dkist-processing-common 11.7.0rc6__py3-none-any.whl → 11.9.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. dkist_processing_common/config.py +28 -6
  2. dkist_processing_common/models/constants.py +8 -0
  3. dkist_processing_common/models/graphql.py +0 -33
  4. dkist_processing_common/parsers/lookup_bud.py +129 -0
  5. dkist_processing_common/tasks/l1_output_data.py +44 -43
  6. dkist_processing_common/tasks/mixin/globus.py +23 -26
  7. dkist_processing_common/tasks/mixin/metadata_store.py +0 -49
  8. dkist_processing_common/tasks/mixin/object_store.py +21 -0
  9. dkist_processing_common/tasks/mixin/quality/_metrics.py +4 -6
  10. dkist_processing_common/tasks/parse_l0_input_data.py +7 -0
  11. dkist_processing_common/tasks/trial_catalog.py +49 -1
  12. dkist_processing_common/tasks/trial_output_data.py +1 -1
  13. dkist_processing_common/tests/mock_metadata_store.py +39 -4
  14. dkist_processing_common/tests/test_input_dataset.py +1 -37
  15. dkist_processing_common/tests/test_parse_l0_input_data.py +36 -16
  16. dkist_processing_common/tests/test_publish_catalog_messages.py +0 -21
  17. dkist_processing_common/tests/test_quality_mixin.py +11 -3
  18. dkist_processing_common/tests/test_stems.py +49 -1
  19. dkist_processing_common/tests/test_submit_dataset_metadata.py +1 -5
  20. dkist_processing_common/tests/test_trial_catalog.py +72 -2
  21. dkist_processing_common/tests/test_trial_output_data.py +1 -2
  22. dkist_processing_common/tests/test_workflow_task_base.py +11 -0
  23. {dkist_processing_common-11.7.0rc6.dist-info → dkist_processing_common-11.9.3.dist-info}/METADATA +17 -13
  24. {dkist_processing_common-11.7.0rc6.dist-info → dkist_processing_common-11.9.3.dist-info}/RECORD +26 -31
  25. changelog/267.feature.1.rst +0 -1
  26. changelog/267.feature.2.rst +0 -1
  27. changelog/267.feature.rst +0 -1
  28. changelog/267.misc.rst +0 -1
  29. changelog/267.removal.1.rst +0 -2
  30. changelog/267.removal.rst +0 -1
  31. {dkist_processing_common-11.7.0rc6.dist-info → dkist_processing_common-11.9.3.dist-info}/WHEEL +0 -0
  32. {dkist_processing_common-11.7.0rc6.dist-info → dkist_processing_common-11.9.3.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from dkist_processing_common.models.task_name import TaskName
37
37
  from dkist_processing_common.parsers.average_bud import TaskAverageBud
38
38
  from dkist_processing_common.parsers.experiment_id_bud import ContributingExperimentIdsBud
39
39
  from dkist_processing_common.parsers.experiment_id_bud import ExperimentIdBud
40
+ from dkist_processing_common.parsers.lookup_bud import TaskTimeLookupBud
40
41
  from dkist_processing_common.parsers.observing_program_id_bud import (
41
42
  TaskContributingObservingProgramExecutionIdsBud,
42
43
  )
@@ -103,6 +104,12 @@ def dataset_extra_bud_factory() -> list[S]:
103
104
  constant_name=BudName.polcal_observing_program_execution_ids,
104
105
  ip_task_types=TaskName.polcal,
105
106
  ),
107
+ TaskTimeLookupBud(
108
+ constant_name=BudName.dark_num_raw_frames_per_fpa,
109
+ key_metadata_key=MetadataKey.sensor_readout_exposure_time_ms,
110
+ value_metadata_key=MetadataKey.num_raw_frames_per_fpa,
111
+ ip_task_types=TaskName.dark,
112
+ ),
106
113
  TaskUniqueBud(
107
114
  constant_name=BudName.solar_gain_num_raw_frames_per_fpa,
108
115
  metadata_key=MetadataKey.num_raw_frames_per_fpa,
@@ -5,15 +5,18 @@ import logging
5
5
  from datetime import datetime
6
6
  from itertools import chain
7
7
  from pathlib import Path
8
+ from typing import Any
8
9
  from typing import Generator
9
10
  from uuid import uuid4
10
11
 
