disdrodb 0.2.0__py3-none-any.whl → 0.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/__init__.py +1 -1
- disdrodb/_config.py +1 -3
- disdrodb/_version.py +2 -2
- disdrodb/accessor/__init__.py +1 -1
- disdrodb/accessor/methods.py +18 -11
- disdrodb/api/checks.py +2 -4
- disdrodb/api/configs.py +1 -3
- disdrodb/api/create_directories.py +4 -6
- disdrodb/api/info.py +1 -3
- disdrodb/api/io.py +15 -9
- disdrodb/api/path.py +1 -3
- disdrodb/cli/disdrodb_check_metadata_archive.py +2 -2
- disdrodb/cli/disdrodb_check_products_options.py +44 -0
- disdrodb/cli/disdrodb_create_summary.py +48 -22
- disdrodb/cli/disdrodb_create_summary_station.py +39 -18
- disdrodb/cli/disdrodb_data_archive_directory.py +1 -3
- disdrodb/cli/disdrodb_download_archive.py +45 -24
- disdrodb/cli/disdrodb_download_metadata_archive.py +27 -16
- disdrodb/cli/disdrodb_download_station.py +56 -26
- disdrodb/cli/disdrodb_initialize_station.py +40 -20
- disdrodb/cli/disdrodb_metadata_archive_directory.py +1 -3
- disdrodb/cli/disdrodb_open_data_archive.py +16 -11
- disdrodb/cli/disdrodb_open_logs_directory.py +29 -18
- disdrodb/cli/disdrodb_open_metadata_archive.py +25 -11
- disdrodb/cli/disdrodb_open_metadata_directory.py +32 -20
- disdrodb/cli/disdrodb_open_product_directory.py +38 -21
- disdrodb/cli/disdrodb_open_readers_directory.py +1 -3
- disdrodb/cli/disdrodb_run.py +189 -0
- disdrodb/cli/disdrodb_run_l0.py +55 -64
- disdrodb/cli/disdrodb_run_l0_station.py +47 -52
- disdrodb/cli/disdrodb_run_l0a.py +47 -45
- disdrodb/cli/disdrodb_run_l0a_station.py +38 -37
- disdrodb/cli/disdrodb_run_l0b.py +45 -45
- disdrodb/cli/disdrodb_run_l0b_station.py +37 -36
- disdrodb/cli/disdrodb_run_l0c.py +50 -47
- disdrodb/cli/disdrodb_run_l0c_station.py +41 -38
- disdrodb/cli/disdrodb_run_l1.py +49 -45
- disdrodb/cli/disdrodb_run_l1_station.py +40 -37
- disdrodb/cli/disdrodb_run_l2e.py +50 -45
- disdrodb/cli/disdrodb_run_l2e_station.py +41 -37
- disdrodb/cli/disdrodb_run_l2m.py +49 -45
- disdrodb/cli/disdrodb_run_l2m_station.py +40 -37
- disdrodb/cli/disdrodb_run_station.py +184 -0
- disdrodb/cli/disdrodb_upload_archive.py +45 -35
- disdrodb/cli/disdrodb_upload_station.py +39 -32
- disdrodb/configs.py +13 -8
- disdrodb/constants.py +4 -2
- disdrodb/data_transfer/__init__.py +1 -3
- disdrodb/data_transfer/download_data.py +38 -54
- disdrodb/data_transfer/upload_data.py +1 -3
- disdrodb/data_transfer/zenodo.py +1 -3
- disdrodb/docs.py +1 -3
- disdrodb/etc/configs/attributes.yaml +52 -2
- disdrodb/etc/configs/encodings.yaml +45 -1
- disdrodb/etc/products/L0C/ODM470/global.yaml +5 -0
- disdrodb/etc/products/L0C/global.yaml +5 -0
- disdrodb/etc/products/L1/ODM470/global.yaml +6 -0
- disdrodb/etc/products/L1/global.yaml +1 -14
- disdrodb/etc/products/L2E/LPM/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/LPM/global.yaml +36 -0
- disdrodb/etc/products/L2E/LPM_V0/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/LPM_V0/global.yaml +36 -0
- disdrodb/etc/products/L2E/ODM470/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/ODM470/global.yaml +36 -0
- disdrodb/etc/products/L2E/PARSIVEL/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/PARSIVEL/global.yaml +36 -0
- disdrodb/etc/products/L2E/PARSIVEL2/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/PARSIVEL2/global.yaml +36 -0
- disdrodb/etc/products/L2E/PWS100/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/PWS100/global.yaml +36 -0
- disdrodb/etc/products/L2E/RD80/1MIN.yaml +19 -0
- disdrodb/etc/products/L2E/SWS250/1MIN.yaml +19 -0
- disdrodb/etc/products/L2E/global.yaml +17 -3
- disdrodb/etc/products/L2M/global.yaml +1 -1
- disdrodb/fall_velocity/__init__.py +46 -0
- disdrodb/fall_velocity/graupel.py +483 -0
- disdrodb/fall_velocity/hail.py +287 -0
- disdrodb/{l1/fall_velocity.py → fall_velocity/rain.py} +265 -50
- disdrodb/issue/__init__.py +1 -3
- disdrodb/issue/checks.py +3 -5
- disdrodb/issue/reader.py +1 -3
- disdrodb/issue/writer.py +1 -3
- disdrodb/l0/__init__.py +1 -1
- disdrodb/l0/check_configs.py +26 -17
- disdrodb/l0/check_standards.py +1 -3
- disdrodb/l0/configs/LPM/l0a_encodings.yml +0 -1
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +0 -4
- disdrodb/l0/configs/LPM/l0b_encodings.yml +9 -9
- disdrodb/l0/configs/LPM/raw_data_format.yml +11 -11
- disdrodb/l0/configs/LPM_V0/bins_diameter.yml +103 -0
- disdrodb/l0/configs/LPM_V0/bins_velocity.yml +103 -0
- disdrodb/l0/configs/LPM_V0/l0a_encodings.yml +45 -0
- disdrodb/l0/configs/LPM_V0/l0b_cf_attrs.yml +180 -0
- disdrodb/l0/configs/LPM_V0/l0b_encodings.yml +410 -0
- disdrodb/l0/configs/LPM_V0/raw_data_format.yml +474 -0
