dkist-processing-common 11.1.0rc1__py3-none-any.whl → 11.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,7 @@
1
1
  """GraphQL Data models for the metadata store api."""
2
2
  from pydantic import BaseModel
3
3
  from pydantic import ConfigDict
4
+ from pydantic import field_serializer
4
5
  from pydantic import field_validator
5
6
  from pydantic import Json
6
7
 
@@ -129,6 +130,10 @@ class RecipeRunResponse(GraphqlBaseModel):
129
130
  return RecipeRunConfiguration()
130
131
  return RecipeRunConfiguration.model_validate(value)
131
132
 
133
+ @field_serializer("configuration")
134
+ def _serialize_as_basemodel(self, config: RecipeRunConfiguration):
135
+ return config.model_dump()
136
+
132
137
 
133
138
  class RecipeRunMutationResponse(GraphqlBaseModel):
134
139
  """Recipe run mutation response."""
@@ -185,6 +190,7 @@ class QualityCreation(GraphqlBaseModel):
185
190
  warnings: str | None = None
186
191
  # JSON objects
187
192
  plotData: str | None = None
193
+ multiPlotData: str | None = None
188
194
  tableData: str | None = None
189
195
  histogramData: str | None = None
190
196
  modmatData: str | None = None
@@ -112,7 +112,7 @@ class ReportMetric(BaseModel):
112
112
  facet: str | None = None
113
113
  statement: str | list[str] | None = None
114
114
  plot_data: Plot2D | list[Plot2D] | None = None
115
- vertical_multi_pane_plot_data: VerticalMultiPanePlot2D | None = None
115
+ multi_plot_data: VerticalMultiPanePlot2D | None = None
116
116
  histogram_data: PlotHistogram | list[PlotHistogram] | None = None
117
117
  table_data: SimpleTable | list[SimpleTable] | None = None
118
118
  modmat_data: ModulationMatrixHistograms | None = None
@@ -2,10 +2,10 @@
2
2
  import logging
3
3
  from abc import ABC
4
4
  from abc import abstractmethod
5
+ from importlib.resources import files
5
6
  from typing import Literal
6
7
 
7
8
  import numpy as np
8
- import pkg_resources
9
9
  from matplotlib import colormaps
10
10
  from moviepy import VideoClip
11
11
  from PIL import Image
@@ -66,7 +66,7 @@ class AssembleMovie(WorkflowTaskBase, ABC):
66
66
  MINIMUM_DURATION = 10 # seconds
67
67
  MAXIMUM_DURATION = 60 # seconds
68
68
  FPS = 15
69
- FONT_FILE = pkg_resources.resource_filename("dkist_processing_common", "fonts/Lato-Regular.ttf")
69
+ FONT_FILE = files("dkist_processing_common").joinpath("fonts/Lato-Regular.ttf")
70
70
  TEXT_MARGIN_PX = 5
71
71
  MPL_COLOR_MAP = "viridis"
72
72
 
@@ -171,6 +171,7 @@ class MetadataStoreMixin:
171
171
  warnings=json.dumps(metric.get("warnings")),
172
172
  # JSON objects
173
173
  plotData=json.dumps(metric.get("plot_data"), cls=QualityDataEncoder),
174
+ multiPlotData=json.dumps(metric.get("multi_plot_data"), cls=QualityDataEncoder),
174
175
  tableData=json.dumps(metric.get("table_data"), cls=QualityDataEncoder),
175
176
  histogramData=json.dumps(metric.get("histogram_data"), cls=QualityDataEncoder),
176
177
  modmatData=json.dumps(metric.get("modmat_data"), cls=QualityDataEncoder),
@@ -1365,13 +1365,22 @@ class _WavecalQualityMixin:
1365
1365
  wcs = WCS(best_fit_header)
1366
1366
  best_fit_wavelength = wcs.spectral.pixel_to_world(np.arange(input_spectrum.size))
1367
1367
 
