.get_world_size()
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
def get_rank() -> int:
|
|
29
|
+
if not dist.is_available():
|
|
30
|
+
return 0
|
|
31
|
+
if not dist.is_initialized():
|
|
32
|
+
return 0
|
|
33
|
+
return dist.get_rank()
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def get_local_rank() -> int:
|
|
37
|
+
"""
|
|
38
|
+
Returns:
|
|
39
|
+
The rank of the current process within the local (per-machine) process group.
|
|
40
|
+
"""
|
|
41
|
+
if not dist.is_available():
|
|
42
|
+
return 0
|
|
43
|
+
if not dist.is_initialized():
|
|
44
|
+
return 0
|
|
45
|
+
assert _LOCAL_PROCESS_GROUP is not None
|
|
46
|
+
return dist.get_rank(group=_LOCAL_PROCESS_GROUP)
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def get_local_size() -> int:
|
|
50
|
+
"""
|
|
51
|
+
Returns:
|
|
52
|
+
The size of the per-machine process group,
|
|
53
|
+
i.e. the number of processes per machine.
|
|
54
|
+
"""
|
|
55
|
+
if not dist.is_available():
|
|
56
|
+
return 1
|
|
57
|
+
if not dist.is_initialized():
|
|
58
|
+
return 1
|
|
59
|
+
return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def is_main_process() -> bool:
|
|
63
|
+
return get_rank() == 0
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
def synchronize():
|
|
67
|
+
"""
|
|
68
|
+
Helper function to synchronize (barrier) among all processes when
|
|
69
|
+
using distributed training
|
|
70
|
+
"""
|
|
71
|
+
if not dist.is_available():
|
|
72
|
+
return
|
|
73
|
+
if not dist.is_initialized():
|
|
74
|
+
return
|
|
75
|
+
world_size = dist.get_world_size()
|
|
76
|
+
if world_size == 1:
|
|
77
|
+
return
|
|
78
|
+
dist.barrier()
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
@functools.lru_cache()
|
|
82
|
+
def _get_global_gloo_group():
|
|
83
|
+
"""
|
|
84
|
+
Return a process group based on gloo backend, containing all the ranks
|
|
85
|
+
The result is cached.
|
|
86
|
+
"""
|
|
87
|
+
if dist.get_backend() == "nccl":
|
|
88
|
+
return dist.new_group(backend="gloo")
|
|
89
|
+
else:
|
|
90
|
+
return dist.group.WORLD
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
def _serialize_to_tensor(data, group):
|
|
94
|
+
backend = dist.get_backend(group)
|
|
95
|
+
assert backend in ["gloo", "nccl"]
|
|
96
|
+
device = torch.device("cpu" if backend == "gloo" else "cuda")
|
|
97
|
+
|
|
98
|
+
buffer = pickle.dumps(data)
|
|
99
|
+
if len(buffer) > 1024 ** 3:
|
|
100
|
+
logger = logging.getLogger(__name__)
|
|
101
|
+
logger.warning(
|
|
102
|
+
"Rank {} trying to all-gather {:.2f} GB of data on device {}".format(
|
|
103
|
+
get_rank(), len(buffer) / (1024 ** 3), device
|
|
104
|
+
)
|
|
105
|
+
)
|
|
106
|
+
storage = torch.ByteStorage.from_buffer(buffer)
|
|
107
|
+
tensor = torch.ByteTensor(storage).to(device=device)
|
|
108
|
+
return tensor
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
def _pad_to_largest_tensor(tensor, group):
|
|
112
|
+
"""
|
|
113
|
+
Returns:
|
|
114
|
+
list[int]: size of the tensor, on each rank
|
|
115
|
+
Tensor: padded tensor that has the max size
|
|
116
|
+
"""
|
|
117
|
+
world_size = dist.get_world_size(group=group)
|
|
118
|
+
assert (
|
|
119
|
+
world_size >= 1
|
|
120
|
+
), "comm.gather/all_gather must be called from ranks within the given group!"