11
12
  from dkist_processing_common.codecs.asdf import asdf_fileobj_encoder
13
+ from dkist_processing_common.codecs.basemodel import basemodel_decoder
12
14
  from dkist_processing_common.codecs.fits import fits_access_decoder
13
15
  from dkist_processing_common.codecs.json import json_encoder
14
16
  from dkist_processing_common.codecs.path import path_decoder
15
17
  from dkist_processing_common.codecs.quality import quality_data_decoder
16
18
  from dkist_processing_common.models.fits_access import FitsAccessBase
19
+ from dkist_processing_common.models.input_dataset import InputDatasetPartDocumentList
17
20
  from dkist_processing_common.models.tags import Tag
18
21
  from dkist_processing_common.tasks.output_data_base import OutputDataBase
19
22
 
@@ -27,6 +30,7 @@ INVENTORY_EXTRA_INSTALLED = False
27
30
  try:
28
31
  from dkist_inventory.inventory import generate_asdf_filename
29
32
  from dkist_inventory.inventory import generate_inventory_from_frame_inventory
33
+ from dkist_inventory.inventory import generate_quality_report_filename
30
34
 
31
35
  INVENTORY_EXTRA_INSTALLED = True
32
36
  except ModuleNotFoundError:
@@ -138,11 +142,15 @@ class CreateTrialAsdf(OutputDataBase):
138
142
 
139
143
  def run(self) -> None:
140
144
  """Generate an ASDF file simulating the ASDF file that would be produced when cataloging the dataset."""
145
+ with self.telemetry_span("Collate input dataset parameters"):
146
+ parameters = self.parse_input_dataset_parameters()
147
+
141
148
  with self.telemetry_span("Generate ASDF tree"):
142
149
  tree = asdf_tree_from_filenames(
143
150
  filenames=self.absolute_output_frame_paths,
144
151
  hdu=1, # compressed
145
152
  relative_to=self.scratch.workflow_base_path,
153
+ parameters=parameters,
146
154
  )
147
155
 
148
156
  trial_history = [
@@ -169,6 +177,37 @@ class CreateTrialAsdf(OutputDataBase):
169
177
  ),
170
178
  )
171
179
 
180
+ def parse_input_dataset_parameters(self) -> list[dict[str, Any]]:
181
+ """
182
+ Return the parameters associated with the dataset.
183
+
184
+ Returns
185
+ -------
186
+ list[dict[str, Any]]
187
+ A list of dictionaries, each containing a parameter name and its values.
188
+
189
+ Raises
190
+ ------
191
+ ValueError
192
+ If there is not exactly one ``InputDatasetPartDocumentList`` found.
193
+ """
194
+ part_docs_iter = self.read(
195
+ tags=Tag.input_dataset_parameters(),
196
+ decoder=basemodel_decoder,
197
+ model=InputDatasetPartDocumentList,
198
+ )
199
+ docs = list(part_docs_iter)
200
+
201
+ if not docs:
202
+ logger.warning("No parameter list decoded from files")
203
+ return []
204
+
205
+ if len(docs) > 1:
206
+ raise ValueError(f"Expected 1 parameter list, found {len(docs)}")
207
+
208
+ parameters = docs[0].model_dump(by_alias=True).get("doc_list", [])
209
+ return parameters
210
+
172
211
 
173
212
  class CreateTrialQualityReport(OutputDataBase):
174
213
  """
@@ -186,6 +225,13 @@ class CreateTrialQualityReport(OutputDataBase):
186
225
  f" but the required dependencies were not found."
187
226
  )
188
227
 
228
+ if not INVENTORY_EXTRA_INSTALLED:
229
+ raise ModuleNotFoundError(
230
+ f"{self.__class__.__name__} Task requires the dkist-inventory package "
231
+ f"(e.g. via an 'inventory' pip_extra on dkist_processing_core.Workflow().add_node())"
232
+ f" but the required dependencies were not found."
233
+ )
234
+
189
235
  def run(self) -> None:
190
236
  """Generate the quality report for the dataset."""
191
237
  self.create_trial_quality_report()
@@ -207,5 +253,7 @@ class CreateTrialQualityReport(OutputDataBase):
207
253
  self.write(
208
254
  quality_report,
209
255
  tags=[Tag.output(), Tag.quality_report()],
210
- relative_path=f"{self.constants.dataset_id}_quality_report.pdf",
256
+ relative_path=generate_quality_report_filename(
257
+ dataset_id=self.constants.dataset_id
258
+ ),
211
259
  )
@@ -100,7 +100,7 @@ class TransferTrialData(TransferDataBase, GlobusMixin):
100
100
  tag_list = []
101
101
  tag_list += [[Tag.output(), Tag.dataset_inventory()]]
102
102
  tag_list += [[Tag.output(), Tag.asdf()]]
103
- tag_list += [[Tag.quality_data()]] # quality data is not tagged as OUTPUT
103
+ tag_list += [[Tag.output(), Tag.quality_data()]]
104
104
  tag_list += [[Tag.output(), Tag.quality_report()]]
105
105
  tag_list += [[Tag.output(), Tag.movie()]]
106
106
  return tag_list
@@ -6,6 +6,7 @@ import json
6
6
  from abc import ABC
7
7
  from abc import abstractmethod
8
8
  from datetime import datetime
9
+ from datetime import timedelta
9
10
  from pathlib import Path
10
11
  from uuid import uuid4
11
12
 