1368
+ finite_idx = (
1369
+ np.isfinite(input_wavelength)
1370
+ * np.isfinite(input_spectrum)
1371
+ * np.isfinite(best_fit_wavelength)
1372
+ * np.isfinite(best_fit_atlas)
1373
+ * np.isfinite(normalized_residuals)
1374
+ * np.isfinite(weight_data)
1375
+ )
1376
+
1368
1377
  data = {
1369
- "input_wavelength_nm": input_wavelength.to_value(u.nm).tolist(),
1370
- "input_spectrum": input_spectrum.tolist(),
1371
- "best_fit_wavelength_nm": best_fit_wavelength.to_value(u.nm).tolist(),
1372
- "best_fit_atlas": best_fit_atlas.tolist(),
1373
- "normalized_residuals": normalized_residuals.tolist(),
1374
- "weights": None if weights is None else weight_data.tolist(),
1378
+ "input_wavelength_nm": input_wavelength.to_value(u.nm)[finite_idx].tolist(),
1379
+ "input_spectrum": input_spectrum[finite_idx].tolist(),
1380
+ "best_fit_wavelength_nm": best_fit_wavelength.to_value(u.nm)[finite_idx].tolist(),
1381
+ "best_fit_atlas": best_fit_atlas[finite_idx].tolist(),
1382
+ "normalized_residuals": normalized_residuals[finite_idx].tolist(),
1383
+ "weights": None if weights is None else weight_data[finite_idx].tolist(),
1375
1384
  }
1376
1385
 
1377
1386
  self._record_values(values=data, tags=[Tag.quality(MetricCode.wavecal_fit)])
@@ -1392,10 +1401,20 @@ class _WavecalQualityMixin:
1392
1401
  "Input Spectrum": [input_wave_list, input_spectrum_list],
1393
1402
  "Best Fit Atlas": [best_fit_wave_list, best_fit_atlas_list],
1394
1403
  }
1404
+
1405
+ # Set the colors and zorder here manually because the JSON-ization of the quality data means we can't be sure of
1406
+ # the order these will be plotted in and thus can't rely on the default color-cycler in `dkist-quality`.
1395
1407
  fit_plot_kwargs = {
1396
- "Best Fit Observations": {"ls": "-", "lw": 4, "alpha": 0.8, "ms": 0},
1397
- "Input Spectrum": {"ls": "-", "alpha": 0.4, "ms": 0},
1398
- "Best Fit Atlas": {"color": "k", "ls": "-", "ms": 0},
1408
+ "Best Fit Observations": {
1409
+ "ls": "-",
1410
+ "lw": 4,
1411
+ "alpha": 0.8,
1412
+ "ms": 0,
1413
+ "color": "#FAA61C",
1414
+ "zorder": 2,
1415
+ },
1416
+ "Input Spectrum": {"ls": "-", "alpha": 0.4, "ms": 0, "color": "#1E317A", "zorder": 2.1},
1417
+ "Best Fit Atlas": {"color": "k", "ls": "-", "ms": 0, "zorder": 2.2},
1399
1418
  }
1400
1419
 
1401
1420
  fit_plot = Plot2D(
@@ -1449,7 +1468,7 @@ class _WavecalQualityMixin:
1449
1468
  "The top plot shows the input and best-fit spectra along with the best-fit atlas, which is "
1450
1469
  "a combination of Solar and Telluric spectra. The bottom plot shows the fit residuals.",
1451
1470
  metric_code=MetricCode.wavecal_fit,
1452
- vertical_multi_pane_plot_data=full_plot,
1471
+ multi_plot_data=full_plot,
1453
1472
  )
1454
1473
 