|
|
121
|
+
local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device)
|
|
122
|
+
size_list = [
|
|
123
|
+
torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size)
|
|
124
|
+
]
|
|
125
|
+
dist.all_gather(size_list, local_size, group=group)
|
|
126
|
+
size_list = [int(size.item()) for size in size_list]
|
|
127
|
+
|
|
128
|
+
max_size = max(size_list)
|
|
129
|
+
|
|
130
|
+
# we pad the tensor because torch all_gather does not support
|
|
131
|
+
# gathering tensors of different shapes
|
|
132
|
+
if local_size != max_size:
|
|
133
|
+
padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device)
|
|
134
|
+
tensor = torch.cat((tensor, padding), dim=0)
|
|
135
|
+
return size_list, tensor
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def all_gather(data, group=None):
|
|
139
|
+
"""
|
|
140
|
+
Run all_gather on arbitrary picklable data (not necessarily tensors).
|
|
141
|
+
Args:
|
|
142
|
+
data: any picklable object
|
|
143
|
+
group: a torch process group. By default, will use a group which
|
|
144
|
+
contains all ranks on gloo backend.
|
|
145
|
+
Returns:
|
|
146
|
+
list[data]: list of data gathered from each rank
|
|
147
|
+
"""
|
|
148
|
+
if get_world_size() == 1:
|
|
149
|
+
return [data]
|
|
150
|
+
if group is None:
|
|
151
|
+
group = _get_global_gloo_group()
|
|
152
|
+
if dist.get_world_size(group) == 1:
|
|
153
|
+
return [data]
|
|
154
|
+
|
|
155
|
+
tensor = _serialize_to_tensor(data, group)
|
|
156
|
+
|
|
157
|
+
size_list, tensor = _pad_to_largest_tensor(tensor, group)
|
|
158
|
+
max_size = max(size_list)
|
|
159
|
+
|
|
160
|
+
# receiving Tensor from all ranks
|
|
161
|
+
tensor_list = [
|
|
162
|
+
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list
|
|
163
|
+
]
|
|
164
|
+
dist.all_gather(tensor_list, tensor, group=group)
|
|
165
|
+
|
|
166
|
+
data_list = []
|
|
167
|
+
for size, tensor in zip(size_list, tensor_list):
|
|
168
|
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
|
169
|
+
data_list.append(pickle.loads(buffer))
|
|
170
|
+
|
|
171
|
+
return data_list
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def gather(data, dst=0, group=None):
|
|
175
|
+
"""
|
|
176
|
+
Run gather on arbitrary picklable data (not necessarily tensors).
|
|
177
|
+
Args:
|
|
178
|
+
data: any picklable object
|
|
179
|
+
dst (int): destination rank
|
|
180
|
+
group: a torch process group. By default, will use a group which
|
|
181
|
+
contains all ranks on gloo backend.
|
|
182
|
+
Returns:
|
|
183
|
+
list[data]: on dst, a list of data gathered from each rank. Otherwise,
|
|
184
|
+
an empty list.
