divergent-beamsearch 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- divergent_beamsearch/algorithm.py +205 -132
- {divergent_beamsearch-0.1.1.dist-info → divergent_beamsearch-0.1.3.dist-info}/METADATA +2 -2
- divergent_beamsearch-0.1.3.dist-info/RECORD +6 -0
- {divergent_beamsearch-0.1.1.dist-info → divergent_beamsearch-0.1.3.dist-info}/licenses/LICENCE +20 -20
- divergent_beamsearch-0.1.1.dist-info/RECORD +0 -6
- {divergent_beamsearch-0.1.1.dist-info → divergent_beamsearch-0.1.3.dist-info}/WHEEL +0 -0
@@ -1,132 +1,205 @@
|
|
1
|
-
import math
|
2
|
-
import torch
|
3
|
-
from transformers import GPT2LMHeadModel
|
4
|
-
from multi_choices_parser import MultiChoicesParser, end_symb
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
return torch.
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
)
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
1
|
+
import math
|
2
|
+
import torch
|
3
|
+
from transformers import GPT2LMHeadModel
|
4
|
+
from multi_choices_parser import MultiChoicesParser, end_symb
|
5
|
+
|
6
|
+
|
7
|
+
class Parser:
|
8
|
+
def step(self, token):
|
9
|
+
raise NotImplementedError
|
10
|
+
|
11
|
+
def next(self):
|
12
|
+
raise NotImplementedError
|
13
|
+
|
14
|
+
def copy(self):
|
15
|
+
raise NotImplementedError
|
16
|
+
|
17
|
+
def get_parsers_tokens(parsers : list[Parser]) -> tuple[list, list[int]]:
|
18
|
+
parsers_tokens = []
|
19
|
+
can_end = []
|
20
|
+
for parser in parsers:
|
21
|
+
tokens = list(parser.next())
|
22
|
+
if end_symb in tokens:
|
23
|
+
can_end.append(True)
|
24
|
+
tokens.remove(end_symb)
|
25
|
+
else:
|
26
|
+
can_end.append(False)
|
27
|
+
parsers_tokens.append(tokens)
|
28
|
+
return parsers_tokens, can_end
|
29
|
+
|
30
|
+
def apply_mask_tokens(pred : torch.Tensor, parsers_tokens):
|
31
|
+
mask = torch.ones_like(pred, dtype=torch.bool)
|
32
|
+
for tokens in parsers_tokens:
|
33
|
+
mask[:, tokens] = False
|
34
|
+
pred[mask] = -float('inf')
|
35
|
+
return pred[~pred.isinf().all(dim=-1)]
|
36
|
+
|
37
|
+
|
38
|
+
def batched_inference_logits(model : GPT2LMHeadModel, input_ids : torch.Tensor, attention_mask : torch.Tensor | None = None, batch_size : int = 32) -> torch.Tensor:
|
39
|
+
logits = []
|
40
|
+
if attention_mask is None:
|
41
|
+
attention_mask = torch.ones_like(input_ids)
|
42
|
+
for i in range(0, input_ids.shape[0], batch_size):
|
43
|
+
logits.append(model(input_ids[i:i+batch_size], attention_mask=attention_mask[i:i+batch_size]).logits)
|
44
|
+
return torch.cat(logits, dim=0)
|
45
|
+
|
46
|
+
def select_mask(source : list, mask : list[bool]) -> list:
|
47
|
+
assert len(source) == len(mask)
|
48
|
+
return [x for x, m in zip(source, mask) if m]
|
49
|
+
|
50
|
+
|
51
|
+
def log1mexp(x: torch.Tensor) -> torch.Tensor:
|
52
|
+
"""Numerically accurate evaluation of log(1 - exp(x)) for x < 0.
|
53
|
+
See [Maechler2012accurate]_ for details.
