divergent-beamsearch 0.2.0__py3-none-any.whl → 0.2.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,10 @@
1
1
  import math
2
+ import multi_choices_parser
2
3
  import torch
3
- from transformers import GPT2LMHeadModel
4
+ try:
5
+ from transformers import GPT2LMHeadModel
6
+ except ImportError:
7
+ pass
4
8
  from multi_choices_parser import DEFAULT_END_SYMB
5
9
 
6
10
 
@@ -35,7 +39,7 @@ def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
35
39
  return pred[~pred.isinf().all(dim=-1)]
36
40
 
37
41
 
38
- def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor,
42
+ def batched_inference_logits(model : "GPT2LMHeadModel", input_ids : torch.Tensor,
39
43
  attention_mask : torch.Tensor | None = None, batch_size : int = 32,
40
44
  to_cpu=False) -> torch.Tensor:
41
45
  logits = []
@@ -96,7 +100,7 @@ def pad_to_same_size(tensors : list[torch.Tensor], padding_value : int) -> torch
96
100
  return torch.cat(padded_tensors, dim=0)
97
101
 
98
102
  @torch.no_grad()
99
- def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int,
103
+ def divergent_beamsearch(input_ids : torch.Tensor, model : "GPT2LMHeadModel", beam_size : int,
100
104
  max_length : int, parser : Parser, pad_token_id : int, batch_size=32,
101
105
  num_solutions = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> tuple[torch.Tensor, torch.Tensor]:
102
106
  assert input_ids.shape[0] == 1, "Batch size must be 1"
@@ -160,9 +164,11 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
160
164
  input_ids_unfinished = torch.cat([input_ids_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
161
165
  scores_unfinished = scores_unfinished[best_tokens_row] + best_tokens_logprobs
162
166
  solutions_unfinished = torch.cat([solutions_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
167
+ best_tokens_row = best_tokens_row.tolist()
163
168
  parsers_unfinished = [parsers_unfinished[row].copy() for row in best_tokens_row]
164
- for parser, token in zip(parsers_unfinished, best_tokens.tolist()):
165
- parser.step(token)
169
+ for parser, token, row in zip(parsers_unfinished, best_tokens.tolist(), best_tokens_row):
170
+ if not parser.finished:
171
+ parser.step(token)
166
172
 
167
173
  # Special case of vanilla beam search where all answers are valid
168
174
  # Warning : In this case model will not stop on end_of_sentence token
@@ -180,10 +186,11 @@ def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Te
180
186
  x[i].index_fill_(0, indices[i], 0)
181
187
 
182
188
  @torch.no_grad()
183
- def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel,
189
+ def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : "GPT2LMHeadModel",
184
190
  parsers : Parser | list[Parser] | None, batch_size=32,
185
191
  start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> torch.FloatTensor:
186
192
  if start is None:
193
+ # Start at 1 because first token logprobs cannot be computed
187
194
  start = 1
188
195
  if isinstance(start, int):
189
196
  start = torch.tensor([start]*input_ids.shape[0])
@@ -222,8 +229,9 @@ def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor |
222
229
  for input_id, att in zip(input_ids[i, start:].tolist(), attention_mask[i, start:].tolist()):
223
230
  if not att:
224
231
  break
232
+ assert not parser.finished
225
233
  parser.step(input_id)
226
- next_tokens = list(parser.next())
234
+ next_tokens = parser.next()
227
235
  try:
228
236
  next_tokens.remove(end_symb)
229
237
  except ValueError:
@@ -1,12 +1,11 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: divergent-beamsearch
3
- Version: 0.2.0
3
+ Version: 0.2.2
4
4
  Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
5
5
  License-File: LICENCE
6
6
  Requires-Python: >=3.11
7
- Requires-Dist: multi-choices-parser>=0.9.61
7
+ Requires-Dist: multi-choices-parser>=0.10.0
8
8
  Requires-Dist: torch>=2.0.0
9
- Requires-Dist: transformers>=4.47.1
10
9
  Description-Content-Type: text/markdown
11
10
 
12
11
  # Divergent Beam Search
@@ -0,0 +1,6 @@
1
+ divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
2
+ divergent_beamsearch/algorithm.py,sha256=sfQSaOcnuN_Pyp69hGZbX66Rmg7V4aQqyUfT0Clltvs,10204
3
+ divergent_beamsearch-0.2.2.dist-info/METADATA,sha256=l9Wsb45vwcLSNMcsiTuGay5rq9o4TD_Pt0D7ZnipTTg,2790
4
+ divergent_beamsearch-0.2.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
+ divergent_beamsearch-0.2.2.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
6
+ divergent_beamsearch-0.2.2.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
2
- divergent_beamsearch/algorithm.py,sha256=lx27rXddHiyzisINgWI5MuatRLIU2ObnZhtCvojbGJ8,9917
3
- divergent_beamsearch-0.2.0.dist-info/METADATA,sha256=u4-bH-9qa_yLJPemATIemwIavOCucF7CCv0kyJV6_Qg,2826
4
- divergent_beamsearch-0.2.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
- divergent_beamsearch-0.2.0.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
6
- divergent_beamsearch-0.2.0.dist-info/RECORD,,