|
|
185
|
+
"""
|
|
186
|
+
if get_world_size() == 1:
|
|
187
|
+
return [data]
|
|
188
|
+
if group is None:
|
|
189
|
+
group = _get_global_gloo_group()
|
|
190
|
+
if dist.get_world_size(group=group) == 1:
|
|
191
|
+
return [data]
|
|
192
|
+
rank = dist.get_rank(group=group)
|
|
193
|
+
|
|
194
|
+
tensor = _serialize_to_tensor(data, group)
|
|
195
|
+
size_list, tensor = _pad_to_largest_tensor(tensor, group)
|
|
196
|
+
|
|
197
|
+
# receiving Tensor from all ranks
|
|
198
|
+
if rank == dst:
|
|
199
|
+
max_size = max(size_list)
|
|
200
|
+
tensor_list = [
|
|
201
|
+
torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list
|
|
202
|
+
]
|
|
203
|
+
dist.gather(tensor, tensor_list, dst=dst, group=group)
|
|
204
|
+
|
|
205
|
+
data_list = []
|
|
206
|
+
for size, tensor in zip(size_list, tensor_list):
|
|
207
|
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
|
208
|
+
data_list.append(pickle.loads(buffer))
|
|
209
|
+
return data_list
|
|
210
|
+
else:
|
|
211
|
+
dist.gather(tensor, [], dst=dst, group=group)
|
|
212
|
+
return []
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
def shared_random_seed():
|
|
216
|
+
"""
|
|
217
|
+
Returns:
|
|
218
|
+
int: a random number that is the same across all workers.
|
|
219
|
+
If workers need a shared RNG, they can use this shared seed to
|
|
220
|
+
create one.
|
|
221
|
+
All workers must call this function, otherwise it will deadlock.
|
|
222
|
+
"""
|
|
223
|
+
ints = np.random.randint(2 ** 31)
|
|
224
|
+
all_ints = all_gather(ints)
|
|
225
|
+
return all_ints[0]
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def reduce_dict(input_dict, average=True):
|
|
229
|
+
"""
|
|
230
|
+
Reduce the values in the dictionary from all processes so that process with rank
|
|
231
|
+
0 has the reduced results.
|
|
232
|
+
Args:
|
|
233
|
+
input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor.
|
|
234
|
+
average (bool): whether to do average or sum
|
|
235
|
+
Returns:
|
|
236
|
+
a dict with the same keys as input_dict, after reduction.
|
|
237
|
+
"""
|
|
238
|
+
world_size = get_world_size()
|
|
239
|
+
if world_size < 2:
|
|
240
|
+
return input_dict
|
|
241
|
+
with torch.no_grad():
|
|
242
|
+
names = []
|
|
243
|
+
values = []
|
|
244
|
+
# sort the keys so that they are consistent across processes
|
|
245
|
+
for k in sorted(input_dict.keys()):
|
|
246
|
+
names.append(k)
|
|
247
|
+
values.append(input_dict[k])
|
|
248
|
+
values = torch.stack(values, dim=0)
|
|
249
|
+
dist.reduce(values, dst=0)
|
|
250
|
+
if dist.get_rank() == 0 and average:
|
|
251
|
+
# only main process gets accumulated, so only divide by
|
|
252
|
+
# world_size in this case
|
|
253
|
+
values /= world_size
|
|
254
|
+
reduced_dict = {k: v for k, v in zip(names, values)}
|
|
255
|
+
return reduced_dict
|
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
# encoding: utf-8
|
|
2
|
+
"""
|
|
3
|
+
@author: xingyu liao
|
|
4
|
+
@contact: sherlockliao01@gmail.com
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
# Modified from: https://github.com/open-mmlab/OpenUnReID/blob/66bb2ae0b00575b80fbe8915f4d4f4739cc21206/openunreid/core/utils/compute_dist.py
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
import faiss
|
|
11
|
+
import numpy as np
|
|
12
|
+
import torch
|
|
13
|
+
import torch.nn.functional as F
|
|
14
|
+
|
|
15
|
+
from .faiss_utils import (
|
|
16
|
+
index_init_cpu,
|
|
17
|
+
index_init_gpu,
|
|
18
|
+
search_index_pytorch,
|
|
19
|
+
search_raw_array_pytorch,
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
__all__ = [
|
|
23
|
+
"build_dist",
|
|
24
|
+
"compute_jaccard_distance",
|
|
25
|
+
"compute_euclidean_distance",
|
|
26
|
+
"compute_cosine_distance",
|
|
27
|
+
]
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@torch.no_grad()
|
|
31
|
+
def build_dist(feat_1: torch.Tensor, feat_2: torch.Tensor, metric: str = "euclidean", **kwargs) -> np.ndarray:
|
|
32
|
+
r"""Compute distance between two feature embeddings.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
feat_1 (torch.Tensor): 2-D feature with batch dimension.