1455
1474
  return metric.model_dump()
@@ -230,7 +230,13 @@ class WriteL1Frame(WorkflowTaskBase, MetadataStoreMixin, ABC):
230
230
  header = self.add_contributing_id_headers(header=header)
231
231
  header["MANPROCD"] = self.workflow_had_manual_intervention
232
232
  header["PRODUCT"] = self.compute_product_id(header["IDSOBSID"], header["PROCTYPE"])
233
- # Spectral line keywords
233
+ return header
234
+
235
+ def add_spectral_line_headers(
236
+ self,
237
+ header: fits.Header,
238
+ ) -> fits.Header:
239
+ """Add datacenter table keys relating to spectral lines."""
234
240
  wavelength_range = self.get_wavelength_range(header=header)
235
241
  spectral_lines = get_spectral_lines(
236
242
  wavelength_min=wavelength_range.min,
@@ -364,6 +370,8 @@ class WriteL1Frame(WorkflowTaskBase, MetadataStoreMixin, ABC):
364
370
  header = self.add_doc_headers(header=header)
365
371
  # Add the dataset headers (abstract - implement in instrument task)
366
372
  header = self.add_dataset_headers(header=header, stokes=stokes_param)
373
+ # Add the spectral line headers
374
+ header = self.add_spectral_line_headers(header=header)
367
375
  # Remove any headers not contained in spec 214
368
376
  header = remove_spec_122_keys_and_spec_214_l0_keys(input_headers=header)
369
377
  # Remove any keys referring to axes that don't exist
@@ -259,11 +259,11 @@ def plot_data_expected() -> Callable[[str], bool]:
259
259
 
260
260
 
261
261
  @pytest.fixture()
262
- def vertical_multi_pane_plot_data_expected() -> Callable[[str], bool]:
262
+ def multi_plot_data_expected() -> Callable[[str], bool]:
263
263
  """
264
264
  Tightly coupled with quality_metrics fixture and resultant report metric name
265
265
  """
266
- # names where vertical_multi_pane_plot_data is expected to be populated
266
+ # names where multi_plot_data is expected to be populated
267
267
  names = {"Wavelength Calibration Results"}
268
268
 
269
269
  def expected(name: str) -> bool:
@@ -451,7 +451,7 @@ def test_assemble_quality_data(
451
451
  assemble_quality_data_task,
452
452
  recipe_run_id,
453
453
  plot_data_expected,
454
- vertical_multi_pane_plot_data_expected,
454
+ multi_plot_data_expected,
455
455
  table_data_expected,
456
456
  modmat_data_expected,
457
457
  histogram_data_expected,
@@ -481,8 +481,8 @@ def test_assemble_quality_data(
481
481
  assert isinstance(rm.description, str)
482
482
  if plot_data_expected(rm.name):
483
483
  assert rm.plot_data
484
- if vertical_multi_pane_plot_data_expected(rm.name):
485
- assert rm.vertical_multi_pane_plot_data
484
+ if multi_plot_data_expected(rm.name):
485
+ assert rm.multi_plot_data
486
486
  if table_data_expected(rm.name):
487
487
  assert rm.table_data
488
488
  if modmat_data_expected(rm.name):
@@ -114,7 +114,7 @@ def test_create_2d_plot_with_datetime_metric(quality_task):
114
114
  "facet",
115
115
  "statement",
116
116
  "plot_data",
117
- "vertical_multi_pane_plot_data",
117
+ "multi_plot_data",
118
118
  "histogram_data",
119
119
  "table_data",
120
120
  "modmat_data",
@@ -1201,12 +1201,16 @@ def wavecal_input_wavelength() -> u.Quantity:
1201
1201
 
1202
1202
  @pytest.fixture(scope="session")
1203
1203
  def wavecal_input_spectrum(wavecal_input_wavelength) -> np.ndarray:
1204
- return (wavecal_input_wavelength.value - wavecal_input_wavelength.size // 2) ** 2 + 10.0
1204
+ spec = (wavecal_input_wavelength.value - wavecal_input_wavelength.size // 2) ** 2 + 10.0
1205
+ spec[spec.size // 2] = np.nan
1206
+ return spec
1205
1207
 
1206
1208
 
1207
1209
  @pytest.fixture(scope="session")
1208
1210
  def wavecal_weights(wavecal_input_wavelength) -> np.ndarray:
1209
- return np.arange(wavecal_input_wavelength.size)
1211
+ weights = np.arange(wavecal_input_wavelength.size, dtype=float)
1212
+ weights[0] = np.inf
1213
+ return weights
1210
1214
 