@@ -134,10 +135,6 @@ class InputDatasetRecipeRunResponseMapping(ResponseMapping):
134
135
  return Unset
135
136
 
136
137
 
137
- class QualityResponseMapping(ResponseMapping):
138
- pass # TODO
139
-
140
-
141
138
  def make_default_recipe_run_status_response() -> RecipeRunStatusResponse:
142
139
  return RecipeRunStatusResponse(recipeRunStatusId=1)
143
140
 
@@ -234,3 +231,41 @@ def fake_gql_client():
234
231
  Convenience fixture for default mock GQL client. To customize, use fake_gql_client_factory.
235
232
  """
236
233
  return fake_gql_client_factory()
234
+
235
+
236
+ def input_dataset_parameters_part_factory(
237
+ parameter_count: int = 1,
238
+ parameter_value_count: int = 1,
239
+ has_date: bool = False,
240
+ has_file: bool = False,
241
+ ) -> list[dict]:
242
+ """Create a mock InputDatasetPartDocumentList with parameters."""
243
+ result = [
244
+ {
245
+ "parameterName": uuid4().hex[:6],
246
+ "parameterValues": [
247
+ {"parameterValueId": i, "parameterValue": json.dumps(uuid4().hex)}
248
+ for i in range(parameter_value_count)
249
+ ],
250
+ }
251
+ for _ in range(parameter_count)
252
+ ]
253
+ if has_date:
254
+ base = datetime(2018, 9, 14, 0, 0, 0) # This date is before any possible start dates
255
+ for parameter_index, data in enumerate(result):
256
+ for item in data["parameterValues"]:
257
+ dt = base + timedelta(days=parameter_index)
258
+ item["parameterValueStartDate"] = dt.isoformat()
259
+ if has_file:
260
+ for data in result:
261
+ param_list = data["parameterValues"]
262
+ for item in param_list:
263
+ item["parameterValue"] = json.dumps(
264
+ {
265
+ "__file__": {
266
+ "bucket": "data",
267
+ "objectKey": f"parameters/{data['parameterName']}/{uuid4().hex}.dat",
268
+ }
269
+ }
270
+ )
271
+ return result
@@ -1,5 +1,4 @@
1
1
  import json
2
- from datetime import datetime
3
2
  from typing import Any
4
3
  from uuid import uuid4
5
4
 
@@ -8,6 +7,7 @@ import pytest
8
7
  from dkist_processing_common.codecs.basemodel import basemodel_decoder
9
8
  from dkist_processing_common.models.input_dataset import InputDatasetPartDocumentList
10
9
  from dkist_processing_common.models.tags import Tag
10
+ from dkist_processing_common.tests.mock_metadata_store import input_dataset_parameters_part_factory
11
11
 
12
12
 
13
13
  def input_dataset_frames_part_factory(bucket_count: int = 1) -> list[dict]:
@@ -25,42 +25,6 @@ def flatten_frame_parts(frame_parts: list[dict]) -> list[tuple[str, str]]:
25
25
  return result
26
26
 