|
54
|
+
"""
|
55
|
+
mask = -math.log(2) < x # x < 0
|
56
|
+
return torch.where(
|
57
|
+
mask,
|
58
|
+
(-x.expm1()).log(),
|
59
|
+
(-x.exp()).log1p(),
|
60
|
+
)
|
61
|
+
|
62
|
+
|
63
|
+
|
64
|
+
|
65
|
+
class AcceptEverythingParser(Parser):
|
66
|
+
def __init__(self, vocab_size : int):
|
67
|
+
self.vocab_size = vocab_size
|
68
|
+
self.tokens = tuple(range(vocab_size))
|
69
|
+
|
70
|
+
def step(self, token):
|
71
|
+
pass
|
72
|
+
|
73
|
+
def next(self):
|
74
|
+
return self.tokens
|
75
|
+
|
76
|
+
def copy(self):
|
77
|
+
return self
|
78
|
+
|
79
|
+
@torch.no_grad()
|
80
|
+
def divergent_beamsearch(input_ids : torch.Tensor, model : GPT2LMHeadModel, beam_size : int, max_length : int, parser : Parser, pad_token_id : int, batch_size=32, num_solutions = None) -> tuple[torch.Tensor, torch.Tensor]:
|
81
|
+
assert input_ids.shape[0] == 1, "Batch size must be 1"
|
82
|
+
device = input_ids.device
|
83
|
+
input_ids = input_ids.cpu()
|
84
|
+
|
85
|
+
if num_solutions is None:
|
86
|
+
num_solutions = beam_size
|
87
|
+
vanilla = parser is None
|
88
|
+
if vanilla:
|
89
|
+
parser = AcceptEverythingParser(model.config.vocab_size)
|
90
|
+
|
91
|
+
parsers_unfinished = [parser]
|
92
|
+
scores_finished = torch.tensor([], dtype=torch.float)
|
93
|
+
solutions_finished = torch.tensor([], dtype=torch.long).view(0,0)
|
94
|
+
|
95
|
+
input_ids_unfinished = input_ids
|
96
|
+
scores_unfinished = torch.tensor([0.0], dtype=torch.float)
|
97
|
+
solutions_unfinished = torch.tensor([], dtype=torch.long).view(1,0)
|
98
|
+
|
99
|
+
|
100
|
+
for _ in range(max_length):
|
101
|
+
if len(input_ids_unfinished) == 0:
|
102
|
+
break
|
103
|
+
pred = batched_inference_logits(model, input_ids_unfinished.to(device), batch_size=batch_size)[:, -1].cpu()
|
104
|
+
parsers_tokens, can_end = get_parsers_tokens(parsers_unfinished)
|
105
|
+
logprobs = torch.log_softmax(pred, dim=-1)
|
106
|
+
logprobs_filtered = apply_mask_tokens(logprobs, parsers_tokens)
|
107
|
+
if len(logprobs_filtered):
|
108
|
+
topk = torch.topk(logprobs_filtered, beam_size, dim=-1) # shape (batch_size, beam_size)
|
109
|
+
values = topk.values + scores_unfinished.unsqueeze(-1)
|
110
|
+
topk_global = values.flatten().topk(beam_size)
|
111
|
+
best_tokens_row = topk_global.indices // beam_size
|
112
|
+
best_tokens, best_tokens_logprobs = topk.indices[best_tokens_row, topk_global.indices % beam_size], topk.values[best_tokens_row, topk_global.indices % beam_size]
|
113
|
+
notinf = ~best_tokens_logprobs.isinf()
|
114
|
+
best_tokens, best_tokens_row, best_tokens_logprobs = best_tokens[notinf], best_tokens_row[notinf], best_tokens_logprobs[notinf]
|
115
|
+
else:
|
116
|
+
best_tokens = torch.tensor([], dtype=torch.long)
|
117
|
+
best_tokens_row = torch.tensor([], dtype=torch.long)
|
118
|
+
best_tokens_logprobs = torch.tensor([], dtype=torch.float)
|
119
|
+
|
120
|
+
|
121
|
+
scores_finished_current = scores_unfinished[can_end]
|
122
|
+
solutions_finished_current = solutions_unfinished[can_end]
|
123
|
+
scores_finished_current = scores_finished_current + log1mexp(logprobs[can_end, select_mask(parsers_tokens, can_end)].logsumexp(dim=-1)).squeeze(-1)
|
124
|
+
scores_finished = torch.cat([scores_finished, scores_finished_current])
|
125
|
+
if len(solutions_finished_current):
|
126
|
+
pad = torch.full((len(scores_finished_current), solutions_finished_current.shape[1] - solutions_finished.shape[1]), pad_token_id, dtype=torch.long)
|
127
|
+
solutions_finished = torch.cat([solutions_finished.view(-1, solutions_finished_current.shape[1]+pad.shape[1]), torch.cat([solutions_finished_current, pad], dim=1)], dim=0)
|
128
|
+
if solutions_finished.numel():
|
129
|
+
# Keep num_solutions best solutions in finished
|
130
|
+
order = scores_finished.argsort(descending=True)
|
131
|
+
solutions_finished = solutions_finished[order][:num_solutions]
|
132
|
+