1211
1215
 
1212
1216
  @pytest.fixture(scope="session")
@@ -1313,7 +1317,7 @@ def test_build_wavecal_results(quality_task, wavecal_data_json):
1313
1317
  assert metric["raincloud_data"] is None
1314
1318
  assert metric["warnings"] is None
1315
1319
 
1316
- multi_plot_data = metric["vertical_multi_pane_plot_data"]
1320
+ multi_plot_data = metric["multi_plot_data"]
1317
1321
  assert multi_plot_data["match_x_axes"] is True
1318
1322
  assert multi_plot_data["no_gap"] is True
1319
1323
  assert (
@@ -1335,9 +1339,16 @@ def test_build_wavecal_results(quality_task, wavecal_data_json):
1335
1339
  "Best Fit Atlas": [[1001.5, 1002.6, 1003.7, 1004.8], [1.0, 1.0, 0.4, 1.0]],
1336
1340
  }
1337
1341
  assert fit_plot["plot_kwargs"] == {
1338
- "Input Spectrum": {"ls": "-", "alpha": 0.4, "ms": 0},
1339
- "Best Fit Observations": {"ls": "-", "lw": 4, "alpha": 0.8, "ms": 0},
1340
- "Best Fit Atlas": {"color": "k", "ls": "-", "ms": 0},
1342
+ "Input Spectrum": {"ls": "-", "alpha": 0.4, "ms": 0, "color": "#1E317A", "zorder": 2.1},
1343
+ "Best Fit Observations": {
1344
+ "ls": "-",
1345
+ "lw": 4,
1346
+ "alpha": 0.8,
1347
+ "ms": 0,
1348
+ "color": "#FAA61C",
1349
+ "zorder": 2.0,
1350
+ },
1351
+ "Best Fit Atlas": {"color": "k", "ls": "-", "ms": 0, "zorder": 2.2},
1341
1352
  }
1342
1353
 
1343
1354
  residuals_plot = plot_list[1]
@@ -2,12 +2,11 @@ import json
2
2
  import logging
3
3
  import re
4
4
  import tomllib
5
- from dataclasses import asdict
5
+ from importlib.metadata import version
6
6
  from pathlib import Path
7
7
  from string import ascii_uppercase
8
8
 
9
9
  import pytest
10
- from pkg_resources import get_distribution
11
10
  from sqids import Sqids
12
11
 
13
12
  import dkist_processing_common
@@ -272,7 +271,7 @@ def test_library_versions(provenance_task, package_dependencies):
272
271
  # installed packages.
273
272
  for package in package_dependencies:
274
273
  assert package in libraries
275
- assert libraries[package] == get_distribution(package).version
274
+ assert libraries[package] == version(package)
276
275
 
277
276
 
278
277
  def test_record_provenance(provenance_task):
@@ -677,7 +677,7 @@ def test_spectral_line_keys(write_l1_task, mocker, fake_gql_client):
677
677
  new=fake_gql_client,
678
678
  )
679
679
  task, _, header = write_l1_task
680
- header = task.add_datacenter_headers(header=header, hdu_size=1024, stokes="I")
680
+ header = task.add_spectral_line_headers(header=header)
681
681
  assert header["SPECLN01"] == "Fe XIII (1079.8 nm)"
682
682
  assert header["SPECLN02"] == "He I (1083.0 nm)"
683
683
  assert header["NSPECLNS"] == 2
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dkist-processing-common
3
- Version: 11.1.0rc1
3
+ Version: 11.2.1
4
4
  Summary: Common task classes used by the DKIST science data processing pipelines
5
5
  Author-email: NSO / AURA <dkistdc@nso.edu>
6
6
  License: BSD-3-Clause
@@ -61,7 +61,7 @@ Requires-Dist: dkist-inventory<2.0,>=1.6.0; extra == "inventory"
61
61
  Provides-Extra: asdf
62
62
  Requires-Dist: dkist-inventory[asdf]<2.0,>=1.6.0; extra == "asdf"
63
63
  Provides-Extra: quality
64
- Requires-Dist: dkist-quality<2.0,>=1.3.0; extra == "quality"
64
+ Requires-Dist: dkist-quality<3.0,>=2.0.0; extra == "quality"
65
65
 