27
27
 
28
- def input_dataset_parameters_part_factory(
29
- parameter_count: int = 1,
30
- parameter_value_count: int = 1,
31
- has_date: bool = False,
32
- has_file: bool = False,
33
- ) -> list[dict]:
34
- result = [
35
- {
36
- "parameterName": uuid4().hex[:6],
37
- "parameterValues": [
38
- {"parameterValueId": i, "parameterValue": json.dumps(uuid4().hex)}
39
- for i in range(parameter_value_count)
40
- ],
41
- }
42
- for _ in range(parameter_count)
43
- ]
44
- if has_date:
45
- for data in result:
46
- param_list = data["parameterValues"]
47
- for item in param_list:
48
- item["parameterValueStartDate"] = datetime(2022, 9, 14).isoformat()
49
- if has_file:
50
- for data in result:
51
- param_list = data["parameterValues"]
52
- for item in param_list:
53
- item["parameterValue"] = json.dumps(
54
- {
55
- "__file__": {
56
- "bucket": "data",
57
- "objectKey": f"parameters/{data['parameterName']}/{uuid4().hex}.dat",
58
- }
59
- }
60
- )
61
- return result
62
-
63
-
64
28
  @pytest.mark.parametrize(
65
29
  "input_dataset_parts",
66
30
  [
@@ -17,6 +17,7 @@ from dkist_processing_common.models.flower_pot import Stem
17
17
  from dkist_processing_common.models.flower_pot import Thorn
18
18
  from dkist_processing_common.models.tags import StemName
19
19
  from dkist_processing_common.models.tags import Tag
20
+ from dkist_processing_common.parsers.lookup_bud import TimeLookupBud
20
21
  from dkist_processing_common.parsers.single_value_single_key_flower import (
21
22
  SingleValueSingleKeyFlower,
22
23
  )
@@ -117,6 +118,17 @@ def visp_buds():
117
118
  return [UniqueBud(constant_name=BudName.num_modstates, metadata_key=ViSPMetadataKey.num_mod)]
118
119
 
119
120
 
121
+ @pytest.fixture(scope="function")
122
+ def visp_lookup_buds():
123
+ return [
124
+ TimeLookupBud(
125
+ constant_name="LOOKUP_BUD",
126
+ key_metadata_key=ViSPMetadataKey.num_mod,
127
+ value_metadata_key=ViSPMetadataKey.modstate,
128
+ )
129
+ ]
130
+
131
+
120
132
  @pytest.fixture(scope="function")
121
133
  def empty_flowers():
122
134
  class EmptyFlower(Stem):
@@ -161,8 +173,17 @@ def picky_buds():
161
173
 
162
174
  @pytest.fixture(scope="function")
163
175
  def parse_inputs_task(
164
- tmp_path, visp_flowers, visp_buds, empty_flowers, empty_buds, picky_buds, recipe_run_id
176
+ tmp_path,
177
+ visp_flowers,
178
+ visp_buds,
179
+ visp_lookup_buds,
180
+ empty_flowers,
181
+ empty_buds,
182
+ picky_buds,
183
+ recipe_run_id,
165
184
  ):
185
+ """Override parse task class and make data for testing."""
186
+
166
187
  class TaskClass(ParseL0InputDataBase):
167
188
  @property
168
189
  def tag_flowers(self):
@@ -170,7 +191,7 @@ def parse_inputs_task(
170
191
 
171
192
  @property
172
193
  def constant_buds(self):
173
- return visp_buds + empty_buds + picky_buds
194
+ return visp_buds + visp_lookup_buds + empty_buds + picky_buds
174
195
 
175
196
  @property
176
197
  def fits_parsing_class(self):
@@ -210,6 +231,8 @@ def parse_inputs_task(
210
231
 
211
232
  @pytest.fixture()
212
233
  def visp_parse_inputs_task(tmp_path, visp_flowers, visp_buds, recipe_run_id):
234
+ """Extend parse task class, but don't make data for testing."""
235
+
213
236
  class TaskClass(ParseL0InputDataBase):
214
237
  @property
215
238
  def tag_flowers(self):
@@ -243,12 +266,13 @@ def test_make_flowerpots(parse_inputs_task):
243
266
  tag_pot, constant_pot = parse_inputs_task.make_flower_pots()
244
267
 
245
268
  assert len(tag_pot.stems) == 2
246
- assert len(constant_pot.stems) == 3
269
+ assert len(constant_pot.stems) == 4
247
270
  assert tag_pot.stems[0].stem_name == StemName.modstate
248
271
  assert tag_pot.stems[1].stem_name == "EMPTY_FLOWER"
249
272
  assert constant_pot.stems[0].stem_name == BudName.num_modstates
250
- assert constant_pot.stems[1].stem_name == "EMPTY_BUD"
251
- assert constant_pot.stems[2].stem_name == "PICKY_BUD"
273
+ assert constant_pot.stems[1].stem_name == "LOOKUP_BUD"
274
+ assert constant_pot.stems[2].stem_name == "EMPTY_BUD"
275
+ assert constant_pot.stems[3].stem_name == "PICKY_BUD"
252
276
 
