distclassipy 0.2.0a0__py3-none-any.whl → 0.2.2a1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,9 +1,9 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: distclassipy
3
- Version: 0.2.0a0
3
+ Version: 0.2.2a1
4
4
  Summary: A python package for a distance-based classifier which can use several different distance metrics.
5
5
  Author-email: Siddharth Chaini <sidchaini@gmail.com>
6
- License: GNU GENERAL PUBLIC LICENSE
6
+ License: GNU GENERAL PUBLIC LICENSE
7
7
  Version 3, 29 June 2007
8
8
 
9
9
  Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
@@ -697,6 +697,7 @@ Requires-Dist: joblib>=1.3.2
697
697
  Requires-Dist: numpy>=1.25.2
698
698
  Requires-Dist: pandas>=2.0.3
699
699
  Requires-Dist: scikit-learn>=1.2.2
700
+ Dynamic: license-file
700
701
 
701
702
  <h1 align="center">
702
703
  <picture align="center">
@@ -740,17 +741,25 @@ X, y = make_classification(
740
741
  random_state=0,
741
742
  shuffle=False,
742
743
  )
744
+ # Example usage of DistanceMetricClassifier
743
745
  clf = dcpy.DistanceMetricClassifier()
744
746
  clf.fit(X, y)
745
- print(clf.predict([[0, 0, 0, 0]]), metric="canberra")
747
+ print(clf.predict([[0, 0, 0, 0]], metric="canberra"))
748
+
749
+ # Example usage of EnsembleDistanceClassifier
750
+ ensemble_clf = dcpy.EnsembleDistanceClassifier(feat_idx=0)
751
+ ensemble_clf.fit(X, y)
752
+ print(ensemble_clf.predict(X))
746
753
  ```
747
754
 
748
755
  ## Features
749
756
  - **Distance Metric-Based Classification**: Utilizes a variety of distance metrics for classification.
750
757
  - **Customizable for Scientific Goals**: Allows fine-tuning based on scientific objectives by selecting appropriate distance metrics and features, enhancing both computational efficiency and model performance.
751
758
  - **Interpretable Results**: Offers improved interpretability of classification outcomes by directly using distance metrics and feature importance, making it ideal for scientific applications.
752
- - **Efficient and Scalable**: Demonstrates lower computational requirements compared to traditional methods like Random Forests, making it suitable for large datasets
753
- - **Open Source and Accessible**: Available as an open-source Python package on PyPI, encouraging broad application in astronomy and beyond
759
+ - **Efficient and Scalable**: Demonstrates lower computational requirements compared to traditional methods like Random Forests, making it suitable for large datasets.
760
+ - **Open Source and Accessible**: Available as an open-source Python package on PyPI, encouraging broad application in astronomy and beyond.
761
+ - **(NEW) Ensemble Distance Classification**: Leverages an ensemble approach to use different distance metrics for each quantile, improving classification performance across diverse data distributions.
762
+ - **(NEW) Expanded Distance Metrics**: DistClassiPy now offers 43 built-in distance metrics, an increase from the previous 18. Additionally, users can still define and use custom distance metrics as needed.
754
763
 
755
764
  ## Documentation
756
765
 
@@ -0,0 +1,8 @@
1
+ distclassipy/__init__.py,sha256=2qkRVi03Hd5aK5pkH7S7KDuxaZVq-92kDmrazqcA4X4,1222
2
+ distclassipy/classifier.py,sha256=J3XRgQyn6d_-EzFMSCKMCM8cDz-B5pRXNLtUsA9k5vc,26470
3
+ distclassipy/distances.py,sha256=_vRVwt9rRH5m1CU9mCZ-eXEmicQeJMgC5ZWVohoe_Mg,48048
4
+ distclassipy-0.2.2a1.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
5
+ distclassipy-0.2.2a1.dist-info/METADATA,sha256=BD1m0hgTA3zD5jOATP9iLW55VoBvg9f1GPYUCYQyqdQ,47218
6
+ distclassipy-0.2.2a1.dist-info/WHEEL,sha256=DnLRTWE75wApRYVsjgc6wsVswC54sMSJhAEd4xhDpBk,91
7
+ distclassipy-0.2.2a1.dist-info/top_level.txt,sha256=jiwqhSkq7CMCjV_Zar2dSDBO63o5C_Dp2tpGiVV6COE,13
8
+ distclassipy-0.2.2a1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.1.0)
2
+ Generator: setuptools (80.4.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,8 +0,0 @@
1
- distclassipy/__init__.py,sha256=6VtvWg_rRYBq32yLJT66FTbmNWg9YHU4rkauZvXntUY,1076
2
- distclassipy/classifier.py,sha256=PPw5QtEFnn7bBVvOChP8i089zAuRFYFXJ4acvE-n4V8,15199
3
- distclassipy/distances.py,sha256=ncahGJeY9-bHkxI4z2CfBY9TTHWuQA_u3y_A4KCyfE4,52009
4
- distclassipy-0.2.0a0.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
5
- distclassipy-0.2.0a0.dist-info/METADATA,sha256=5awD25us2ZanOyyPvLyAOH13SMJ7pjWFNTK643QAMD0,46561
6
- distclassipy-0.2.0a0.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
7
- distclassipy-0.2.0a0.dist-info/top_level.txt,sha256=jiwqhSkq7CMCjV_Zar2dSDBO63o5C_Dp2tpGiVV6COE,13
8
- distclassipy-0.2.0a0.dist-info/RECORD,,