- disdrodb/l0/configs/ODM470/bins_diameter.yml +643 -0
- disdrodb/l0/configs/ODM470/bins_velocity.yml +0 -0
- disdrodb/l0/configs/ODM470/l0a_encodings.yml +11 -0
- disdrodb/l0/configs/ODM470/l0b_cf_attrs.yml +46 -0
- disdrodb/l0/configs/ODM470/l0b_encodings.yml +106 -0
- disdrodb/l0/configs/ODM470/raw_data_format.yml +111 -0
- disdrodb/l0/configs/PARSIVEL/l0b_cf_attrs.yml +1 -1
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +8 -8
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +9 -9
- disdrodb/l0/l0_reader.py +1 -3
- disdrodb/l0/l0a_processing.py +7 -5
- disdrodb/l0/l0b_nc_processing.py +2 -4
- disdrodb/l0/l0b_processing.py +27 -22
- disdrodb/l0/l0c_processing.py +37 -11
- disdrodb/l0/manuals/LPM_V0.pdf +0 -0
- disdrodb/l0/readers/LPM/ARM/ARM_LPM.py +1 -1
- disdrodb/l0/readers/LPM/AUSTRALIA/MELBOURNE_2007_LPM.py +1 -1
- disdrodb/l0/readers/LPM/BRAZIL/CHUVA_LPM.py +1 -1
- disdrodb/l0/readers/LPM/BRAZIL/GOAMAZON_LPM.py +1 -1
- disdrodb/l0/readers/LPM/GERMANY/DWD.py +190 -12
- disdrodb/l0/readers/LPM/ITALY/GID_LPM.py +63 -14
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_PI.py +279 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_T.py +279 -0
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_W.py +3 -5
- disdrodb/l0/readers/LPM/KIT/CHWALA.py +1 -3
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_LPM_NC.py +1 -1
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_RWANDA_LPM_NC.py +103 -0
- disdrodb/l0/readers/LPM/NORWAY/HAUKELISETER_LPM.py +214 -0
- disdrodb/l0/readers/LPM/NORWAY/NMBU_LPM.py +206 -0
- disdrodb/l0/readers/LPM/SLOVENIA/ARSO.py +1 -3
- disdrodb/l0/readers/LPM/SLOVENIA/UL.py +1 -3
- disdrodb/l0/readers/LPM/SWITZERLAND/INNERERIZ_LPM.py +1 -3
- disdrodb/l0/readers/LPM/UK/DIVEN.py +1 -1
- disdrodb/l0/readers/LPM/UK/WITHWORTH_LPM.py +217 -0
- disdrodb/l0/readers/LPM/USA/CHARLESTON.py +227 -0
- disdrodb/l0/readers/{LPM → LPM_V0}/BELGIUM/ULIEGE.py +34 -52
- disdrodb/l0/readers/LPM_V0/ITALY/GID_LPM_V0.py +240 -0
- disdrodb/l0/readers/ODM470/OCEAN/OCEANRAIN.py +123 -0
- disdrodb/l0/readers/PARSIVEL/AUSTRALIA/MELBOURNE_2007_PARSIVEL.py +1 -1
- disdrodb/l0/readers/PARSIVEL/BASQUECOUNTRY/EUSKALMET_OTT.py +1 -1
- disdrodb/l0/readers/PARSIVEL/CHINA/CHONGQING.py +1 -3
- disdrodb/l0/readers/PARSIVEL/EPFL/ARCTIC_2021.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/COMMON_2011.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/DAVOS_2009_2011.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/EPFL_2009.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/EPFL_ROOF_2008.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/EPFL_ROOF_2010.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/EPFL_ROOF_2011.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/EPFL_ROOF_2012.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/GENEPI_2007.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/GRAND_ST_BERNARD_2007.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/GRAND_ST_BERNARD_2007_2.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/HPICONET_2010.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/HYMEX_LTE_SOP2.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/HYMEX_LTE_SOP3.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/HYMEX_LTE_SOP4.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/LOCARNO_2018.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/LOCARNO_2019.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/PARADISO_2014.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/PARSIVEL_2007.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/PLATO_2019.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/RACLETS_2019.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/RACLETS_2019_WJF.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/RIETHOLZBACH_2011.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/SAMOYLOV_2017.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/SAMOYLOV_2019.py +1 -1
- disdrodb/l0/readers/PARSIVEL/EPFL/UNIL_2022.py +1 -1
- disdrodb/l0/readers/PARSIVEL/JAPAN/JMA.py +1 -1
- disdrodb/l0/readers/PARSIVEL/KOREA/ICEPOP_MSC.py +159 -0
- disdrodb/l0/readers/PARSIVEL/NASA/LPVEX.py +26 -14
- disdrodb/l0/readers/PARSIVEL/NASA/MC3E.py +2 -2
- disdrodb/l0/readers/PARSIVEL/NCAR/CCOPE_2015.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/OWLES_MIPS.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/PECAN_MOBILE.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/PLOWS_MIPS.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2009.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2010.py +1 -3