253
277
 
254
278
  def test_subclass_flowers(visp_parse_inputs_task, max_cs_step_time_sec):
@@ -260,7 +284,7 @@ def test_subclass_flowers(visp_parse_inputs_task, max_cs_step_time_sec):
260
284
  tag_pot, constant_pot = visp_parse_inputs_task.make_flower_pots()
261
285
 
262
286
  assert len(tag_pot.stems) == 1
263
- assert len(constant_pot.stems) == 60
287
+ assert len(constant_pot.stems) == 61
264
288
  all_flower_names = [StemName.modstate]
265
289
  assert sorted([f.stem_name for f in tag_pot.stems]) == sorted(all_flower_names)
266
290
  all_bud_names = [b.stem_name for b in default_constant_bud_factory()] + [BudName.num_modstates]
@@ -296,27 +320,23 @@ def test_dataset_extra_bud_factory(visp_parse_inputs_task, max_cs_step_time_sec)
296
320
  ]
297
321
  for base in bud_name_base:
298
322
  assert "SOLAR_GAIN_" + base in stem_names
299
- if base not in [
300
- "NUM_RAW_FRAMES_PER_FPA",
301
- "TELESCOPE_TRACKING_MODE",
302
- "COUDE_TABLE_TRACKING_MODE",
303
- "TELESCOPE_SCANNING_MODE",
304
- ]:
305
- assert "DARK_" + base in stem_names
306
- if "GOS" not in base:
307
- assert "POLCAL_" + base in stem_names
323
+ # telescope mode keys are not constant for dark frames
324
+ assert ("DARK_" + base in stem_names) ^ ("MODE" in base)
325
+ # gos keys are not constant for polcal frames
326
+ assert ("POLCAL_" + base in stem_names) ^ ("GOS" in base)
308
327
 
309
328
 
310
329
  def test_constants_correct(parse_inputs_task):
311
330
  """
312
331
  Given: ParseInputData task with a populated constant FlowerPot
313
332
  When: Updating pipeline constants
314
- Then: A pipeline constant is correctly populated
333
+ Then: A pipeline constant is correctly populated and the values return correctly
315
334
  """
316
335
  _, constant_pot = parse_inputs_task.make_flower_pots()
317
336
  parse_inputs_task.update_constants(constant_pot)
318
337
  assert dict(parse_inputs_task.constants._db_dict) == {
319
338
  BudName.num_modstates.value: parse_inputs_task._num_mod,
339
+ "LOOKUP_BUD": [[parse_inputs_task._num_mod, [0, 1]]],
320
340
  }
321
341
 
322
342
 
@@ -57,24 +57,3 @@ def test_object_messages(publish_catalog_and_quality_messages_task):
57
57
  assert message.body.conversationId == str(task.recipe_run_id)
58
58
  assert message.body.objectType == object_type
59
59
  assert message.body.groupId == task.constants.dataset_id
60
-
61
-
62
- def test_quality_report_message(publish_catalog_and_quality_messages_task):
63
- """
64
- :Given: a PublishCatalogAndQualityMessages task
65
- :When: creating quality report message
66
- :Then: the attributes are correctly populated
67
- """
68
- # Given
69
- task, proposal_id = publish_catalog_and_quality_messages_task
70
- # When
71
- message = task.quality_report_message
72
- # Then
73
- assert isinstance(message, CreateQualityReportMessage)
74
- assert message.body.bucket == task.destination_bucket
75
- # objectName exists and can be evaluated as a valid path
76
- assert message.body.objectName
77
- _ = Path(message.body.objectName)
78
- assert message.body.datasetId == task.constants.dataset_id
79
- assert message.body.conversationId == str(task.recipe_run_id)
80
- assert message.body.incrementDatasetCatalogReceiptCount is True
@@ -1214,12 +1214,20 @@ def wavecal_weights(wavecal_input_wavelength) -> np.ndarray:
1214
1214
 
1215
1215
 
1216
1216
  @pytest.fixture(scope="session")
1217
- def wavecal_fit_result(wavecal_input_wavelength) -> FitResult:
1217
+ def wavecal_fit_result(wavecal_input_wavelength, wavecal_input_spectrum) -> FitResult:
1218
1218
  wavelength_params = WavelengthParameters(
1219
1219
  crpix=1, crval=10.0, dispersion=1, grating_constant=1, order=1, incident_light_angle=0
1220
1220
  )
1221
- minimizer_result = MinimizerResult(residual=np.random.random(wavecal_input_wavelength.size))
1222
- return FitResult(wavelength_parameters=wavelength_params, minimizer_result=minimizer_result)
1221
+
1222
+ residuals = np.random.random(wavecal_input_wavelength.size)
1223
+ residuals[-1] = np.nan
1224
+ minimizer_result = MinimizerResult(residual=residuals)
1225
+ return FitResult(
1226
+ wavelength_parameters=wavelength_params,
1227
+ minimizer_result=minimizer_result,
1228
+ input_wavelength_vector=wavecal_input_wavelength,
1229
+ input_spectrum=wavecal_input_spectrum,
1230
+ )
1223
1231
 
