divergent-beamsearch 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,132 +1,205 @@
1
- import math
2
- import torch
3
- from transformers import GPT2LMHeadModel
4
- from multi_choices_parser import MultiChoicesParser, end_symb
5
-
6
-
7
- def get_parsers_tokens(parsers : list[MultiChoicesParser]) -> tuple[list, list[int]]:
8
- parsers_tokens = []
9
- can_end = []
10
- for parser in parsers:
11
- tokens = list(parser.next())
12
- if end_symb in tokens:
13
- can_end.append(True)
14
- tokens.remove(end_symb)
15
- else:
16
- can_end.append(False)
17
- parsers_tokens.append(tokens)
18
- return parsers_tokens, can_end
19
-
20
- def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
21
- mask = torch.ones_like(pred, dtype=torch.bool)
22
- for tokens in parsers_tokens:
23
- mask[:, tokens] = False
24
- pred[mask] = -float('inf')
25
- return pred[~pred.isinf().all(dim=-1)]
26
-
27
-
28
- def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, batch_size : int = 32) -> torch.Tensor:
29
- logits = []
30
- for i in range(0, input_ids.shape[0], batch_size):
31
- logits.append(model(input_ids[i:i+batch_size]).logits)
32
- return torch.cat(logits, dim=0)
33
-
34
- def select_mask(source : list, mask : list[bool]) -> list:
35
- assert len(source) == len(mask)
36
- return [x for x, m in zip(source, mask) if m]
37
-
38
-
39
- def log1mexp(x: torch.Tensor) -> torch.Tensor:
40
- """Numerically accurate evaluation of log(1 - exp(x)) for x < 0.
41
- See [Maechler2012accurate]_ for details.
42
- """
43
- mask = -math.log(2) < x # x < 0
44
- return torch.where(
45
- mask,
46
- (-x.expm1()).log(),
47
- (-x.exp()).log1p(),
48
- )
49
-
50
- class AcceptEverythingParser:
51
- def __init__(self, vocab_size : int):
52
- self.vocab_size = vocab_size
53
- self.tokens = tuple(range(vocab_size))
54
-
55
- def step(self, token):
56
- pass
57
-
58
- def next(self):
59
- return self.tokens
60
-
61
- def copy(self):
62
- return self
63
-
64
- @torch.no_grad()
65
- def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, multi_choices_parser : MultiChoicesParser, pad_token_id : int, batch_size=32, num_solutions = None) -> tuple[torch.Tensor, torch.Tensor]:
66
- assert input_ids.shape[0] == 1, "Batch size must be 1"
67
-
68
- if num_solutions is None:
69
- num_solutions = beam_size
70
- vanilla = multi_choices_parser is None
71
- if vanilla:
72
- multi_choices_parser = AcceptEverythingParser(model.config.vocab_size)
73
-
74
- parsers_unfinished = [multi_choices_parser]
75
- scores_finished = torch.tensor([], dtype=torch.float)
76
- solutions_finished = torch.tensor([], dtype=torch.long).view(0,0)
77
-
78
- input_ids_unfinished = input_ids
79
- scores_unfinished = torch.tensor([0.0], dtype=torch.float)
80
- solutions_unfinished = torch.tensor([], dtype=torch.long).view(1,0)
81
-
82
-
83
- for _ in range(max_length):
84
- if len(input_ids_unfinished) == 0:
85
- break
86
- pred = batched_inference_logits(model, input_ids_unfinished, batch_size)[:, -1].cpu()
87
- parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished)
88
- # input_ids_unfinished = input_ids_unfinished[~torch.tensor(can_only_end)]
89
- logprobs = torch.log_softmax(pred, dim=-1)
90
- logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
91
- if len(logprobs_filtered):
92
- topk = torch.topk(logprobs_filtered, beam_size, dim=-1) # shape (batch_size, beam_size)
93
- values = topk.values + scores_unfinished.unsqueeze(-1)
94
- topk_global = values.flatten().topk(beam_size)
95
- best_tokens_row = topk_global.indices // beam_size
96
- best_tokens, best_tokens_logprobs = topk.indices[best_tokens_row, topk_global.indices % beam_size], topk.values[best_tokens_row, topk_global.indices % beam_size]
97
- notinf = ~best_tokens_logprobs.isinf()
98
