dist-s1-enumerator 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -218,7 +218,7 @@ def enumerate_dist_s1_products(
218
218
  max_pre_imgs_per_burst: int = (5, 5, 5),
219
219
  min_pre_imgs_per_burst: int = 1,
220
220
  tqdm_enabled: bool = True,
221
- delta_lookback_days: int = 0,
221
+ delta_lookback_days: int = 365,
222
222
  delta_window_days: int = 365,
223
223
  ) -> gpd.GeoDataFrame:
224
224
  """
@@ -254,7 +254,7 @@ def enumerate_dist_s1_products(
254
254
  tqdm_enabled : bool, optional
255
255
  Whether to enable tqdm progress bars, by default True.
256
256
  delta_lookback_days : int, optional
257
- When to set the most recent pre-image date. Default is 0.
257
+ When to set the most recent pre-image date. Default is 365.
258
258
  If lookback strategy is 'multi_window', this means the maximum number of days to search for pre-images on each
259
259
  anniversary date where `post_date - n * lookback_days` are the anniversary dates for n = 1,....
260
260
  If lookback strategy is 'immediate_lookback', this must be set to 0.
@@ -332,7 +332,7 @@ def enumerate_dist_s1_products(
332
332
  # Loop over the different lookback days
333
333
  df_rtc_pre_list = []
334
334
  zipped_data = list(zip(params.delta_lookback_days, params.max_pre_imgs_per_burst))
335
- for delta_lookback_day, max_pre_img_per_burst in zipped_data:
335
+ for delta_lookback_day, max_pre_img_per_burst_param in zipped_data:
336
336
  delta_lookback_timedelta = pd.Timedelta(delta_lookback_day, unit='D')
337
337
  delta_window_timedelta = pd.Timedelta(params.delta_window_days, unit='D')
338
338
  window_start = post_date - delta_lookback_timedelta - delta_window_timedelta
@@ -354,7 +354,7 @@ def enumerate_dist_s1_products(
354
354
  df_rtc_pre = df_rtc_pre.sort_values(by='acq_dt', ascending=True).reset_index(drop=True)
355
355
  # Assume the data is sorted by acquisition date
356
356
  df_rtc_pre = (
357
- df_rtc_pre.groupby('jpl_burst_id').tail(max_pre_img_per_burst).reset_index(drop=True)
357
+ df_rtc_pre.groupby('jpl_burst_id').tail(max_pre_img_per_burst_param).reset_index(drop=True)
358
358
  )
359
359
 
360
360
  if df_rtc_pre.empty:
@@ -367,7 +367,6 @@ def enumerate_dist_s1_products(
367
367
  df_rtc_pre_final = (
368
368
  pd.concat(df_rtc_pre_list, ignore_index=True) if df_rtc_pre_list else pd.DataFrame()
369
369
  )
370
- # product and provenance
371
370
  df_rtc_product = pd.concat([df_rtc_pre_final, df_rtc_post]).reset_index(drop=True)
372
371
  df_rtc_product['product_id'] = product_id
373
372
 
@@ -33,7 +33,7 @@ def enumerate_dist_s1_workflow_inputs(
33
33
  lookback_strategy: str = 'multi_window',
34
34
  max_pre_imgs_per_burst: int | list[int] | tuple[int, ...] = (5, 5, 5),
35
35
  min_pre_imgs_per_burst: int = 1,
36