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2010_UF.py +1 -3
- disdrodb/l0/readers/PARSIVEL/SLOVENIA/UL.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/ARM/ARM_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/BASQUECOUNTRY/EUSKALMET_OTT2.py +2 -2
- disdrodb/l0/readers/PARSIVEL2/BELGIUM/ILVO.py +1 -3
- disdrodb/l0/readers/PARSIVEL2/BRAZIL/CHUVA_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/BRAZIL/GOAMAZON_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/CANADA/UQAM_NC.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/DENMARK/DTU.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/DENMARK/EROSION_nc.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/DENMARK/EROSION_raw.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/FINLAND/FMI_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/FRANCE/ENPC_PARSIVEL2.py +1 -3
- disdrodb/l0/readers/PARSIVEL2/FRANCE/OSUG.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/FRANCE/SIRTA_PARSIVEL2.py +1 -3
- disdrodb/l0/readers/PARSIVEL2/GREECE/NOA.py +4 -3
- disdrodb/l0/readers/PARSIVEL2/ITALY/GID_PARSIVEL2.py +1 -3
- disdrodb/l0/readers/PARSIVEL2/ITALY/HYDROX.py +5 -3
- disdrodb/l0/readers/PARSIVEL2/JAPAN/PRECIP.py +155 -0
- disdrodb/l0/readers/PARSIVEL2/KIT/BURKINA_FASO.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/KIT/TEAMX.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/KOREA/ICEPOP_MSC.py +161 -0
- disdrodb/l0/readers/PARSIVEL2/{NASA/GCPEX.py → KOREA/ICEPOP_UCLM.py} +51 -31
- disdrodb/l0/readers/PARSIVEL2/MEXICO/OH_IIUNAM_nc.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/MPI/BCO_PARSIVEL2.py +15 -8
- disdrodb/l0/readers/PARSIVEL2/MPI/BOWTIE.py +9 -4
- disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +31 -6
- disdrodb/l0/readers/PARSIVEL2/NASA/NSSTC.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/FARM_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/PECAN_FP3.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/PECAN_MIPS.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_MIPS.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_PIPS.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/RELAMPAGO_PARSIVEL2.py +2 -2
- disdrodb/l0/readers/PARSIVEL2/NCAR/SNOWIE_PJ.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/SNOWIE_SB.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_P1.py +1 -3
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_P2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_PIPS.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NETHERLANDS/DELFT_NC.py +1 -1
- disdrodb/l0/readers/{PARSIVEL/NASA/PIERS.py → PARSIVEL2/NORWAY/UIB.py} +65 -31
- disdrodb/l0/readers/PARSIVEL2/PHILIPPINES/PAGASA.py +7 -6
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CENER.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CR1000DL.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/SPAIN/GRANADA.py +1 -3
- disdrodb/l0/readers/PARSIVEL2/SPAIN/LIAISE.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/SWEDEN/SMHI.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/USA/CSU.py +138 -0
- disdrodb/l0/readers/PARSIVEL2/USA/CW3E.py +49 -22
- disdrodb/l0/readers/PWS100/AUSTRIA/HOAL.py +1 -3
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100.py +1 -3
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100_SIRTA.py +1 -1
- disdrodb/l0/readers/{PARSIVEL/NASA/IFLOODS.py → RD80/BRAZIL/ATTO_RD80.py} +50 -36
- disdrodb/l0/readers/RD80/BRAZIL/CHUVA_RD80.py +1 -3
- disdrodb/l0/readers/RD80/BRAZIL/GOAMAZON_RD80.py +1 -3
- disdrodb/l0/readers/RD80/NCAR/CINDY_2011_RD80.py +1 -3
- disdrodb/l0/readers/RD80/NCAR/RELAMPAGO_RD80.py +1 -3
- disdrodb/l0/readers/RD80/NOAA/PSL_RD80.py +1 -3
- disdrodb/l0/readers/{SW250 → SWS250}/BELGIUM/KMI.py +2 -4
- disdrodb/l0/readers/template_reader_raw_netcdf_data.py +1 -3
- disdrodb/l0/readers/template_reader_raw_text_data.py +1 -3
- disdrodb/l0/standards.py +4 -5
- disdrodb/l0/template_tools.py +1 -3
- disdrodb/l1/__init__.py +1 -1
- disdrodb/l1/classification.py +913 -0
- disdrodb/l1/processing.py +36 -106
- disdrodb/l1/resampling.py +8 -3
- disdrodb/l1_env/__init__.py +1 -1
- disdrodb/l1_env/routines.py +6 -6
- disdrodb/l2/__init__.py +1 -1
- disdrodb/l2/empirical_dsd.py +61 -31
- disdrodb/l2/processing.py +327 -62
- disdrodb/metadata/checks.py +1 -3
- disdrodb/metadata/download.py +4 -4
- disdrodb/metadata/geolocation.py +1 -3
- disdrodb/metadata/info.py +1 -3
- disdrodb/metadata/manipulation.py +1 -3
- disdrodb/metadata/reader.py +1 -3
- disdrodb/metadata/search.py +1 -3
- disdrodb/metadata/standards.py +1 -3
- disdrodb/metadata/writer.py +1 -3
- disdrodb/physics/__init__.py +17 -0