|
|
36
|
+
feat_2 (torch.Tensor): 2-D feature with batch dimension.
|
|
37
|
+
metric:
|
|
38
|
+
|
|
39
|
+
Returns:
|
|
40
|
+
numpy.ndarray: distance matrix.
|
|
41
|
+
"""
|
|
42
|
+
assert metric in ["cosine", "euclidean", "jaccard"], "Expected metrics are cosine, euclidean and jaccard, " \
|
|
43
|
+
"but got {}".format(metric)
|
|
44
|
+
|
|
45
|
+
if metric == "euclidean":
|
|
46
|
+
return compute_euclidean_distance(feat_1, feat_2)
|
|
47
|
+
|
|
48
|
+
elif metric == "cosine":
|
|
49
|
+
return compute_cosine_distance(feat_1, feat_2)
|
|
50
|
+
|
|
51
|
+
elif metric == "jaccard":
|
|
52
|
+
feat = torch.cat((feat_1, feat_2), dim=0)
|
|
53
|
+
dist = compute_jaccard_distance(feat, k1=kwargs["k1"], k2=kwargs["k2"], search_option=0)
|
|
54
|
+
return dist[: feat_1.size(0), feat_1.size(0):]
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def k_reciprocal_neigh(initial_rank, i, k1):
|
|
58
|
+
forward_k_neigh_index = initial_rank[i, : k1 + 1]
|
|
59
|
+
backward_k_neigh_index = initial_rank[forward_k_neigh_index, : k1 + 1]
|
|
60
|
+
fi = np.where(backward_k_neigh_index == i)[0]
|
|
61
|
+
return forward_k_neigh_index[fi]
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
@torch.no_grad()
|
|
65
|
+
def compute_jaccard_distance(features, k1=20, k2=6, search_option=0, fp16=False):
|
|
66
|
+
if search_option < 3:
|
|
67
|
+
# torch.cuda.empty_cache()
|
|
68
|
+
features = features.cuda()
|
|
69
|
+
|
|
70
|
+
ngpus = faiss.get_num_gpus()
|
|
71
|
+
N = features.size(0)
|
|
72
|
+
mat_type = np.float16 if fp16 else np.float32
|
|
73
|
+
|
|
74
|
+
if search_option == 0:
|
|
75
|
+
# GPU + PyTorch CUDA Tensors (1)
|
|
76
|
+
res = faiss.StandardGpuResources()
|
|
77
|
+
res.setDefaultNullStreamAllDevices()
|
|
78
|
+
_, initial_rank = search_raw_array_pytorch(res, features, features, k1)
|
|
79
|
+
initial_rank = initial_rank.cpu().numpy()
|
|
80
|
+
elif search_option == 1:
|
|
81
|
+
# GPU + PyTorch CUDA Tensors (2)
|
|
82
|
+
res = faiss.StandardGpuResources()
|
|
83
|
+
index = faiss.GpuIndexFlatL2(res, features.size(-1))
|
|
84
|
+
index.add(features.cpu().numpy())
|
|
85
|
+
_, initial_rank = search_index_pytorch(index, features, k1)
|
|
86
|
+
res.syncDefaultStreamCurrentDevice()
|
|
87
|
+
initial_rank = initial_rank.cpu().numpy()
|
|
88
|
+
elif search_option == 2:
|
|
89
|
+
# GPU
|
|
90
|
+
index = index_init_gpu(ngpus, features.size(-1))
|
|
91
|
+
index.add(features.cpu().numpy())
|
|
92
|
+
_, initial_rank = index.search(features.cpu().numpy(), k1)
|
|
93
|
+
else:
|
|
94
|
+
# CPU
|
|
95
|
+
index = index_init_cpu(features.size(-1))
|
|
96
|
+
index.add(features.cpu().numpy())
|
|
97
|
+
_, initial_rank = index.search(features.cpu().numpy(), k1)
|
|
98
|
+
|
|
99
|
+
nn_k1 = []
|
|
100
|
+
nn_k1_half = []
|
|
101
|
+
for i in range(N):
|
|
102
|
+
nn_k1.append(k_reciprocal_neigh(initial_rank, i, k1))