66
66
  dkist-processing-common
67
67
  =======================
@@ -1,5 +1,4 @@
1
1
  changelog/.gitempty,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- changelog/255.misc.rst,sha256=Y0CIOQbdAK8Emlz6wQaX59hg1Hr9QDhDMv7-Z-OpbAU,255
3
2
  dkist_processing_common/__init__.py,sha256=490Fwm_GgqpwriQlsYfKcLUZNhZ6GkINtJqcYSIEKoU,319
4
3
  dkist_processing_common/config.py,sha256=IcpaD_NvHZU-aLlUNOTdRC4V7ADIvVQwrZ2dHhIr4NY,4247
5
4
  dkist_processing_common/manual.py,sha256=mrW__HupEZMYOxUxfKsdsTI3TfOrOrWHS9yXC_835W4,7023
@@ -27,13 +26,13 @@ dkist_processing_common/models/dkist_location.py,sha256=3cbN6As60tJa0uoOSNFNnz2s
27
26
  dkist_processing_common/models/fits_access.py,sha256=Au9JROwhVla9zb_u0dN8mIWiSJd_Pca0oOr4N1hN0HY,4113
28
27
  dkist_processing_common/models/flower_pot.py,sha256=59C5uGYKyMyncqQYxhzDZWl8k1DRZFB6s9RF-HFp9mY,5128
29
28
  dkist_processing_common/models/fried_parameter.py,sha256=ro_H2Eo3I88lRf1wJjZfTc_XOjhgLt4whIQR_sjAFbM,1609
30
- dkist_processing_common/models/graphql.py,sha256=RcFlSDTtV6TwHExb9Y89NhTfLMx2ysdqecY7kHuRwg0,5690
29
+ dkist_processing_common/models/graphql.py,sha256=_dcVUYrzQ6CceMJFXYS_bc8lknop5n0erL5I8kuj32g,5911
31
30
  dkist_processing_common/models/input_dataset.py,sha256=stQa_lbFPr2tmOUpQgpDuwM0-DiIDV3zYwyawh01cKc,4172
32
31
  dkist_processing_common/models/message.py,sha256=DRW7Qhl01dF5KagcqLta5U-uzdOMewrsHvMatDT6jnk,1684
33
32
  dkist_processing_common/models/message_queue_binding.py,sha256=ROQ2ZQE3TCr4gVbz4WggvUSExAiWP8SD_GjjQl482M8,1012
34
33
  dkist_processing_common/models/metric_code.py,sha256=mF-i0nuzko7K949aS01hEsssGes_PIF5B0b_mVqwoL4,847
35
34
  dkist_processing_common/models/parameters.py,sha256=dTup7mPTEmySXP0O3j4sPPY8Jqe2zf-3sr2hjeMatEY,9649
36
- dkist_processing_common/models/quality.py,sha256=wI779KvakvZNOJXq8qgdsF8u9sVYAzd8ezhoXpiccqQ,3994
35
+ dkist_processing_common/models/quality.py,sha256=niNHA4fh_22Xsk_gMRs2YvvT33paD8ByUCGy1IYmn30,3980
37
36
  dkist_processing_common/models/tags.py,sha256=ykOYqWMU7_ffvRCv84-avjXyty9pHBo7EXwsjIjStjs,12058
38
37
  dkist_processing_common/models/task_name.py,sha256=NL0n92A9vVYBV-yvh8d-qFOCxVy0X2GECDmLgIzrmOY,565
39
38
  dkist_processing_common/models/wavelength.py,sha256=Wtmu5QhjPpsqIGfUQ0Wh-3PQlGeRdGV9BfFAy23HLGg,966
@@ -54,7 +53,7 @@ dkist_processing_common/parsers/time.py,sha256=jcyhID_6ldkLZMBO9gqzYJ-oAD1kmFOTh
54
53
  dkist_processing_common/parsers/unique_bud.py,sha256=ht_1Oi1OL7otZOMXcoVilmDSYVCC7KZ7Fj-TfKDFcqw,3173