- best_tokens, best_tokens_row, best_tokens_logprobs = best_tokens[notinf], best_tokens_row[notinf], best_tokens_logprobs[notinf]
99
- else:
100
- best_tokens = torch.tensor([], dtype=torch.long)
101
- best_tokens_row = torch.tensor([], dtype=torch.long)
102
- best_tokens_logprobs = torch.tensor([], dtype=torch.float)
103
-
104
-
105
- scores_finished_current = scores_unfinished[can_end]
106
- solutions_finished_current = solutions_unfinished[can_end]
107
- scores_finished_current = scores_finished_current + log1mexp(logprobs[can_end, select_mask(parsers_tokens, can_end)].logsumexp(dim=-1)).squeeze(-1)
108
- scores_finished = torch.cat([scores_finished, scores_finished_current])
109
- if len(solutions_finished_current):
110
- pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
111
- solutions_finished = torch.cat([solutions_finished.view(-1, solutions_finished_current.shape[1]+pad.shape[1]), torch.cat([solutions_finished_current, pad], dim=1)], dim=0)
112
- if solutions_finished.numel():
113
- # Keep num_solutions best solutions in finished
114
- order = scores_finished.argsort(descending=True)
115
- solutions_finished = solutions_finished[order][:num_solutions]
116
- scores_finished = scores_finished[order][:num_solutions]
117
-
118
-
119
- input_ids_unfinished = torch.cat([input_ids_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
120
- scores_unfinished = scores_unfinished[best_tokens_row] + best_tokens_logprobs
121
- solutions_unfinished = torch.cat([solutions_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
122
- parsers_unfinished = [parsers_unfinished[row].copy() for row in best_tokens_row]
123
- for parser, token in zip(parsers_unfinished, best_tokens.tolist()):
124
- parser.step(token)
125
-
126
- # Special case of vanilla beam search where all answers are valid
127
- if vanilla:
128
- order = scores_unfinished.argsort(descending=True)
129
- scores_finished = scores_unfinished[order][:num_solutions]
130
- solutions_finished = solutions_unfinished[order][:num_solutions]
131
-
132
- return scores_finished, solutions_finished
1
+ import math
2
+ import torch
3
+ from transformers import GPT2LMHeadModel
4
+ from multi_choices_parser import MultiChoicesParser, end_symb
5
+
6
+
7
+ class Parser:
8
+ def step(self, token):
9
+ raise NotImplementedError
10
+
11
+ def next(self):
12
+ raise NotImplementedError
13
+
14
+ def copy(self):
15
+ raise NotImplementedError
16
+
17
+ def get_parsers_tokens(parsers : list[Parser]) -> tuple[list, list[int]]:
18
+ parsers_tokens = []
19
+ can_end = []
20
+ for parser in parsers:
21
+ tokens = list(parser.next())
22
+ if end_symb in tokens:
23
+ can_end.append(True)
24
+ tokens.remove(end_symb)
25
+ else:
26
+ can_end.append(False)
27
+ parsers_tokens.append(tokens)
28
+ return parsers_tokens, can_end
29
+
30
+ def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
31
+ mask = torch.ones_like(pred, dtype=torch.bool)
32
+ for tokens in parsers_tokens:
33
+ mask[:, tokens] = False
34
+ pred[mask] = -float('inf')
35
+ return pred[~pred.isinf().all(dim=-1)]
36
+
37
+
38
+ def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, attention_mask : torch.Tensor | None = None, batch_size : int = 32) -> torch.Tensor:
39
+ logits = []
40
+ if attention_mask is None:
41
+ attention_mask = torch.ones_like(input_ids)
42
+ for i in range(0, input_ids.shape[0], batch_size):
43
+ logits.append(model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits)
44
+ return torch.cat(logits, dim=0)
45
+
46
+ def select_mask(source : list, mask : list[bool]) -> list:
47
+ assert len(source) == len(mask)
48
+ return [x for x, m in zip(source, mask) if m]
49
+
50
+
51
+ def log1mexp(x: torch.Tensor) -> torch.Tensor:
52
+ """Numerically accurate evaluation of log(1 - exp(x)) for x < 0.
53
+ See [Maechler2012accurate]_ for details.