|
|
103
|
+
nn_k1_half.append(k_reciprocal_neigh(initial_rank, i, int(np.around(k1 / 2))))
|
|
104
|
+
|
|
105
|
+
V = np.zeros((N, N), dtype=mat_type)
|
|
106
|
+
for i in range(N):
|
|
107
|
+
k_reciprocal_index = nn_k1[i]
|
|
108
|
+
k_reciprocal_expansion_index = k_reciprocal_index
|
|
109
|
+
for candidate in k_reciprocal_index:
|
|
110
|
+
candidate_k_reciprocal_index = nn_k1_half[candidate]
|
|
111
|
+
if len(
|
|
112
|
+
np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)
|
|
113
|
+
) > 2 / 3 * len(candidate_k_reciprocal_index):
|
|
114
|
+
k_reciprocal_expansion_index = np.append(
|
|
115
|
+
k_reciprocal_expansion_index, candidate_k_reciprocal_index
|
|
116
|
+
)
|
|
117
|
+
|
|
118
|
+
k_reciprocal_expansion_index = np.unique(
|
|
119
|
+
k_reciprocal_expansion_index
|
|
120
|
+
) # element-wise unique
|
|
121
|
+
|
|
122
|
+
x = features[i].unsqueeze(0).contiguous()
|
|
123
|
+
y = features[k_reciprocal_expansion_index]
|
|
124
|
+
m, n = x.size(0), y.size(0)
|
|
125
|
+
dist = (
|
|
126
|
+
torch.pow(x, 2).sum(dim=1, keepdim=True).expand(m, n)
|
|
127
|
+
+ torch.pow(y, 2).sum(dim=1, keepdim=True).expand(n, m).t()
|
|
128
|
+
)
|
|
129
|
+
dist.addmm_(x, y.t(), beta=1, alpha=-2)
|
|
130
|
+
|
|
131
|
+
if fp16:
|
|
132
|
+
V[i, k_reciprocal_expansion_index] = (
|
|
133
|
+
F.softmax(-dist, dim=1).view(-1).cpu().numpy().astype(mat_type)
|
|
134
|
+
)
|
|
135
|
+
else:
|
|
136
|
+
V[i, k_reciprocal_expansion_index] = (
|
|
137
|
+
F.softmax(-dist, dim=1).view(-1).cpu().numpy()
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
del nn_k1, nn_k1_half, x, y
|
|
141
|
+
features = features.cpu()
|
|
142
|
+
|
|
143
|
+
if k2 != 1:
|
|
144
|
+
V_qe = np.zeros_like(V, dtype=mat_type)
|
|
145
|
+
for i in range(N):
|
|
146
|
+
V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0)
|
|
147
|
+
V = V_qe
|
|
148
|
+
del V_qe
|
|
149
|
+
|
|
150
|
+
del initial_rank
|
|
151
|
+
|
|
152
|
+
invIndex = []
|
|
153
|
+
for i in range(N):
|
|
154
|
+
invIndex.append(np.where(V[:, i] != 0)[0]) # len(invIndex)=all_num
|
|
155
|
+
|
|
156
|
+
jaccard_dist = np.zeros((N, N), dtype=mat_type)
|
|
157
|
+
for i in range(N):
|
|
158
|
+
temp_min = np.zeros((1, N), dtype=mat_type)
|
|
159
|
+
indNonZero = np.where(V[i, :] != 0)[0]
|
|
160
|
+
indImages = [invIndex[ind] for ind in indNonZero]
|
|
161
|
+
for j in range(len(indNonZero)):
|
|
162
|
+
temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(
|
|
163
|
+
V[i, indNonZero[j]], V[indImages[j], indNonZero[j]]
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
jaccard_dist[i] = 1 - temp_min / (2 - temp_min)
|
|
167
|
+
|
|
168
|
+
del invIndex, V
|
|
169
|
+
|
|
170
|
+
pos_bool = jaccard_dist < 0
|
|
171
|
+
jaccard_dist[pos_bool] = 0.0
|
|
172
|
+
|
|
173
|
+
return jaccard_dist
|
|
174
|
+
|
|
175
|
+
|
|
176
|
+
