divergent-beamsearch 0.1.8__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -35,12 +35,17 @@ def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
35
35
  return pred[~pred.isinf().all(dim=-1)]
36
36
 
37
37
 
38
- def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, attention_mask : torch.Tensor | None = None, batch_size : int = 32) -> torch.Tensor:
38
+ def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor,
39
+ attention_mask : torch.Tensor | None = None, batch_size : int = 32,
40
+ to_cpu=False) -> torch.Tensor:
39
41
  logits = []
40
42
  if attention_mask is None:
41
43
  attention_mask = torch.ones_like(input_ids)
42
44
  for i in range(0, input_ids.shape[0], batch_size):
43
- logits.append(model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits)
45
+ l = model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits
46
+ if to_cpu:
47
+ l = l.cpu()
48
+ logits.append(l)
44
49
  return torch.cat(logits, dim=0)
45
50
 
46
51
  def select_mask(source : list, mask : list[bool]) -> list:
@@ -91,7 +96,9 @@ def pad_to_same_size(tensors : list[torch.Tensor], padding_value : int) -> torch
91
96
  return torch.cat(padded_tensors, dim=0)
92
97
 
93
98
  @torch.no_grad()
94
- def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None, end_symb=DEFAULT_END_SYMB) -> tuple[torch.Tensor, torch.Tensor]:
99
+ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int,
100
+ max_length : int, parser : Parser, pad_token_id : int, batch_size=32,
101
+ num_solutions = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> tuple[torch.Tensor, torch.Tensor]:
95
102
  assert input_ids.shape[0] == 1, "Batch size must be 1"
96
103
  device = input_ids.device
97
104
  input_ids = input_ids.cpu()
@@ -114,7 +121,7 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
114
121
  for _ in range(max_length):
115
122
  if len(input_ids_unfinished) == 0:
116
123
  break
117
- pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size)[:, -1].cpu()
124
+ pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size, to_cpu=optimize_gpu_mem)[:, -1].cpu()
118
125
  parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished, end_symb)
119
126
  logprobs = torch.log_softmax(pred, dim=-1)
120
127
  logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
@@ -175,19 +182,20 @@ def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Te
175
182
  @torch.no_grad()
176
183
  def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel,
177
184
  parsers : Parser | list[Parser] | None, batch_size=32,
178
- start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB) -> torch.FloatTensor:
185
+ start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> torch.FloatTensor:
179
186
  if start is None:
180
- start = 0
187
+ start = 1
181
188
  if isinstance(start, int):
182
189
  start = torch.tensor([start]*input_ids.shape[0])
183
190
  assert start.shape[0] == input_ids.shape[0]
191
+ assert (start > 0).all()
184
192
  # -1 because next token offset
185
193
  start = start - 1
186
194
 
187
195
  if attention_mask is None:
188
196
  attention_mask = torch.ones_like(input_ids)
189
197
 
190
- logits = batched_inference_logits(model, input_ids, attention_mask, batch_size).cpu()
198
+ logits = batched_inference_logits(model, input_ids, attention_mask, batch_size, to_cpu=optimize_gpu_mem).cpu()
191
199
  input_ids = input_ids.cpu()
192
200
  attention_mask = attention_mask.cpu()
193
201
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: divergent-beamsearch
3
- Version: 0.1.8
3
+ Version: 0.2.0
4
4
  Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
5
5
  License-File: LICENCE
6
6
  Requires-Python: >=3.11
@@ -0,0 +1,6 @@
1
+ divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
2
+ divergent_beamsearch/algorithm.py,sha256=lx27rXddHiyzisINgWI5MuatRLIU2ObnZhtCvojbGJ8,9917
3
+ divergent_beamsearch-0.2.0.dist-info/METADATA,sha256=u4-bH-9qa_yLJPemATIemwIavOCucF7CCv0kyJV6_Qg,2826
4
+ divergent_beamsearch-0.2.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
+ divergent_beamsearch-0.2.0.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
6
+ divergent_beamsearch-0.2.0.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
2
- divergent_beamsearch/algorithm.py,sha256=rywmvaIoo66aksaNdCXOPfqtd8WnCazVqYoxySi6G9s,9610
3
- divergent_beamsearch-0.1.8.dist-info/METADATA,sha256=iZjtT-uUwN1X2EfFzPI5_ermjIMu9Myz3d4H8FWR4nw,2826
4
- divergent_beamsearch-0.1.8.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
- divergent_beamsearch-0.1.8.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
6
- divergent_beamsearch-0.1.8.dist-info/RECORD,,