54
+ """
55
+ mask = -math.log(2) < x # x < 0
56
+ return torch.where(
57
+ mask,
58
+ (-x.expm1()).log(),
59
+ (-x.exp()).log1p(),
60
+ )
61
+
62
+
63
+
64
+
65
+ class AcceptEverythingParser(Parser):
66
+ def __init__(self, vocab_size : int):
67
+ self.vocab_size = vocab_size
68
+ self.tokens = tuple(range(vocab_size))
69
+
70
+ def step(self, token):
71
+ pass
72
+
73
+ def next(self):
74
+ return self.tokens
75
+
76
+ def copy(self):
77
+ return self
78
+
79
+ @torch.no_grad()
80
+ def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None) -> tuple[torch.Tensor, torch.Tensor]:
81
+ assert input_ids.shape[0] == 1, "Batch size must be 1"
82
+ device = input_ids.device
83
+ input_ids = input_ids.cpu()
84
+
85
+ if num_solutions is None:
86
+ num_solutions = beam_size
87
+ vanilla = parser is None
88
+ if vanilla:
89
+ parser = AcceptEverythingParser(model.config.vocab_size)
90
+
91
+ parsers_unfinished = [parser]
92
+ scores_finished = torch.tensor([], dtype=torch.float)
93
+ solutions_finished = torch.tensor([], dtype=torch.long).view(0,0)
94
+
95
+ input_ids_unfinished = input_ids
96
+ scores_unfinished = torch.tensor([0.0], dtype=torch.float)
97
+ solutions_unfinished = torch.tensor([], dtype=torch.long).view(1,0)
98
+
99
+
100
+ for _ in range(max_length):
101
+ if len(input_ids_unfinished) == 0:
102
+ break
103
+ pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size)[:, -1].cpu()
104
+ parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished)
105
+ logprobs = torch.log_softmax(pred, dim=-1)
106
+ logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
107
+ if len(logprobs_filtered):
108
+ topk = torch.topk(logprobs_filtered, beam_size, dim=-1) # shape (batch_size, beam_size)
109
+ values = topk.values + scores_unfinished.unsqueeze(-1)
110
+ topk_global = values.flatten().topk(beam_size)
111
+ best_tokens_row = topk_global.indices // beam_size
112
+ best_tokens, best_tokens_logprobs = topk.indices[best_tokens_row, topk_global.indices % beam_size], topk.values[best_tokens_row, topk_global.indices % beam_size]
113
+ notinf = ~best_tokens_logprobs.isinf()
114
+ best_tokens, best_tokens_row, best_tokens_logprobs = best_tokens[notinf], best_tokens_row[notinf], best_tokens_logprobs[notinf]
115
+ else:
116
+ best_tokens = torch.tensor([], dtype=torch.long)
117
+ best_tokens_row = torch.tensor([], dtype=torch.long)
118
+ best_tokens_logprobs = torch.tensor([], dtype=torch.float)
119
+
120
+
121
+ scores_finished_current = scores_unfinished[can_end]
122
+ solutions_finished_current = solutions_unfinished[can_end]
123
+ scores_finished_current = scores_finished_current + log1mexp(logprobs[can_end, select_mask(parsers_tokens, can_end)].logsumexp(dim=-1)).squeeze(-1)
124
+ scores_finished = torch.cat([scores_finished, scores_finished_current])
125
+ if len(solutions_finished_current):
126
+ pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
127
+ solutions_finished = torch.cat([solutions_finished.view(-1, solutions_finished_current.shape[1]+pad.shape[1]), torch.cat([solutions_finished_current, pad], dim=1)], dim=0)
128
+ if solutions_finished.numel():
129
+ # Keep num_solutions best solutions in finished
130
+ order = scores_finished.argsort(descending=True)
131
+ solutions_finished = solutions_finished[order][:num_solutions]
132
+ scores_finished = scores_finished[order][:num_solutions]
133
+
134
+
135
+ input_ids_unfinished = torch.cat([input_ids_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
136
+ scores_unfinished = scores_unfinished[best_tokens_row] + best_tokens_logprobs
137
+ solutions_unfinished = torch.cat([solutions_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
138
+ parsers_unfinished = [parsers_unfinished[row].copy() for row in best_tokens_row]
139
+ for parser, token in zip(parsers_unfinished, best_tokens.tolist()):
140
+ parser.step(token)
141
+
142
+ # Special case of vanilla beam search where all answers are valid
143
+ if vanilla:
144
+ order = scores_unfinished.argsort(descending=True)
145
+ scores_finished = scores_unfinished[order][:num_solutions]
146
+ solutions_finished = solutions_unfinished[order][:num_solutions]