@torch.no_grad()
|
|
177
|
+
def compute_euclidean_distance(features, others):
|
|
178
|
+
m, n = features.size(0), others.size(0)
|
|
179
|
+
dist_m = (
|
|
180
|
+
torch.pow(features, 2).sum(dim=1, keepdim=True).expand(m, n)
|
|
181
|
+
+ torch.pow(others, 2).sum(dim=1, keepdim=True).expand(n, m).t()
|
|
182
|
+
)
|
|
183
|
+
dist_m.addmm_(1, -2, features, others.t())
|
|
184
|
+
|
|
185
|
+
return dist_m.cpu().numpy()
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
@torch.no_grad()
|
|
189
|
+
def compute_cosine_distance(features, others):
|
|
190
|
+
"""Computes cosine distance.
|
|
191
|
+
Args:
|
|
192
|
+
features (torch.Tensor): 2-D feature matrix.
|
|
193
|
+
others (torch.Tensor): 2-D feature matrix.
|
|
194
|
+
Returns:
|
|
195
|
+
torch.Tensor: distance matrix.
|
|
196
|
+
"""
|
|
197
|
+
features = F.normalize(features, p=2, dim=1)
|
|
198
|
+
others = F.normalize(others, p=2, dim=1)
|
|
199
|
+
dist_m = 1 - torch.mm(features, others.t())
|
|
200
|
+
return dist_m.cpu().numpy()
|
|
@@ -0,0 +1,119 @@
|
|
|
1
|
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
2
|
+
import importlib
|
|
3
|
+
import importlib.util
|
|
4
|
+
import logging
|
|
5
|
+
import numpy as np
|
|
6
|
+
import os
|
|
7
|
+
import random
|
|
8
|
+
import sys
|
|
9
|
+
from datetime import datetime
|
|
10
|
+
import torch
|
|
11
|
+
|
|
12
|
+
__all__ = ["seed_all_rng"]
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split(".")[:2])
|
|
16
|
+
"""
|
|
17
|
+
PyTorch version as a tuple of 2 ints. Useful for comparison.
|
|
18
|
+
"""
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def seed_all_rng(seed=None):
|
|
22
|
+
"""
|
|
23
|
+
Set the random seed for the RNG in torch, numpy and python.
|
|
24
|
+
Args:
|
|
25
|
+
seed (int): if None, will use a strong random seed.
|
|
26
|
+
"""
|
|
27
|
+
if seed is None:
|
|
28
|
+
seed = (
|
|
29
|
+
os.getpid()
|
|
30
|
+
+ int(datetime.now().strftime("%S%f"))
|
|
31
|
+
+ int.from_bytes(os.urandom(2), "big")
|
|
32
|
+
)
|
|
33
|
+
logger = logging.getLogger(__name__)
|
|
34
|
+
logger.info("Using a generated random seed {}".format(seed))
|
|
35
|
+
np.random.seed(seed)
|
|
36
|
+
torch.set_rng_state(torch.manual_seed(seed).get_state())
|
|
37
|
+
random.seed(seed)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
# from https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path
|
|
41
|
+
def _import_file(module_name, file_path, make_importable=False):
|
|
42
|
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
|
43
|
+
module = importlib.util.module_from_spec(spec)
|
|
44
|
+
spec.loader.exec_module(module)
|
|
45
|
+
if make_importable:
|
|
46
|
+
sys.modules[module_name] = module
|
|
47
|
+
return module
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def _configure_libraries():
|
|
51
|
+
"""
|
|
52
|
+
Configurations for some libraries.