55
54
  dkist_processing_common/parsers/wavelength.py,sha256=Cb0opJmFRLQVPIMC5YRSDeygWjvQGS9avYrFhLsBekY,546
56
55
  dkist_processing_common/tasks/__init__.py,sha256=uH8DTiQP-cx4vMK53S4LYGZGmbip5s0kWORvZBrSNj8,624
57
- dkist_processing_common/tasks/assemble_movie.py,sha256=9K4sgXyRKaX7UsFBIs138pG3AtClwLLopYw3ZQY3ok4,12771
56
+ dkist_processing_common/tasks/assemble_movie.py,sha256=6tb_vOwXZuQEhGBK8LoBaGnYQnpv_FiE9DVa_cLjreE,12771
58
57
  dkist_processing_common/tasks/base.py,sha256=k_IJR5sVV6ennX0sbeb0C6dciqshdY7CKjtWHy_adm8,13143
59
58
  dkist_processing_common/tasks/l1_output_data.py,sha256=IM-nvGaTM5r-z-9vHr2wovPVUpuNCah-cWIFMO2fcII,10576
60
59
  dkist_processing_common/tasks/output_data_base.py,sha256=CC1TnCrChi8_iuMymr425CJqpY4jCggnVUMfqzFkpnw,3682
@@ -64,20 +63,20 @@ dkist_processing_common/tasks/teardown.py,sha256=e4LKnphJDYDVDAez2tH7MxpZgCmxYsK
64
63
  dkist_processing_common/tasks/transfer_input_data.py,sha256=8dDOfnT46qavGW-6fy-FT9LVb0TXANSpk1WpACpWK70,5787
65
64
  dkist_processing_common/tasks/trial_catalog.py,sha256=Y3DKstRfMS8nWWtJFMB0MUVPlZ1jWS_2jhJGMWwxy50,8748
66
65
  dkist_processing_common/tasks/trial_output_data.py,sha256=ehuts_L_GrnTRsVNeoh1N2kgQhId6_FnrMEiJ_2X_Jc,6834
67
- dkist_processing_common/tasks/write_l1.py,sha256=EtCy7vltkZsZgoCAQybKgI35nmQncm0XrhIKxGJGSyc,22615
66
+ dkist_processing_common/tasks/write_l1.py,sha256=KSb62iTYP21XBqIYVQVx6X8vhpcLn403EgGG4DJ2wag,22876
68
67
  dkist_processing_common/tasks/mixin/__init__.py,sha256=-g-DQbU7m1bclJYuFe3Yh757V-35GIDTbstardKQ7nU,68
69
68
  dkist_processing_common/tasks/mixin/globus.py,sha256=QAV8VElxMAqxJ2KSB_bJaraceovYfjHXjOdocrTCkIA,6592
70
69
  dkist_processing_common/tasks/mixin/interservice_bus.py,sha256=I7BUh0o8AEX-FZv7gxCts6is0uq9lycWjtTB2KqwBrU,1080
71
- dkist_processing_common/tasks/mixin/metadata_store.py,sha256=yTKijpQ-tNx_H2V_9HsZjMzkrzBDSQaSKkySV6VnnOM,11618
70
+ dkist_processing_common/tasks/mixin/metadata_store.py,sha256=jD7UYnua2nmjYZP7sBcono1zyy5ldoJT-poYG-4XVcA,11715
72
71
  dkist_processing_common/tasks/mixin/object_store.py,sha256=Vn4l2XuCimii9Fc3gM-pQGIkTKMv_ldqljlxkLesZLU,3236
73
72
  dkist_processing_common/tasks/mixin/quality/__init__.py,sha256=Bgu-DHW7yXLiehglldOCWluEkAP5qh0Hp1F30rh5NFw,383
74
73
  dkist_processing_common/tasks/mixin/quality/_base.py,sha256=U1AEhj6OtF4YEdTkKWcgmoH6zrz6tYNjNXnmVU24L70,8491
75