- disdrodb/physics/atmosphere.py +272 -0
- disdrodb/physics/water.py +130 -0
- disdrodb/physics/wrappers.py +62 -0
- disdrodb/psd/__init__.py +1 -1
- disdrodb/psd/fitting.py +22 -9
- disdrodb/psd/models.py +1 -1
- disdrodb/routines/__init__.py +5 -1
- disdrodb/routines/l0.py +28 -18
- disdrodb/routines/l1.py +8 -6
- disdrodb/routines/l2.py +8 -4
- disdrodb/routines/options.py +116 -71
- disdrodb/routines/options_validation.py +728 -0
- disdrodb/routines/wrappers.py +431 -11
- disdrodb/scattering/__init__.py +1 -1
- disdrodb/scattering/axis_ratio.py +9 -6
- disdrodb/scattering/permittivity.py +8 -8
- disdrodb/scattering/routines.py +32 -14
- disdrodb/summary/__init__.py +1 -1
- disdrodb/summary/routines.py +146 -86
- disdrodb/utils/__init__.py +1 -1
- disdrodb/utils/archiving.py +16 -9
- disdrodb/utils/attrs.py +4 -3
- disdrodb/utils/cli.py +8 -10
- disdrodb/utils/compression.py +13 -13
- disdrodb/utils/dask.py +33 -14
- disdrodb/utils/dataframe.py +1 -3
- disdrodb/utils/decorators.py +1 -3
- disdrodb/utils/dict.py +1 -1
- disdrodb/utils/directories.py +3 -5
- disdrodb/utils/encoding.py +2 -4
- disdrodb/utils/event.py +1 -1
- disdrodb/utils/list.py +1 -3
- disdrodb/utils/logger.py +1 -3
- disdrodb/utils/manipulations.py +182 -6
- disdrodb/utils/pydantic.py +80 -0
- disdrodb/utils/routines.py +1 -3
- disdrodb/utils/subsetting.py +1 -1
- disdrodb/utils/time.py +3 -2
- disdrodb/utils/warnings.py +1 -3
- disdrodb/utils/writer.py +1 -3
- disdrodb/utils/xarray.py +30 -3
- disdrodb/utils/yaml.py +1 -3
- disdrodb/viz/__init__.py +1 -1
- disdrodb/viz/plots.py +197 -21
- {disdrodb-0.2.0.dist-info → disdrodb-0.3.0.dist-info}/METADATA +2 -2
- disdrodb-0.3.0.dist-info/RECORD +358 -0
- {disdrodb-0.2.0.dist-info → disdrodb-0.3.0.dist-info}/entry_points.txt +3 -0
- disdrodb/etc/products/L1/1MIN.yaml +0 -13
- disdrodb/etc/products/L1/LPM/1MIN.yaml +0 -13
- disdrodb/etc/products/L1/PARSIVEL/1MIN.yaml +0 -13
- disdrodb/etc/products/L1/PARSIVEL2/1MIN.yaml +0 -13
- disdrodb/etc/products/L1/PWS100/1MIN.yaml +0 -13
- disdrodb/etc/products/L1/RD80/1MIN.yaml +0 -13
- disdrodb/etc/products/L1/SWS250/1MIN.yaml +0 -13
- disdrodb/etc/products/L2M/10MIN.yaml +0 -12
- disdrodb/l1/beard_model.py +0 -618
- disdrodb/l1/filters.py +0 -203
- disdrodb-0.2.0.dist-info/RECORD +0 -312
- {disdrodb-0.2.0.dist-info → disdrodb-0.3.0.dist-info}/WHEEL +0 -0
- {disdrodb-0.2.0.dist-info → disdrodb-0.3.0.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.2.0.dist-info → disdrodb-0.3.0.dist-info}/top_level.txt +0 -0
|
@@ -1,7 +1,5 @@
|
|
|
1
|
-
#!/usr/bin/env python3
|
|
2
|
-
|
|
3
1
|
# -----------------------------------------------------------------------------.
|
|
4
|
-
# Copyright (c) 2021-
|
|
2
|
+
# Copyright (c) 2021-2026 DISDRODB developers
|
|
5
3
|
#
|
|
6
4
|
# This program is free software: you can redistribute it and/or modify
|
|
7
5
|
# it under the terms of the GNU General Public License as published by
|
|
@@ -17,13 +15,16 @@
|
|
|
17
15
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
16
|
# -----------------------------------------------------------------------------.
|
|
19
17
|
"""DISDRODB reader for DWD stations."""
|
|
18
|
+
import glob
|
|
20
19
|
import os
|
|
20
|
+
from pathlib import Path
|
|
21
21
|
|
|
22
22
|
import numpy as np
|
|
23
23
|
import pandas as pd
|
|
24
24
|
|
|
25
25
|
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
26
26
|
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
27
|
+
from disdrodb.utils.logger import log_error, log_warning
|
|
27
28
|
|
|
28
29
|
# Assign column names
|
|
29
30
|
COLUMNS = [
|
|
@@ -104,14 +105,90 @@ COLUMNS = [
|
|
|
104
105
|
"raw_drop_number",
|
|
105
106
|
]
|
|
106
107
|
|
|
108
|
+
####------------------------------------------------------------------------.
|
|
109
|
+
#### SYNOP utilities
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
def _reindex_to_custom_frequency(df, freq="1min"):
|
|
113
|
+
# Interpolate to 1 min
|
|
114
|
+
t_start = df.index.min()
|
|
115
|
+
t_end = df.index.max()
|
|
116
|
+
timesteps = pd.date_range(
|
|
117
|
+
start=t_start,
|
|
118
|
+
end=t_end,
|
|
119
|
+
freq=freq,
|
|
120
|
+
)
|
|
121
|
+
return df.reindex(timesteps)
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
def interpolate_wind_direction(wind_direction, limit=None):
|
|
125
|
+
"""Interpolate NaN values in a 1-min wind direction series.
|
|
126
|
+
|
|
127
|
+
Use circular (vector) interpolation.
|
|
128
|
+
|
|
129
|
+
Parameters
|
|
130
|
+
----------
|
|
131
|
+
wind_direction : pandas.Series
|
|
132
|
+
Wind direction in degrees with DateTimeIndex.