scores_finished = scores_finished[order][:num_solutions]
|
133
|
+
|
134
|
+
|
135
|
+
input_ids_unfinished = torch.cat([input_ids_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
|
136
|
+
scores_unfinished = scores_unfinished[best_tokens_row] + best_tokens_logprobs
|
137
|
+
solutions_unfinished = torch.cat([solutions_unfinished[best_tokens_row], best_tokens.unsqueeze(-1)], dim=-1)
|
138
|
+
parsers_unfinished = [parsers_unfinished[row].copy() for row in best_tokens_row]
|
139
|
+
for parser, token in zip(parsers_unfinished, best_tokens.tolist()):
|
140
|
+
parser.step(token)
|
141
|
+
|
142
|
+
# Special case of vanilla beam search where all answers are valid
|
143
|
+
if vanilla:
|
144
|
+
order = scores_unfinished.argsort(descending=True)
|
145
|
+
scores_finished = scores_unfinished[order][:num_solutions]
|
146
|
+
solutions_finished = solutions_unfinished[order][:num_solutions]
|
147
|
+
|
148
|
+
return scores_finished, solutions_finished
|
149
|
+
|
150
|
+
|
151
|
+
def set_slice_row(x : torch.Tensor, slices : torch.IntTensor, value) -> torch.Tensor:
|
152
|
+
indices = [torch.arange(start, end) for start, end in slices]
|
153
|
+
for i in range(slices.size(0)):
|
154
|
+
x[i].index_fill_(0, indices[i], 0)
|
155
|
+
|
156
|
+
@torch.no_grad()
|
157
|
+
def divergent_logprob(input_ids : torch.Tensor, attention_mask : torch.Tensor | None, model : GPT2LMHeadModel, parsers : Parser | list[Parser] | None, batch_size=32, start : int | torch.IntTensor = None) -> torch.FloatTensor:
|
158
|
+
if start is None:
|
159
|
+
start = 0
|
160
|
+
if isinstance(start, int):
|
161
|
+
start = torch.tensor([start]*input_ids.shape[0])
|
162
|
+
assert start.shape[0] == input_ids.shape[0]
|
163
|
+
# -1 because next token offset
|
164
|
+
start = start - 1
|
165
|
+
|
166
|
+
if attention_mask is None:
|
167
|
+
attention_mask = torch.ones_like(input_ids)
|
168
|
+
|
169
|
+
logits = batched_inference_logits(model, input_ids, attention_mask, batch_size).cpu()
|
170
|
+
input_ids = input_ids.cpu()
|
171
|
+
attention_mask = attention_mask.cpu()
|
172
|
+
|
173
|
+
logsoftmax = torch.log_softmax(logits, dim=-1)
|
174
|
+
log_probs = torch.gather(
|
175
|
+
logsoftmax[:, :-1, :], 2, input_ids[:, 1:, None]
|
176
|
+
).squeeze(-1)
|
177
|
+
mask = attention_mask[:, 1:].cpu().clone()
|
178
|
+
|
179
|
+
input_len = attention_mask.sum(-1)
|
180
|
+
pos = torch.stack([torch.zeros_like(start), start], dim=-1)
|
181
|
+
pos_anti = pos.flip(1)
|
182
|
+
pos_anti[:, -1] = input_len
|
183
|
+
set_slice_row(mask, pos, 0)
|
184
|
+
vanilla_prob = (log_probs * mask).sum(-1)
|
185
|
+
if parsers is None:
|
186
|
+
parsers = AcceptEverythingParser(model.config.vocab_size)
|
187
|
+
if not isinstance(parsers, (tuple, list)):
|
188
|
+
parsers = [parsers.copy() for _ in range(len(input_ids))]
|
189
|
+
next_possible_tokens = []
|
190
|
+
for i, parser in enumerate(parsers):
|
191
|
+
# +1 because no next-token offset
|
192
|
+
start = pos_anti[i,0]+1
|
193
|
+
for input_id, att in zip(input_ids[i, start:].tolist(), attention_mask[i, start:].tolist()):
|
194
|
+
if not att:
|
195
|
+
break
|
196
|
+
parser.step(input_id)
|
197
|
+
next_tokens = list(parser.next())
|
198
|
+
try:
|
199
|
+
next_tokens.remove(end_symb)
|
200
|
+
except ValueError:
|
201
|
+
pass
|
202
|
+
next_possible_tokens.append(next_tokens)
|
203
|
+
last_token_log_probs = torch.stack([log1mexp(logsoftmax[i, input_len[i]-1, tokens].logsumexp(-1)).squeeze() for i, tokens in enumerate(next_possible_tokens)])
|
204
|
+
prob = vanilla_prob + last_token_log_probs
|
205
|
+
return prob
|
@@ -1,11 +1,11 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: divergent-beamsearch
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.3
|
4
4
|
Summary: A variant of the beam search algorithm that focuses on finding answers that maximize the probability of generating an answer before diverging into another subject.