147
+
148
+ return scores_finished, solutions_finished
149
+
150
+
151
+ def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Tensor:
152
+ indices = [torch.arange(start, end) for start, end in slices]
153
+ for i in range(slices.size(0)):
154
+ x[i].index_fill_(0, indices[i], 0)
155
+
156
+ @torch.no_grad()
157
+ def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel, parsers : Parser | list[Parser] | None, batch_size=32, start : int | torch.IntTensor = None) -> torch.FloatTensor:
158
+ if start is None:
159
+ start = 0
160
+ if isinstance(start, int):
161
+ start = torch.tensor([start]*input_ids.shape[0])
162
+ assert start.shape[0] == input_ids.shape[0]
163
+ # -1 because next token offset
164
+ start = start - 1
165
+
166
+ if attention_mask is None:
167
+ attention_mask = torch.ones_like(input_ids)
168
+
169
+ logits = batched_inference_logits(model, input_ids, attention_mask, batch_size).cpu()
170
+ input_ids = input_ids.cpu()
171
+ attention_mask = attention_mask.cpu()
172
+
173
+ logsoftmax = torch.log_softmax(logits, dim=-1)
174
+ log_probs = torch.gather(
175
+ logsoftmax[:, :-1, :], 2, input_ids[:, 1:, None]
176
+ ).squeeze(-1)
177
+ mask = attention_mask[:, 1:].cpu().clone()
178
+
179
+ input_len = attention_mask.sum(-1)
180
+ pos = torch.stack([torch.zeros_like(start), start], dim=-1)
181
+ pos_anti = pos.flip(1)
182
+ pos_anti[:, -1] = input_len
183
+ set_slice_row(mask, pos, 0)
184
+ vanilla_prob = (log_probs * mask).sum(-1)
185
+ if parsers is None:
186
+ parsers = AcceptEverythingParser(model.config.vocab_size)
187
+ if not isinstance(parsers, (tuple, list)):
188
+ parsers = [parsers.copy() for _ in range(len(input_ids))]
189
+ next_possible_tokens = []
190
+ for i, parser in enumerate(parsers):
191
+ # +1 because no next-token offset
192
+ start = pos_anti[i,0]+1
193
+ for input_id, att in zip(input_ids[i, start:].tolist(), attention_mask[i, start:].tolist()):
194
+ if not att:
195
+ break
196
+ parser.step(input_id)
197
+ next_tokens = list(parser.next())
198
+ try:
199
+ next_tokens.remove(end_symb)
200
+ except ValueError:
201
+ pass
202
+ next_possible_tokens.append(next_tokens)
203
+ last_token_log_probs = torch.stack([log1mexp(logsoftmax[i, input_len[i]-1, tokens].logsumexp(-1)).squeeze() for i, tokens in enumerate(next_possible_tokens)])
204
+ prob = vanilla_prob + last_token_log_probs
205
+ return prob
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: divergent-beamsearch
3
- Version: 0.1.1
3
+ Version: 0.1.3
4
4
  Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
5
5
  License-File: LICENCE
6
6
  Requires-Python: >=3.11
7
7
  Requires-Dist: multi-choices-parser>=0.9.57
8
- Requires-Dist: torch>=2.5.1
8
+ Requires-Dist: torch>=2.0.0
9
9
  Requires-Dist: transformers>=4.47.1
10
10
  Description-Content-Type: text/markdown
11
11
 
@@ -0,0 +1,6 @@
1
+ divergent_beamsearch/__init__.py,sha256=Z2R1pkj4EEHMKWVZX0upeE_Jtfb6joxgYHuRNxWc8Zo,43
2
+ divergent_beamsearch/algorithm.py,sha256=d0xU4OWiCEa5icdXZHoV1P-eKYftYMHhfBZMEVNkRXQ,8649
3
+ divergent_beamsearch-0.1.3.dist-info/METADATA,sha256=waQn6dvg12V9753CcIQlOR_jcOvfbwAJa24FvR5awy0,2826
4
+ divergent_beamsearch-0.1.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
+ divergent_beamsearch-0.1.3.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
6
+ divergent_beamsearch-0.1.3.dist-info/RECORD,,
@@ -1,21 +1,21 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 Hichem Ammar Khodja
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Hichem Ammar Khodja
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
21
  SOFTWARE.
@@ -1,6 +0,0 @@
1
- divergent_beamsearch/__init__.py,sha256=Z2R1pkj4EEHMKWVZX0upeE_Jtfb6joxgYHuRNxWc8Zo,43
2
- divergent_beamsearch/algorithm.py,sha256=0NvVocEHVlIAXnfKhiUW6PEbG_L7uBgE7NGJtaoJ-Rw,6136
3
- divergent_beamsearch-0.1.1.dist-info/METADATA,sha256=dFlRtT8pvNDcUDZaac59zsLAWHB5M5maMkPO-DKFDGI,2826
4
- divergent_beamsearch-0.1.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
- divergent_beamsearch-0.1.1.dist-info/licenses/LICENCE,sha256=jDQOOFKJxgrQwcEyipwKcKzj5IX_paD_41c3iOjH3qw,1095
6
- divergent_beamsearch-0.1.1.dist-info/RECORD,,