|
|
133
|
+
limit : int or None
|
|
134
|
+
Max number of consecutive NaNs to fill.
|
|
135
|
+
|
|
136
|
+
Returns
|
|
137
|
+
-------
|
|
138
|
+
pandas.Series
|
|
139
|
+
Wind direction with NaNs interpolated.
|
|
140
|
+
"""
|
|
141
|
+
wind_direction = wind_direction.copy()
|
|
142
|
+
wind_direction.index = pd.to_datetime(wind_direction.index)
|
|
143
|
+
|
|
144
|
+
# Convert to radians
|
|
145
|
+
theta = np.deg2rad(wind_direction)
|
|
146
|
+
|
|
147
|
+
# Vector components
|
|
148
|
+
u = np.cos(theta)
|
|
149
|
+
v = np.sin(theta)
|
|
150
|
+
|
|
151
|
+
df_vec = pd.DataFrame({"u": u, "v": v}, index=wind_direction.index)
|
|
152
|
+
|
|
153
|
+
# Interpolate ONLY NaNs
|
|
154
|
+
df_vec_i = df_vec.interpolate(
|
|
155
|
+
method="time",
|
|
156
|
+
limit=limit,
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
# Back to degrees
|
|
160
|
+
dir_i = np.rad2deg(np.arctan2(df_vec_i["v"], df_vec_i["u"]))
|
|
161
|
+
dir_i = (dir_i + 360) % 360
|
|
162
|
+
|
|
163
|
+
dir_i = (dir_i / 10).round() * 10
|
|
164
|
+
return pd.Series(dir_i, index=wind_direction.index, name=wind_direction.name)
|
|
107
165
|
|
|
108
|
-
|
|
166
|
+
|
|
167
|
+
def retrieve_synop_filepaths(df, filepath):
|
|
168
|
+
"""Retrieve SYNOP files relevant for a LPM file."""
|
|
169
|
+
# Retrieve relevant info to list required synop files
|
|
170
|
+
filename = os.path.basename(filepath)
|
|
171
|
+
station_id = filename.split("_")[1]
|
|
172
|
+
date = df["time"].dt.date.iloc[0]
|
|
173
|
+
synop_base_dir = Path(filepath).parents[3] / "SYNOP"
|
|
174
|
+
synop_filepaths = []
|
|
175
|
+
for d in [date, date + pd.Timedelta(days=1)]:
|
|
176
|
+
y = d.strftime("%Y")
|
|
177
|
+
m = d.strftime("%m")
|
|
178
|
+
ymd = d.strftime("%Y%m%d")
|
|
179
|
+
fname_pattern = f"synop10min_{station_id}_{ymd}*1.0days.dat"
|
|
180
|
+
glob_pattern = os.path.join(synop_base_dir, y, m, fname_pattern)
|
|
181
|
+
synop_filepaths.append(*glob.glob(glob_pattern))
|
|
182
|
+
return synop_filepaths
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
def read_synop_file(filepath, logger=None):
|
|
109
186
|
"""Read SYNOP 10 min file."""
|
|
110
187
|
##------------------------------------------------------------------------.
|
|
111
188
|
#### Define column names
|
|
112
189
|
column_names = [
|
|
113
190
|
"time",
|
|
114
|
-
"
|
|
191
|
+
"air_temperature",
|
|
115
192
|
"relative_humidity",
|
|
116
193
|
"precipitation_accumulated_10min",
|
|
117
194
|
"total_cloud_cover",
|
|
@@ -169,6 +246,99 @@ def read_synop_file(filepath, logger):
|
|
|
169
246
|
return df
|
|
170
247
|
|
|
171
248
|
|
|
249
|
+
def _add_nan_synop_variables(df, logger, msg):
|
|
250
|
+
"""Guarantee SYNOP columns on LPM df output."""
|
|
251
|
+
# Define SYNOP vars to be always present
|
|
252
|
+
synop_vars = [
|
|
253
|
+
"air_temperature",
|
|
254
|
+
"relative_humidity",
|
|
255
|
+
"wind_speed",
|
|
256
|
+
"wind_direction",
|
|
257
|
+
]
|
|
258
|
+
# Add SYNOP vars columns
|
|
259
|
+
log_warning(logger=logger, msg=msg)
|
|
260
|
+
for v in synop_vars:
|
|
261
|
+
df[v] = np.nan
|
|
262
|
+
return df
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
def add_synop_information(df, filepath, logger):
|
|
266
|
+
"""Add SYNOP (10-min) meteorological data to an LPM (1-min) dataframe.
|
|
267
|
+
|
|
268
|
+
LPM files contains timesteps: 00:00-23.59
|
|
269
|
+
SYNOP files contains timesteps: 00:00-23.50
|
|
270
|
+
|
|
271
|
+
To interpolate SYNOP data between 00:00-23.59 we need also next-day SYNOP file
|
|
272
|
+
|
|
273
|
+
Always returns a dataframe with SYNOP columns present.