1224
1232
 
1225
1233
  @pytest.mark.parametrize(
@@ -1,3 +1,4 @@
1
+ import collections
1
2
  from enum import StrEnum
2
3
  from itertools import chain
3
4
 
@@ -17,6 +18,8 @@ from dkist_processing_common.parsers.dsps_repeat import TotalDspsRepeatsBud
17
18
  from dkist_processing_common.parsers.experiment_id_bud import ContributingExperimentIdsBud
18
19
  from dkist_processing_common.parsers.experiment_id_bud import ExperimentIdBud
19
20
  from dkist_processing_common.parsers.id_bud import TaskContributingIdsBud
21
+ from dkist_processing_common.parsers.lookup_bud import TaskTimeLookupBud
22
+ from dkist_processing_common.parsers.lookup_bud import TimeLookupBud
20
23
  from dkist_processing_common.parsers.near_bud import NearFloatBud
21
24
  from dkist_processing_common.parsers.near_bud import TaskNearFloatBud
22
25
  from dkist_processing_common.parsers.observing_program_id_bud import (
@@ -203,7 +206,7 @@ def basic_header_objs():
203
206
  "ID___012": "experiment_id_1",
204
207
  "XPOSURE": 100.0,
205
208
  "TEXPOSUR": 11.0,
206
- "NSUMEXP": 4,
209
+ "NSUMEXP": 5,
207
210
  "DSPSNUM": 2,
208
211
  "DSPSREPS": 2,
209
212
  "DATE-OBS": "2022-06-17T22:00:03.000",
@@ -1087,4 +1090,49 @@ def test_task_average_bud(basic_header_objs):
1087
1090
  assert round(petal[0].value, 3) == 1.227
1088
1091
 
1089
1092
 
1093
+ def test_time_lookup_bud(basic_header_objs):
1094
+ """
1095
+ Given: A set of headers with two differently valued header keys
1096
+ When: Ingesting headers with a TimeLookupBud and asking for the value
1097
+ Then: The bud's value is a dictionary of one key to sets of the other key as nested tuples
1098
+ """
1099
+ bud = TimeLookupBud(
1100
+ constant_name="lookup",
1101
+ key_metadata_key=FitsReaderMetadataKey.fpa_exposure_time_ms,
1102
+ value_metadata_key=FitsReaderMetadataKey.num_raw_frames_per_fpa,
1103
+ )
1104
+ assert bud.stem_name == "lookup"
1105
+ for fo in basic_header_objs:
1106
+ key = fo.name
1107
+ bud.update(key, fo)
1108
+
1109
+ assert type(bud.mapping) == collections.defaultdict
1110
+ assert bud.mapping == {0.0013: {3}, 12.345: {1}, 100.0: {4, 5}}
1111
+ assert len(bud.petals) == 1
1112
+ expected_value = ((0.0013, (3,)), (12.345, (1,)), (100.0, (4, 5)))
1113
+ assert bud.petals[0].value == expected_value
1114
+
1115
+
1116
+ def test_task_time_lookup_bud(basic_header_objs):
1117
+ """
1118
+ Given: A set of headers with two differently valued header keys
1119
+ When: Ingesting headers with a TaskTimeLookupBud and asking for the value
1120
+ Then: The bud's value is a dictionary of one key to sets of the other key as nested tuples
1121
+ """
1122
+ bud = TaskTimeLookupBud(
1123
+ constant_name="task_lookup",
1124
+ key_metadata_key=FitsReaderMetadataKey.fpa_exposure_time_ms,
1125
+ value_metadata_key=FitsReaderMetadataKey.num_raw_frames_per_fpa,
1126
+ ip_task_types="dark",
1127
+ )
1128
+ assert bud.stem_name == "task_lookup"
1129
+ for fo in basic_header_objs:
1130
+ key = fo.name
1131
+ bud.update(key, fo)
1132
+
1133
+ assert len(bud.petals) == 1
1134
+ expected_value = ((12.345, (1,)),)
1135
+ assert bud.petals[0].value == expected_value
1136
+
1137
+
1090
1138
  # TODO: test new stem types that have been added to parse_l0_input_data
@@ -95,13 +95,10 @@ def test_submit_dataset_metadata(
95
95
  mocker.patch(
96
96
  "dkist_processing_common.tasks.mixin.metadata_store.GraphQLClient", new=fake_gql_client
97
97
  )
98
- # intercept these two GraphQLClient calls so they can be confirmed
98
+ # intercept this GraphQLClient call so it can be confirmed
99
99
  mocked_metadata_store_add_dataset_receipt_account = mocker.patch.object(
100
100
  metadata_store.MetadataStoreMixin, "metadata_store_add_dataset_receipt_account"
101
101
  )
102
- mocked_metadata_store_add_quality_data = mocker.patch.object(
103
- metadata_store.MetadataStoreMixin, "metadata_store_add_quality_data"
104
- )
105
102
  task = submit_dataset_metadata_task
106
103
 