|
|
53
|
+
"""
|
|
54
|
+
# An environment option to disable `import cv2` globally,
|
|
55
|
+
# in case it leads to negative performance impact
|
|
56
|
+
disable_cv2 = int(os.environ.get("DETECTRON2_DISABLE_CV2", False))
|
|
57
|
+
if disable_cv2:
|
|
58
|
+
sys.modules["cv2"] = None
|
|
59
|
+
else:
|
|
60
|
+
# Disable opencl in opencv since its interaction with cuda often has negative effects
|
|
61
|
+
# This envvar is supported after OpenCV 3.4.0
|
|
62
|
+
os.environ["OPENCV_OPENCL_RUNTIME"] = "disabled"
|
|
63
|
+
try:
|
|
64
|
+
import cv2
|
|
65
|
+
|
|
66
|
+
if int(cv2.__version__.split(".")[0]) >= 3:
|
|
67
|
+
cv2.ocl.setUseOpenCL(False)
|
|
68
|
+
except ImportError:
|
|
69
|
+
pass
|
|
70
|
+
|
|
71
|
+
def get_version(module, digit=2):
|
|
72
|
+
return tuple(map(int, module.__version__.split(".")[:digit]))
|
|
73
|
+
|
|
74
|
+
# fmt: off
|
|
75
|
+
assert get_version(torch) >= (1, 4), "Requires torch>=1.4"
|
|
76
|
+
import yaml
|
|
77
|
+
assert get_version(yaml) >= (5, 1), "Requires pyyaml>=5.1"
|
|
78
|
+
# fmt: on
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
_ENV_SETUP_DONE = False
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def setup_environment():
|
|
85
|
+
"""Perform environment setup work. The default setup is a no-op, but this
|
|
86
|
+
function allows the user to specify a Python source file or a module in
|
|
87
|
+
the $FASTREID_ENV_MODULE environment variable, that performs
|
|
88
|
+
custom setup work that may be necessary to their computing environment.
|
|
89
|
+
"""
|
|
90
|
+
global _ENV_SETUP_DONE
|
|
91
|
+
if _ENV_SETUP_DONE:
|
|
92
|
+
return
|
|
93
|
+
_ENV_SETUP_DONE = True
|
|
94
|
+
|
|
95
|
+
_configure_libraries()
|
|
96
|
+
|
|
97
|
+
custom_module_path = os.environ.get("FASTREID_ENV_MODULE")
|
|
98
|
+
|
|
99
|
+
if custom_module_path:
|
|
100
|
+
setup_custom_environment(custom_module_path)
|
|
101
|
+
else:
|
|
102
|
+
# The default setup is a no-op
|
|
103
|
+
pass
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def setup_custom_environment(custom_module):
|
|
107
|
+
"""
|
|
108
|
+
Load custom environment setup by importing a Python source file or a
|
|
109
|
+
module, and run the setup function.
|
|
110
|
+
"""
|
|
111
|
+
if custom_module.endswith(".py"):
|
|
112
|
+
module = _import_file("fastreid.utils.env.custom_module", custom_module)
|
|
113
|
+
else:
|
|
114
|
+
module = importlib.import_module(custom_module)
|
|
115
|
+
assert hasattr(module, "setup_environment") and callable(module.setup_environment), (
|
|
116
|
+
"Custom environment module defined in {} does not have the "
|
|
117
|
+
"required callable attribute 'setup_environment'."
|
|
118
|
+
).format(custom_module)
|
|
119
|
+
module.setup_environment()
|