|
5
5
|
License-File: LICENCE
|
6
6
|
Requires-Python: >=3.11
|
7
7
|
Requires-Dist: multi-choices-parser>=0.9.57
|
8
|
-
Requires-Dist: torch>=2.
|
8
|
+
Requires-Dist: torch>=2.0.0
|
9
9
|
Requires-Dist: transformers>=4.47.1
|
10
10
|
Description-Content-Type: text/markdown
|
11
11
|
|
@@ -0,0 +1,6 @@
|
|
1
|
+
divergent_beamsearch/__init__.py,sha256=Z2R1pkj4EEHMKWVZX0upeE_Jtfb6joxgYHuRNxWc8Zo,43
|
2
|
+
divergent_beamsearch/algorithm.py,sha256=d0xU4OWiCEa5icdXZHoV1P-eKYftYMHhfBZMEVNkRXQ,8649
|
3
|
+
divergent_beamsearch-0.1.3.dist-info/METADATA,sha256=waQn6dvg12V9753CcIQlOR_jcOvfbwAJa24FvR5awy0,2826
|
4
|
+
divergent_beamsearch-0.1.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
5
|
+
divergent_beamsearch-0.1.3.dist-info/licenses/LICENCE,sha256=gnISbTzmuQC7NwJaGOdjoq26QYgSuKndq5q2JykifKw,1075
|
6
|
+
divergent_beamsearch-0.1.3.dist-info/RECORD,,
|
{divergent_beamsearch-0.1.1.dist-info → divergent_beamsearch-0.1.3.dist-info}/licenses/LICENCE
RENAMED
@@ -1,21 +1,21 @@
|
|
1
|
-
MIT License
|
2
|
-
|
3
|
-
Copyright (c) 2025 Hichem Ammar Khodja
|
4
|
-
|
5
|
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
-
of this software and associated documentation files (the "Software"), to deal
|
7
|
-
in the Software without restriction, including without limitation the rights
|
8
|
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
-
copies of the Software, and to permit persons to whom the Software is
|
10
|
-
furnished to do so, subject to the following conditions:
|
11
|
-
|
12
|
-
The above copyright notice and this permission notice shall be included in all
|
13
|
-
copies or substantial portions of the Software.
|
14
|
-
|
15
|
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2025 Hichem Ammar Khodja
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
21
|
SOFTWARE.
|
@@ -1,6 +0,0 @@
|
|
1
|
-
divergent_beamsearch/__init__.py,sha256=Z2R1pkj4EEHMKWVZX0upeE_Jtfb6joxgYHuRNxWc8Zo,43
|
2
|
-
divergent_beamsearch/algorithm.py,sha256=0NvVocEHVlIAXnfKhiUW6PEbG_L7uBgE7NGJtaoJ-Rw,6136
|
3
|
-
divergent_beamsearch-0.1.1.dist-info/METADATA,sha256=dFlRtT8pvNDcUDZaac59zsLAWHB5M5maMkPO-DKFDGI,2826
|
4
|
-
divergent_beamsearch-0.1.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
5
|
-
divergent_beamsearch-0.1.1.dist-info/licenses/LICENCE,sha256=jDQOOFKJxgrQwcEyipwKcKzj5IX_paD_41c3iOjH3qw,1095
|
6
|
-
divergent_beamsearch-0.1.1.dist-info/RECORD,,
|
File without changes
|