- dkist_processing_common/tasks/mixin/quality/_metrics.py,sha256=sQspAXoeSA2dQSX6wQuJKGON2XFilB5t29kNXhSLMmY,59844
74
+ dkist_processing_common/tasks/mixin/quality/_metrics.py,sha256=g2iGGi2d_o2qEKWhNGZFq1XLHDhcgwYUhVJ1MfKJTcA,60625
76
75
  dkist_processing_common/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
76
  dkist_processing_common/tests/conftest.py,sha256=xTmu87MZSPIcucg9UCH88OimdqgjE5VSc-n-fSFbtjI,22319
78
77
  dkist_processing_common/tests/mock_metadata_store.py,sha256=ZVxAtVoW8ayEceafeR8yJbGdFZsw13Eyf1Z2-rwGZDM,8260
79
78
  dkist_processing_common/tests/test_assemble_movie.py,sha256=RI7Kitd-XNmba-o5pUgqURocXPFi15T-mEvWaSbsN6U,4125
80
- dkist_processing_common/tests/test_assemble_quality.py,sha256=j0n67prmjxbBxkqgurmanfH4puCTYytn4thpEXe7u2s,17902
79
+ dkist_processing_common/tests/test_assemble_quality.py,sha256=-F22jMY6mPy65VZ1TZY2r1vsxMXOPmZHArGx70OD3BA,17832
81
80
  dkist_processing_common/tests/test_base.py,sha256=EQsIkeWoOtjk0yxr_oPkhW3Uc0p8cMsknSMwKgrJI9E,7078
82
81
  dkist_processing_common/tests/test_codecs.py,sha256=FGhldrTdc28YD9FKrsW3lZ34LtvzecGP1qNi9fGHVGQ,22173
83
82
  dkist_processing_common/tests/test_constants.py,sha256=Kc9k5TdYy5QkRRlGav6kfI2dy5HHKqtpf9qOuaAfDZU,5903
@@ -95,7 +94,7 @@ dkist_processing_common/tests/test_parameters.py,sha256=kNzX89vfrNRJ8d9rusMVv4DM
95
94
  dkist_processing_common/tests/test_parse_l0_input_data.py,sha256=SMNV1qyQTvnMx94MCNsiA-RyS9uxaxIABEDDxsuVzqY,10629
96
95
  dkist_processing_common/tests/test_publish_catalog_messages.py,sha256=l6Wga1s2wNBIf4wGZ78ZIO_rtqjdidmtvlN9nMnQUAs,3222
97
96
  dkist_processing_common/tests/test_quality.py,sha256=vomy2YSPadKqJj2tG8sCs-UkQVvfKus7Cum7_Hpee4I,10257
98
- dkist_processing_common/tests/test_quality_mixin.py,sha256=NVpHCHVAO_kbM1hfgOCYYzq88zZP2jOEEjkOfaS8jcY,55120
97
+ dkist_processing_common/tests/test_quality_mixin.py,sha256=qanm3SXEiLb0OJDawbh8ixVAG9uRglFMzwxTeYxkDsM,55369
99
98
  dkist_processing_common/tests/test_scratch.py,sha256=7f28FMiSskSNX-bkRSrpJf2u1HQIbSvYajbjkeGMF9s,16481
100
99
  dkist_processing_common/tests/test_stems.py,sha256=ini5dylLT5ioWKKWd1uu6kwx8Tf3aEnKKaGjf46a_GI,32649
101
100
  dkist_processing_common/tests/test_submit_dataset_metadata.py,sha256=LHEyjoIxJHXXssqKkr8Qn1NzzHD1FLJiD3lP8yaLiXU,3764
@@ -107,8 +106,8 @@ dkist_processing_common/tests/test_transfer_input_data.py,sha256=bLBQs7qiYKJz3MN
107
106
  dkist_processing_common/tests/test_transfer_l1_output_data.py,sha256=PVGDJBEUk4kAeu8ivrhlCE7yd29R18t9kZLFx-mpBwY,2063