|
|
274
|
+
"""
|
|
275
|
+
# Drop duplicate timesteps from input LPM dataframe
|
|
276
|
+
df = df.drop_duplicates(subset="time", keep="first").sort_values("time")
|
|
277
|
+
|
|
278
|
+
# Retrieve date
|
|
279
|
+
date = df["time"].iloc[0].date()
|
|
280
|
+
|
|
281
|
+
# --------------------------------------------------------------------
|
|
282
|
+
# Retrieve required SYNOP files
|
|
283
|
+
synop_filepaths = retrieve_synop_filepaths(df=df, filepath=filepath)
|
|
284
|
+
|
|
285
|
+
# If no SYNOP files available
|
|
286
|
+
if not synop_filepaths:
|
|
287
|
+
msg = f"No SYNOP files available for {date}"
|
|
288
|
+
return _add_nan_synop_variables(df, logger=logger, msg=msg)
|
|
289
|
+
|
|
290
|
+
# Read relevant SYNOP files
|
|
291
|
+
synop_dfs = []
|
|
292
|
+
for f in synop_filepaths:
|
|
293
|
+
try:
|
|
294
|
+
synop_dfs.append(read_synop_file(f))
|
|
295
|
+
except Exception as e:
|
|
296
|
+
log_error(logger=logger, msg=f"Failed to read SYNOP file {f}. Error: {e!s}")
|
|
297
|
+
|
|
298
|
+
if not synop_dfs:
|
|
299
|
+
msg = f"No valid SYNOP data could be read for {date}"
|
|
300
|
+
return _add_nan_synop_variables(df, logger=logger, msg=msg)
|
|
301
|
+
|
|
302
|
+
# Concatenate SYNOP files into unique dataframe
|
|
303
|
+
df_synop_10min = pd.concat(synop_dfs, ignore_index=True)
|
|
304
|
+
|
|
305
|
+
# --------------------------------------------------------------------
|
|
306
|
+
# Subset SYNOP file
|
|
307
|
+
tmin = df["time"].min() - pd.Timedelta(minutes=10)
|
|
308
|
+
tmax = df["time"].max() + pd.Timedelta(minutes=10)
|
|
309
|
+
df_synop_10min = df_synop_10min[(df_synop_10min["time"] >= tmin) & (df_synop_10min["time"] <= tmax)]
|
|
310
|
+
if df_synop_10min.empty:
|
|
311
|
+
msg = f"No SYNOP data available for {date}"
|
|
312
|
+
return _add_nan_synop_variables(df, logger=logger, msg=msg)
|
|
313
|
+
|
|
314
|
+
# Drop time duplicates if present
|
|
315
|
+
df_synop_10min = df_synop_10min.drop_duplicates(subset="time", keep="first")
|
|
316
|
+
df_synop_10min = df_synop_10min.drop(columns=["total_cloud_cover", "precipitation_accumulated_10min"])
|
|
317
|
+
# Reindex SYNOP 10 min file to 1 min
|
|
318
|
+
df_synop_10min = df_synop_10min.set_index("time") # set time column as index
|
|
319
|
+
df_synop_10min = df_synop_10min.astype(float) # cast column to float
|
|
320
|
+
df_synop_1min = _reindex_to_custom_frequency(df_synop_10min, freq="1min")
|
|
321
|
+
# Interpolate variables
|
|
322
|
+
df_synop_1min["wind_direction"] = interpolate_wind_direction(df_synop_1min["wind_direction"], limit=9)
|
|
323
|
+
variables = ["air_temperature", "relative_humidity", "wind_speed"]
|
|
324
|
+
df_synop_1min[variables] = df_synop_1min[variables].interpolate(method="time", limit=9)
|
|
325
|
+
df_synop_1min = df_synop_1min.reset_index().rename(columns={"index": "time"})
|
|
326
|
+
# Merge data
|
|
327
|
+
df_synop_1min = df_synop_1min.drop_duplicates(subset="time", keep="first").sort_values("time")
|
|
328
|
+
df_merged = pd.merge_asof(
|
|
329
|
+
df,
|
|
330
|
+
df_synop_1min,
|
|
331
|
+
on="time",
|
|
332
|
+
direction="nearest", # or "backward" / "forward"
|
|
333
|
+
tolerance=pd.Timedelta("0min"),
|
|
334
|
+
)
|
|
335
|
+
return df_merged
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
####-------------------------------------------------------------------------.
|
|
339
|
+
#### LPM parsers
|
|
340
|
+
|
|
341
|
+
|
|
172
342
|
def parse_format_v1(df):
|
|
173
343
|
"""Parse DWD format v1."""
|
|
174
344
|
raise NotImplementedError
|
|
@@ -433,7 +603,7 @@ def reader(
|
|
|
433
603
|
):
|
|
434
604
|
"""Reader."""
|
|
435
605
|
##------------------------------------------------------------------------.
|
|
436
|
-
####
|
|
606
|
+
#### Define raw data headers
|
|
437
607
|
column_names = ["TO_PARSE"]
|
|
438
608
|
|
|
439
609
|
##------------------------------------------------------------------------.
|
|
@@ -481,11 +651,19 @@ def reader(
|
|
|
481
651
|
)
|
|
482
652
|
##------------------------------------------------------------------------.
|
|
483
653
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
654
|
+
# Read LPM raw data
|
|
484
655
|
filename = os.path.basename(filepath)
|
|
485
656
|
if filename.startswith("3_"):
|
|
486
|
-
|
|
487
|
-
|
|
488
|
-
|
|
489
|
-
|
|
490
|
-
|
|
491
|
-
|
|
657
|
+
df = parse_format_v3(df)
|
|
658
|
+
elif filename.startswith("2_"):
|
|
659
|
+
df = parse_format_v2(df)
|
|
660
|
+
elif filename.startswith("1_"):
|
|
661
|
+
df = parse_format_v1(df)
|
|
662
|
+
else:
|
|
663
|
+
raise ValueError(f"Not implemented parser for DWD {filepath} data format.")
