divergent-beamsearch 0.1.7__py3-none-any.whl → 0.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -35,12 +35,17 @@ def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
35
35
  return pred[~pred.isinf().all(dim=-1)]
36
36
 
37
37
 
38
- def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, attention_mask : torch.Tensor | None = None, batch_size : int = 32) -> torch.Tensor:
38
+ def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor,
39
+ attention_mask : torch.Tensor | None = None, batch_size : int = 32,
40
+ to_cpu=False) -> torch.Tensor:
39
41
  logits = []
40
42
  if attention_mask is None:
41
43
  attention_mask = torch.ones_like(input_ids)
42
44
  for i in range(0, input_ids.shape[0], batch_size):
43
- logits.append(model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits)
45
+ l = model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits
46
+ if to_cpu:
47
+ l = l.cpu()
48
+ logits.append(l)
44
49
  return torch.cat(logits, dim=0)
45
50
 
46
51
  def select_mask(source : list, mask : list[bool]) -> list:
@@ -82,8 +87,18 @@ def index_reduce_lists(x : torch.Tensor, indices : list[list[int]], reduce_func=
82
87
  values.append(reduce_func(x[i, index], dim=-1))
83
88
  return torch.tensor(values, dtype=x.dtype, device=x.device, requires_grad=x.requires_grad)
84
89
 
90
+ def pad_to_same_size(tensors : list[torch.Tensor], padding_value : int) -> torch.Tensor:
91
+ max_size = max(x.shape[-1] for x in tensors)
92
+ padded_tensors = []
93
+ for tensor in tensors:
94
+ pad = torch.full((tensor.shape[0], max_size - tensor.shape[1]), padding_value, dtype=torch.long)
95
+ padded_tensors.append(torch.cat([tensor, pad], dim=-1))
96
+ return torch.cat(padded_tensors, dim=0)
97
+
85
98
  @torch.no_grad()
86
- def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None, end_symb=DEFAULT_END_SYMB) -> tuple[torch.Tensor, torch.Tensor]:
99
+ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int,
100
+ max_length : int, parser : Parser, pad_token_id : int, batch_size=32,
101
+ num_solutions = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> tuple[torch.Tensor, torch.Tensor]:
87
102
  assert input_ids.shape[0] == 1, "Batch size must be 1"
88
103
  device = input_ids.device
89
104
  input_ids = input_ids.cpu()
@@ -106,7 +121,7 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
106
121
  for _ in range(max_length):
107
122
  if len(input_ids_unfinished) == 0:
108
123
  break
109
- pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size)[:, -1].cpu()
124
+ pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size, to_cpu=optimize_gpu_mem)[:, -1].cpu()
110
125
  parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished, end_symb)
111
126
  logprobs = torch.log_softmax(pred, dim=-1)
112
127
  logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
@@ -130,8 +145,11 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
130
145
  scores_finished_current = scores_finished_current + log1mexp(logprob_other_ans)
131
146
  scores_finished = torch.cat([scores_finished, scores_finished_current])
132
147
  if len(solutions_finished_current):
133
- pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
134
- solutions_finished = torch.cat([solutions_finished.view(-1, solutions_finished_current.shape[1]+pad.shape[1]), torch.cat([solutions_finished_current, pad], dim=1)], dim=0)
148
+ if len(solutions_finished):
149
+ solutions_finished = pad_to_same_size([solutions_finished, solutions_finished_current],
150
+ padding_value=pad_token_id)
151
+ else:
152
+ solutions_finished = solutions_finished_current
135
153
  if solutions_finished.numel():
136
154
  # Keep num_solutions best solutions in finished
137
155
  order = scores_finished.argsort(descending=True)
@@ -164,19 +182,20 @@ def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Te
164
182
  @torch.no_grad()
165
183
  def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel,
166
184
  parsers : Parser | list[Parser] | None, batch_size=32,
167
- start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB) -> torch.FloatTensor:
185
+ start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB, optimize_gpu_mem=True) -> torch.FloatTensor:
168
186
  if start is None:
169
- start = 0
187
+ start = 1
170
188
  if isinstance(start, int):
171
189
  start = torch.tensor([start]*input_ids.shape[0])
172
190
  assert start.shape[0] == input_ids.shape[0]
191
+ assert (start > 0).all()
173
192
  # -1 because next token offset
174
193
  start = start - 1
175
194
 
176
195
  if attention_mask is None:
177
196
  attention_mask = torch.ones_like(input_ids)
178
197
 
179
- logits = batched_inference_logits(model, input_ids, attention_mask, batch_size).cpu()
198
+ logits = batched_inference_logits(model, input_ids, attention_mask, batch_size, to_cpu=optimize_gpu_mem).cpu()
180
199
  input_ids = input_ids.cpu()
181
200
  attention_mask = attention_mask.cpu()
182
201
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: divergent-beamsearch
3
- Version: 0.1.7
3
+ Version: 0.2.0
4
4
  Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
5
5
  License-File: LICENCE
6
6
  Requires-Python: >=3.11
@@ -0,0 +1,6 @@
1
+ divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
2
+ divergent_beamsearch/algorithm.py,sha256=lx27rXddHiyzisINgWI5MuatRLIU2ObnZhtCvojbGJ8,9917
3
+ divergent_beamsearch-0.2.0.dist-info/METADATA,sha256=u4-bH-9qa_yLJPemATIemwIavOCucF7CCv0kyJV6_Qg,2826
4
+ divergent_beamsearch-0.2.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
+ divergent_beamsearch-0.2.0.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
6
+ divergent_beamsearch-0.2.0.dist-info/RECORD,,
@@ -1,6 +0,0 @@
1
- divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
2
- divergent_beamsearch/algorithm.py,sha256=TUm2pbFhR0DqfGDm1fqQXqojNCAkFRmuvj4jbFCxwHc,9228
3
- divergent_beamsearch-0.1.7.dist-info/METADATA,sha256=JWuN6f2YjjOXoYxAFzR7vmVYwPyL2HDXI7huY67gAmU,2826
4
- divergent_beamsearch-0.1.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
- divergent_beamsearch-0.1.7.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
6
- divergent_beamsearch-0.1.7.dist-info/RECORD,,