107
104
  # When
@@ -109,4 +106,3 @@ def test_submit_dataset_metadata(
109
106
 
110
107
  # Then
111
108
  mocked_metadata_store_add_dataset_receipt_account.assert_called_once()
112
- mocked_metadata_store_add_quality_data.assert_called_once()
@@ -12,14 +12,30 @@ from sqids import Sqids
12
12
 
13
13
  from dkist_processing_common._util.scratch import WorkflowFileSystem
14
14
  from dkist_processing_common.codecs.asdf import asdf_decoder
15
+ from dkist_processing_common.codecs.basemodel import basemodel_encoder
15
16
  from dkist_processing_common.codecs.bytes import bytes_decoder
16
17
  from dkist_processing_common.codecs.fits import fits_hdulist_encoder
17
18
  from dkist_processing_common.codecs.json import json_decoder
18
19
  from dkist_processing_common.codecs.quality import quality_data_encoder
20
+ from dkist_processing_common.models.input_dataset import InputDatasetParameter
21
+ from dkist_processing_common.models.input_dataset import InputDatasetPartDocumentList
19
22
  from dkist_processing_common.models.tags import Tag
20
23
  from dkist_processing_common.tasks import CreateTrialAsdf
21
24
  from dkist_processing_common.tasks import CreateTrialDatasetInventory
22
25
  from dkist_processing_common.tasks import CreateTrialQualityReport
26
+ from dkist_processing_common.tests.mock_metadata_store import input_dataset_parameters_part_factory
27
+
28
+
29
+ @pytest.fixture()
30
+ def mock_input_dataset_parts() -> InputDatasetPartDocumentList:
31
+ """An InputDatasetPartDocumentList with two parameters, each with one value and a date."""
32
+ raw = input_dataset_parameters_part_factory(
33
+ parameter_count=2,
34
+ parameter_value_count=1,
35
+ has_date=True,
36
+ has_file=False,
37
+ )
38
+ return InputDatasetPartDocumentList.model_validate({"doc_list": raw})
23
39
 
24
40
 
25
41
  @pytest.fixture()
@@ -41,6 +57,24 @@ def scratch_with_l1_frames(recipe_run_id, tmp_path) -> WorkflowFileSystem:
41
57
  scratch.write(
42
58
  file_obj, tags=[Tag.output(), Tag.frame()], relative_path=f"{uuid4().hex}.dat"
43
59
  )
60
+
61
+ return scratch
62
+
63
+
64
+ @pytest.fixture()
65
+ def scratch_with_l1_frames_and_parameters(
66
+ scratch_with_l1_frames, mock_input_dataset_parts
67
+ ) -> WorkflowFileSystem:
68
+ """Scratch instance for a recipe run id with tagged L1 frames and input parameters."""
69
+ scratch = scratch_with_l1_frames
70
+
71
+ # Write validated Pydantic model bytes expected by InputDatasetPartDocumentList
72
+ file_obj = basemodel_encoder(mock_input_dataset_parts)
73
+ scratch.write(
74
+ file_obj,
75
+ tags=Tag.input_dataset_parameters(),
76
+ relative_path=f"{uuid4().hex}.json",
77
+ )
44
78
  return scratch
45
79
 