- delta_lookback_days: int | list[int] | tuple[int, ...] = 0,
36
+ delta_lookback_days: int | list[int] | tuple[int, ...] = 365,
37
37
  delta_window_days: int = 365,
38
38
  df_ts: gpd.GeoDataFrame | None = None,
39
39
  ) -> list[dict]:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dist-s1-enumerator
3
- Version: 1.0.2
3
+ Version: 1.0.3
4
4
  Summary: Enumeration and ops library for the OPERA DIST-S1 project
5
5
  Author-email: "Richard West, Charlie Marshak, Talib Oliver-Cabrera, and Jungkyo Jung" <charlie.z.marshak@jpl.nasa.gov>
6
6
  License: Apache-2.0
@@ -1,7 +1,7 @@
1
1
  dist_s1_enumerator/__init__.py,sha256=L89uOLGobmF-ZsBA767RiGpKCDKVx6KOK6wJkjGQ69M,1766
2
2
  dist_s1_enumerator/asf.py,sha256=WZ3MGRAm2c3l0Acm7Tea_m-EI6CfUbdc06oU1rJ9lhk,12880
3
- dist_s1_enumerator/dist_enum.py,sha256=AjwPotCP1BUBvLpPutRZ2mmVIYt2GHTKSZN2XfRlxBc,20261
4
- dist_s1_enumerator/dist_enum_inputs.py,sha256=QA_EiQJ4dtYRxFUnpnGZ3T_bVZxYdYWKw5xNtHvsG9I,6730
3
+ dist_s1_enumerator/dist_enum.py,sha256=S7ZuMJrNfa6gw3oRWIJYxldKUEcjMHmwEi9STfcjJ8E,20232
4
+ dist_s1_enumerator/dist_enum_inputs.py,sha256=KxGZNQYEsN2KNPcrHnh8Zi5e84dBdbtyeVV-aA8XI5o,6732
5
5
  dist_s1_enumerator/exceptions.py,sha256=JhT8fIEmW3O2OvUQADkEJkL8ZrUN5pkKNzCCSt33goQ,82
6
6
  dist_s1_enumerator/mgrs_burst_data.py,sha256=jifDFf1NUb-_4i9vYpi3rCUzM_qJCLbXkS-fu42iwA8,7538
7
7
  dist_s1_enumerator/param_models.py,sha256=DI2MgSxiPo7HiRKtXX8bxZnQtuoYAmtAcdYYrnhMIho,4614
@@ -11,8 +11,8 @@ dist_s1_enumerator/tabular_models.py,sha256=OjsTg6fN9Mq-LHVKuz9klFD3DsG0WkfPmfDf
11
11
  dist_s1_enumerator/data/jpl_burst_geo.parquet,sha256=maST6onCUlYVaQozf-zl47VMTQ7nflLros8kLQG8ZDE,24736554
12
12
  dist_s1_enumerator/data/mgrs.parquet,sha256=P2jY4l2dztz_wdzZATBwgooa5mIZSC8TgJbHUjR5m0c,601482
13
13
  dist_s1_enumerator/data/mgrs_burst_lookup_table.parquet,sha256=RjrgwRKn2Ac2q4_8mk9DpkX5FXPYPBReiNbqT0iFp5A,3364657
14
- dist_s1_enumerator-1.0.2.dist-info/licenses/LICENSE,sha256=qsoT0jnoSQSgSzA-sywESwmVxC3XcugfW-3vctvz2aM,11346
15
- dist_s1_enumerator-1.0.2.dist-info/METADATA,sha256=cYY6m8NRWNyePHJaKZ0xX45gn1IDUBj4HSp5XGAhvQQ,8794
16
- dist_s1_enumerator-1.0.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
17
- dist_s1_enumerator-1.0.2.dist-info/top_level.txt,sha256=5-RGu6oxsKKyhybZZSuUImALhcQT8ZOAnVv2MmrESDE,19
18
- dist_s1_enumerator-1.0.2.dist-info/RECORD,,
14
+ dist_s1_enumerator-1.0.3.dist-info/licenses/LICENSE,sha256=qsoT0jnoSQSgSzA-sywESwmVxC3XcugfW-3vctvz2aM,11346
15
+ dist_s1_enumerator-1.0.3.dist-info/METADATA,sha256=XaeAJ1orO6CahEP9WjMzi6OoL7UtDN9aoHesGjrfTYA,8794
16
+ dist_s1_enumerator-1.0.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
17
+ dist_s1_enumerator-1.0.3.dist-info/top_level.txt,sha256=5-RGu6oxsKKyhybZZSuUImALhcQT8ZOAnVv2MmrESDE,19
18
+ dist_s1_enumerator-1.0.3.dist-info/RECORD,,