108
107
  dkist_processing_common/tests/test_trial_catalog.py,sha256=y5SDjns8CoAY_Wr3pgkYwvRB-ieRXavbF5_2AZ4NFNM,6777
109
108
  dkist_processing_common/tests/test_trial_output_data.py,sha256=TUPycx_hDgyQj_k6xqDQXgS25yrz78vh78SArZHHm0g,12008
110
- dkist_processing_common/tests/test_workflow_task_base.py,sha256=Z5aPW5LQtS0UWJiYho4X0r-2gPLfzpkmMwfmaoFLjMg,10517
111
- dkist_processing_common/tests/test_write_l1.py,sha256=Uj6eOCcmfrTTfRY7pgkS2tqaWH_9RFDg8KAFRJCLSQw,28020
109
+ dkist_processing_common/tests/test_workflow_task_base.py,sha256=pxdR_qBWINty82rRhSt_nhaC0g-wBMWMoF4R3RUWSXM,10465
110
+ dkist_processing_common/tests/test_write_l1.py,sha256=LORwt8Eb2myfcFqNWTLNWERvZ1fAD9FgonzJEF76ABI,27996
112
111
  docs/Makefile,sha256=qnlVz6PuBqE39NfHWuUnHhNEA-EFgT2-WJNNNy9ttfk,4598
113
112
  docs/changelog.rst,sha256=S2jPASsWlQxSlAPqdvNrYvhk9k3FcFWNXFNDYXBSjl4,120
114
113
  docs/conf.py,sha256=FkX575cqTqZGCcLAjg2MlvE8Buj1Vt3CpHNgZxG256E,1890
@@ -117,7 +116,7 @@ docs/landing_page.rst,sha256=aPAuXFhBx73lEZ59B6E6JXxkK0LlxzD0n-HXqHrfumQ,746
117
116
  docs/make.bat,sha256=mBAhtURwhQ7yc95pqwJzlhqBSvRknr1aqZ5s8NKvdKs,4513
118
117
  docs/requirements.txt,sha256=Kbl_X4c7RQZw035YTeNB63We6I7pvXFU4T0Uflp2yDY,29
119
118
  licenses/LICENSE.rst,sha256=piZaQplkzOMmH1NXg6QIdo9wwo9pPCoHkvm2-DmH76E,1462
120
- dkist_processing_common-11.1.0rc1.dist-info/METADATA,sha256=dRRRLyGbSfnb7REoyDKxbfdrs8x9-iJelOzGHv9fcOg,7204
121
- dkist_processing_common-11.1.0rc1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
122
- dkist_processing_common-11.1.0rc1.dist-info/top_level.txt,sha256=LJhd1W-Vn90K8HnQDIE4r52YDpUjjMWDnllAWHBByW0,48
123
- dkist_processing_common-11.1.0rc1.dist-info/RECORD,,
119
+ dkist_processing_common-11.2.1.dist-info/METADATA,sha256=i7X-5yyAWI3r4Vs9vs7c5BU2USGO8fji19NMwCIyiTY,7201
120
+ dkist_processing_common-11.2.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
121
+ dkist_processing_common-11.2.1.dist-info/top_level.txt,sha256=LJhd1W-Vn90K8HnQDIE4r52YDpUjjMWDnllAWHBByW0,48
122
+ dkist_processing_common-11.2.1.dist-info/RECORD,,
changelog/255.misc.rst DELETED
@@ -1,3 +0,0 @@
1
- Create a factory for custom `FakeGQLClient` used in tests. The factory and associated default returns live in a
2
- new `mock_metadata_store.py` module in the tests directory. `FakeGQLClient` is now a test fixture and does not need to
3
- be imported in tests.