divergent-beamsearch 0.1.5__py3-none-any.whl → 0.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- divergent_beamsearch/algorithm.py +17 -7
- {divergent_beamsearch-0.1.5.dist-info → divergent_beamsearch-0.1.7.dist-info}/METADATA +2 -2
- divergent_beamsearch-0.1.7.dist-info/RECORD +6 -0
- divergent_beamsearch-0.1.5.dist-info/RECORD +0 -6
- {divergent_beamsearch-0.1.5.dist-info → divergent_beamsearch-0.1.7.dist-info}/WHEEL +0 -0
- {divergent_beamsearch-0.1.5.dist-info → divergent_beamsearch-0.1.7.dist-info}/licenses/LICENCE +0 -0
@@ -1,7 +1,7 @@
|
|
1
1
|
import math
|
2
2
|
import torch
|
3
3
|
from transformers import GPT2LMHeadModel
|
4
|
-
from multi_choices_parser import
|
4
|
+
from multi_choices_parser import DEFAULT_END_SYMB
|
5
5
|
|
6
6
|
|
7
7
|
class Parser:
|
@@ -19,10 +19,10 @@ def get_parsers_tokens(parsers : list[Parser], end_symb) -> tuple[list, list[int
|
|
19
19
|
can_end = []
|
20
20
|
for parser in parsers:
|
21
21
|
tokens = list(parser.next())
|
22
|
-
|
23
|
-
can_end.append(True)
|
22
|
+
try:
|
24
23
|
tokens.remove(end_symb)
|
25
|
-
|
24
|
+
can_end.append(True)
|
25
|
+
except ValueError:
|
26
26
|
can_end.append(False)
|
27
27
|
parsers_tokens.append(tokens)
|
28
28
|
return parsers_tokens, can_end
|
@@ -76,8 +76,14 @@ class AcceptEverythingParser(Parser):
|
|
76
76
|
def copy(self):
|
77
77
|
return self
|
78
78
|
|
79
|
+
def index_reduce_lists(x : torch.Tensor, indices : list[list[int]], reduce_func=torch.sum) -> torch.Tensor:
|
80
|
+
values = []
|
81
|
+
for i, index in enumerate(indices):
|
82
|
+
values.append(reduce_func(x[i, index], dim=-1))
|
83
|
+
return torch.tensor(values, dtype=x.dtype, device=x.device, requires_grad=x.requires_grad)
|
84
|
+
|
79
85
|
@torch.no_grad()
|
80
|
-
def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None, end_symb=
|
86
|
+
def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None, end_symb=DEFAULT_END_SYMB) -> tuple[torch.Tensor, torch.Tensor]:
|
81
87
|
assert input_ids.shape[0] == 1, "Batch size must be 1"
|
82
88
|
device = input_ids.device
|
83
89
|
input_ids = input_ids.cpu()
|
@@ -120,7 +126,8 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
|
|
120
126
|
|
121
127
|
scores_finished_current = scores_unfinished[can_end]
|
122
128
|
solutions_finished_current = solutions_unfinished[can_end]
|
123
|
-
|
129
|
+
logprob_other_ans = index_reduce_lists(logprobs[can_end], select_mask(parsers_tokens, can_end), reduce_func=torch.logsumexp).squeeze(-1)
|
130
|
+
scores_finished_current = scores_finished_current + log1mexp(logprob_other_ans)
|
124
131
|
scores_finished = torch.cat([scores_finished, scores_finished_current])
|
125
132
|
if len(solutions_finished_current):
|
126
133
|
pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
|
@@ -140,6 +147,7 @@ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam
|
|
140
147
|
parser.step(token)
|
141
148
|
|
142
149
|
# Special case of vanilla beam search where all answers are valid
|
150
|
+
# Warning : In this case model will not stop on end_of_sentence token
|
143
151
|
if vanilla:
|
144
152
|
order = scores_unfinished.argsort(descending=True)
|
145
153
|
scores_finished = scores_unfinished[order][:num_solutions]
|
@@ -154,7 +162,9 @@ def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Te
|
|
154
162
|
x[i].index_fill_(0, indices[i], 0)
|
155
163
|
|
156
164
|
@torch.no_grad()
|
157
|
-
def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel,
|
165
|
+
def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel,
|
166
|
+
parsers : Parser | list[Parser] | None, batch_size=32,
|
167
|
+
start : int | torch.IntTensor = None, end_symb=DEFAULT_END_SYMB) -> torch.FloatTensor:
|
158
168
|
if start is None:
|
159
169
|
start = 0
|
160
170
|
if isinstance(start, int):
|
@@ -1,10 +1,10 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: divergent-beamsearch
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.7
|
4
4
|
Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
|
5
5
|
License-File: LICENCE
|
6
6
|
Requires-Python: >=3.11
|
7
|
-
Requires-Dist: multi-choices-parser>=0.9.
|
7
|
+
Requires-Dist: multi-choices-parser>=0.9.61
|
8
8
|
Requires-Dist: torch>=2.0.0
|
9
9
|
Requires-Dist: transformers>=4.47.1
|
10
10
|
Description-Content-Type: text/markdown
|
@@ -0,0 +1,6 @@
|
|
1
|
+
divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
|
2
|
+
divergent_beamsearch/algorithm.py,sha256=TUm2pbFhR0DqfGDm1fqQXqojNCAkFRmuvj4jbFCxwHc,9228
|
3
|
+
divergent_beamsearch-0.1.7.dist-info/METADATA,sha256=JWuN6f2YjjOXoYxAFzR7vmVYwPyL2HDXI7huY67gAmU,2826
|
4
|
+
divergent_beamsearch-0.1.7.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
5
|
+
divergent_beamsearch-0.1.7.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
|
6
|
+
divergent_beamsearch-0.1.7.dist-info/RECORD,,
|
@@ -1,6 +0,0 @@
|
|
1
|
-
divergent_beamsearch/__init__.py,sha256=qrpVRoT3d-q1N9fJnzHI2X13e71LDY4-6eLOQ_gwCqQ,62
|
2
|
-
divergent_beamsearch/algorithm.py,sha256=b44kA2_M0HfOSC6LYQmu7W_JnGAl1u9Sz_91jMjvWg0,8688
|
3
|
-
divergent_beamsearch-0.1.5.dist-info/METADATA,sha256=sRitbfgDp8YqLXZzZmZw7Nd1pJWv8T4HJoSqjhO4ztI,2826
|
4
|
-
divergent_beamsearch-0.1.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
5
|
-
divergent_beamsearch-0.1.5.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
|
6
|
-
divergent_beamsearch-0.1.5.dist-info/RECORD,,
|
File without changes
|
{divergent_beamsearch-0.1.5.dist-info → divergent_beamsearch-0.1.7.dist-info}/licenses/LICENCE
RENAMED
File without changes
|