|
|
664
|
+
|
|
665
|
+
# Add SYNOP data if available
|
|
666
|
+
df = add_synop_information(df=df, filepath=filepath, logger=logger)
|
|
667
|
+
|
|
668
|
+
# Return dataframe
|
|
669
|
+
return df
|
|
@@ -1,7 +1,5 @@
|
|
|
1
|
-
#!/usr/bin/env python3
|
|
2
|
-
|
|
3
1
|
# -----------------------------------------------------------------------------.
|
|
4
|
-
# Copyright (c) 2021-
|
|
2
|
+
# Copyright (c) 2021-2026 DISDRODB developers
|
|
5
3
|
#
|
|
6
4
|
# This program is free software: you can redistribute it and/or modify
|
|
7
5
|
# it under the terms of the GNU General Public License as published by
|
|
@@ -17,10 +15,14 @@
|
|
|
17
15
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
16
|
# -----------------------------------------------------------------------------.
|
|
19
17
|
"""DISDRODB reader for GID LPM sensors not measuring wind."""
|
|
18
|
+
import os
|
|
19
|
+
|
|
20
|
+
import numpy as np
|
|
20
21
|
import pandas as pd
|
|
21
22
|
|
|
22
23
|
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
23
24
|
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
25
|
+
from disdrodb.utils.logger import log_warning
|
|
24
26
|
|
|
25
27
|
|
|
26
28
|
@is_documented_by(reader_generic_docstring)
|
|
@@ -31,7 +33,7 @@ def reader(
|
|
|
31
33
|
"""Reader."""
|
|
32
34
|
##------------------------------------------------------------------------.
|
|
33
35
|
#### - Define raw data headers
|
|
34
|
-
column_names = ["
|
|
36
|
+
column_names = ["TO_PARSE"]
|
|
35
37
|
|
|
36
38
|
##------------------------------------------------------------------------.
|
|
37
39
|
#### Define reader options
|
|
@@ -50,6 +52,9 @@ def reader(
|
|
|
50
52
|
# - Number of rows to be skipped at the beginning of the file
|
|
51
53
|
reader_kwargs["skiprows"] = None
|
|
52
54
|
|
|
55
|
+
# - Define encoding
|
|
56
|
+
reader_kwargs["encoding"] = "latin"
|
|
57
|
+
|
|
53
58
|
# - Define behaviour when encountering bad lines
|
|
54
59
|
reader_kwargs["on_bad_lines"] = "skip"
|
|
55
60
|
|
|
@@ -79,14 +84,22 @@ def reader(
|
|
|
79
84
|
|
|
80
85
|
##------------------------------------------------------------------------.
|
|
81
86
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
82
|
-
#
|
|
83
|
-
|
|
87
|
+
# Raise error if empty file
|
|
88
|
+
if len(df) == 0:
|
|
89
|
+
raise ValueError(f"{filepath} is empty.")
|
|
90
|
+
|
|
91
|
+
# Select only rows with expected number of delimiters
|
|
92
|
+
df = df[df["TO_PARSE"].str.count(";").isin([519, 520])]
|
|
93
|
+
|
|
94
|
+
# Check there are still valid rows
|
|
95
|
+
if len(df) == 0:
|
|
96
|
+
raise ValueError(f"No valid rows in {filepath}.")
|
|
84
97
|
|
|
85
98
|
# Split by ; delimiter (before raw drop number)
|
|
86
|
-
df = df["
|
|
99
|
+
df = df["TO_PARSE"].str.split(";", expand=True, n=79)
|
|
87
100
|
|
|
88
101
|
# Assign column names
|
|
89
|
-
|
|
102
|
+
names = [
|
|
90
103
|
"start_identifier",
|
|
91
104
|
"device_address",
|
|
92
105
|
"sensor_serial_number",
|
|
@@ -168,14 +181,50 @@ def reader(
|
|
|
168
181
|
"number_particles_class_9_internal_data",
|
|
169
182
|
"raw_drop_number",
|
|
170
183
|
]
|
|
171
|
-
df.columns =
|
|
184
|
+
df.columns = names
|
|
172
185
|
|
|
173
186
|
# Remove checksum from raw_drop_number
|
|
174
|
-
df["raw_drop_number"] = df["raw_drop_number"].str.rsplit(";", n=1, expand=True)[0]
|
|
175
|
-
|
|
176
|
-
#
|
|
177
|
-
|
|
178
|
-
|
|
187
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.strip(";").str.rsplit(";", n=1, expand=True)[0]
|
|
188
|
+
|
|
189
|
+
# Identify rows with bad sensor date (compared to file name)
|
|
190
|
+
filename = os.path.basename(filepath)
|
|
191
|
+
file_date_str = filename[0:8]
|
|
192
|
+
idx_bad_date = df["sensor_date"] != pd.to_datetime(file_date_str, format="%Y%m%d").strftime("%d.%m.%y")
|
|
193
|
+
|
|
194
|
+
# If all rows have bad sensor_date, use the one of the file name
|
|
195
|
+
if idx_bad_date.all():
|
|
196
|
+
# - Infer and define "time" column
|
|
197
|
+
start_time_str = filename[0:10]
|
|
198
|
+
start_time = pd.to_datetime(start_time_str, format="%Y%m%d%H")
|
|
199
|
+
|
|
200
|
+
# - Define timedelta based on sensor_time
|
|
201
|
+
# --> Add +24h to subsequent times when time resets
|
|
202
|
+
dt = pd.to_timedelta(df["sensor_time"]).to_numpy().astype("m8[s]")
|
|
203
|
+
rollover_indices = np.where(np.diff(dt) < np.timedelta64(0, "s"))[0]
|
|
204
|
+
if rollover_indices.size > 0:
|
|
205
|
+
for idx in rollover_indices:
|
|
206
|
+
dt[idx + 1 :] += np.timedelta64(24, "h")
|
|
207
|
+
dt = dt - dt[0]
|
|
208
|
+
|
|
209
|
+
# - Define approximate time
|
|
210
|
+
df["time"] = start_time + dt
|
|
211
|
+
|
|
212
|
+
# - Keep rows where time increment is between 00 and 59 minutes
|
|
213
|
+
valid_rows = dt <= np.timedelta64(3540, "s")
|
|
214
|
+
df = df[valid_rows]
|
|
215
|
+
|
|
216
|
+
# If only some rows have bad sensor date, just drop such bad rows
|
|
217
|
+
else:
|
|
218
|
+
if idx_bad_date.any():
|
|
219
|
+
# Remove rows with bad dates
|
|
220
|
+
bad_dates = df[idx_bad_date]["sensor_date"].unique().tolist()
|
|
221
|
+
df = df[~idx_bad_date]
|
|
222
|
+
msg = f"{filepath} contain rows with the following unexpected sensor_date values {bad_dates}"
|
|
223
|
+
log_warning(msg=msg, logger=logger)
|
|
224
|
+
|
|
225
|
+
# Define datetime "time" column
|
|
226
|
+
df["time"] = df["sensor_date"] + "-" + df["sensor_time"]
|
|
227
|
+
df["time"] = pd.to_datetime(df["time"], format="%d.%m.%y-%H:%M:%S", errors="coerce")
|
|
179
228
|
|
|
180
229
|
# Drop row if start_identifier different than 00
|
|
181
230
|
df = df[df["start_identifier"].astype(str) == "00"]