46
80
 
@@ -85,6 +119,22 @@ def create_trial_asdf_task(
85
119
  task._purge()
86
120
 
87
121
 
122
+ @pytest.fixture(scope="function")
123
+ def create_trial_asdf_task_with_params(
124
+ recipe_run_id, tmp_path, scratch_with_l1_frames_and_parameters, fake_constants_db
125
+ ) -> CreateTrialAsdf:
126
+ """An instance of CreateTrialAsdf with L1 frames and input parameters tagged in scratch."""
127
+ task = CreateTrialAsdf(
128
+ recipe_run_id=recipe_run_id,
129
+ workflow_name="trial_asdf",
130
+ workflow_version="trial_asdf_version",
131
+ )
132
+ task.scratch = scratch_with_l1_frames_and_parameters
133
+ task.constants._update(fake_constants_db)
134
+ yield task
135
+ task._purge()
136
+
137
+
88
138
  @pytest.fixture()
89
139
  def create_trial_quality_report_task(
90
140
  recipe_run_id, tmp_path, fake_constants_db
@@ -143,25 +193,32 @@ def test_create_trial_dataset_inventory(create_trial_dataset_inventory_task):
143
193
  assert len(inventory) > 20 # a bunch
144
194
 
145
195
 
146
- def test_create_trial_asdf(create_trial_asdf_task, recipe_run_id):
196
+ @pytest.mark.parametrize("with_params", [False, True], ids=["no_params", "with_params"])
197
+ def test_create_trial_asdf(with_params, request, recipe_run_id, mock_input_dataset_parts):
147
198
  """
148
199
  :Given: An instance of CreateTrialAsdf with L1 frames tagged in scratch
149
200
  :When: CreateTrialAsdf is run
150
201
  :Then: An asdf file for the dataset is tagged in scratch
151
202
  """
152
- task = create_trial_asdf_task
203
+ task = request.getfixturevalue(
204
+ "create_trial_asdf_task_with_params" if with_params else "create_trial_asdf_task"
205
+ )
153
206
  # When
154
207
  task()
208
+
155
209
  # Then
156
210
  asdf_tags = [Tag.output(), Tag.asdf()]
157
211
  filepaths = list(task.scratch.find_all(tags=asdf_tags))
158
212
  assert len(filepaths) == 1
159
213
  dataset_id = Sqids(min_length=6, alphabet=ascii_uppercase).encode([recipe_run_id])
160
214
  assert filepaths[0].name == f"INSTRUMENT_L1_20240416T160000_{dataset_id}_metadata.asdf"
215
+
161
216
  results = list(task.read(tags=asdf_tags, decoder=asdf_decoder))
162
217
  assert len(results) == 1
218
+
163
219
  tree = results[0]
164
220
  assert isinstance(tree, dict)
221
+
165
222
  for file_name in tree["dataset"].files.filenames:
166
223
  # This is a slightly better than check that `not Path(file_name).is_absolute()` because it confirms
167
224
  # we've correctly stripped the path of *all* parents (not just those that start at root).
@@ -169,6 +226,19 @@ def test_create_trial_asdf(create_trial_asdf_task, recipe_run_id):
169
226
  # `scratch.workflow_base_path`
170
227
  assert Path(file_name).name == file_name
171
228
 
229
+ # Only check parameters when present
230
+ ds = tree["dataset"]
231
+ assert "parameters" in ds.meta
232
+ parameters = ds.meta["parameters"]
233
+ assert isinstance(parameters, list)
234
+ if with_params:
235
+ assert parameters, f"ASDF tree must include input parameters: {parameters}"
236
+ assert len(parameters) == len(mock_input_dataset_parts.doc_list)
237
+ for param in parameters:
238
+ assert InputDatasetParameter.model_validate(param) in mock_input_dataset_parts.doc_list
239
+ else:
240
+ assert ds.meta["parameters"] == []
241
+
172
242
 
173
243
  def test_create_trial_quality_report(create_trial_quality_report_task):
174
244
  """
@@ -158,13 +158,12 @@ def complete_trial_output_task(
158
158
  task.write(asdf_file_obj, relative_path=asdf_file_name, tags=[Tag.output(), Tag.asdf()])
159
159
 
160
160
  # Write quality data
161
- # quality data is not tagged as OUTPUT
162
161
  quality_data_obj = uuid4().hex.encode("utf8")
163
162
  quality_data_name = "quality_data.json"
164
163
  task.write(
165
164
  quality_data_obj,
166
165
  relative_path=quality_data_name,
167
- tags=Tag.quality_data(),
166
+ tags=[Tag.output(), Tag.quality_data()],
168
167
  )
169
168
 
170
169
  # Write a quality report file