|
|
@@ -0,0 +1,279 @@
|
|
|
1
|
+
# -----------------------------------------------------------------------------.
|
|
2
|
+
# Copyright (c) 2021-2026 DISDRODB developers
|
|
3
|
+
#
|
|
4
|
+
# This program is free software: you can redistribute it and/or modify
|
|
5
|
+
# it under the terms of the GNU General Public License as published by
|
|
6
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
7
|
+
# (at your option) any later version.
|
|
8
|
+
#
|
|
9
|
+
# This program is distributed in the hope that it will be useful,
|
|
10
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
11
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
12
|
+
# GNU General Public License for more details.
|
|
13
|
+
#
|
|
14
|
+
# You should have received a copy of the GNU General Public License
|
|
15
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
16
|
+
# -----------------------------------------------------------------------------.
|
|
17
|
+
"""DISDRODB reader for GID LPM sensor TC-PI with incorrect reported time."""
|
|
18
|
+
import pandas as pd
|
|
19
|
+
|
|
20
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
21
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
22
|
+
from disdrodb.utils.logger import log_error
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def read_txt_file(file, filename, logger):
|
|
26
|
+
"""Parse for TC-PI LPM file."""
|
|
27
|
+
#### - Define raw data headers
|
|
28
|
+
column_names = ["TO_PARSE"]
|
|
29
|
+
|
|
30
|
+
##------------------------------------------------------------------------.
|
|
31
|
+
#### Define reader options
|
|
32
|
+
# - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
|
|
33
|
+
reader_kwargs = {}
|
|
34
|
+
|
|
35
|
+
# - Define delimiter
|
|
36
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
37
|
+
|
|
38
|
+
# - Avoid first column to become df index !!!
|
|
39
|
+
reader_kwargs["index_col"] = False
|
|
40
|
+
|
|
41
|
+
# Since column names are expected to be passed explicitly, header is set to None
|
|
42
|
+
reader_kwargs["header"] = None
|
|
43
|
+
|
|
44
|
+
# - Number of rows to be skipped at the beginning of the file
|
|
45
|
+
reader_kwargs["skiprows"] = 1
|
|
46
|
+
|
|
47
|
+
# - Define behaviour when encountering bad lines
|
|
48
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
49
|
+
|
|
50
|
+
# - Define reader engine
|
|
51
|
+
# - C engine is faster
|
|
52
|
+
# - Python engine is more feature-complete
|
|
53
|
+
reader_kwargs["engine"] = "python"
|
|
54
|
+
|
|
55
|
+
# - Define on-the-fly decompression of on-disk data
|
|
56
|
+
# - Available: gzip, bz2, zip
|
|
57
|
+
reader_kwargs["compression"] = "infer"
|
|
58
|
+
|
|
59
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
60
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
61
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
62
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
63
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
64
|
+
|
|
65
|
+
##------------------------------------------------------------------------.
|
|
66
|
+
#### Read the data
|
|
67
|
+
df = read_raw_text_file(
|
|
68
|
+
filepath=file,
|
|
69
|
+
column_names=column_names,
|
|
70
|
+
reader_kwargs=reader_kwargs,
|
|
71
|
+
logger=logger,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
##------------------------------------------------------------------------.
|
|
75
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
76
|
+
# Raise error if empty file
|
|
77
|
+
if len(df) == 0:
|
|
78
|
+
raise ValueError(f"{filename} is empty.")
|
|
79
|
+
|
|
80
|
+
# Select only rows with expected number of delimiters
|
|
81
|
+
df = df[df["TO_PARSE"].str.count(" ") == 526]
|
|
82
|
+
|
|
83
|
+
# Check there are still valid rows
|
|
84
|
+
if len(df) == 0:
|
|
85
|
+
raise ValueError(f"No valid rows in {filename}.")
|
|
86
|
+
|
|
87
|
+
# Split by ; delimiter (before raw drop number)
|
|
88
|
+
df = df["TO_PARSE"].str.split(" ", expand=True, n=82)
|
|
89
|
+
|
|
90
|
+
# Assign column names
|
|
91
|
+
names = [
|
|
92
|
+
"date",
|
|
93
|
+
"time",
|
|
94
|
+
"unknown",
|
|
95
|
+
"start_identifier",
|
|
96
|
+
"device_address",
|
|
97
|
+
"sensor_serial_number",
|
|
98
|
+
"sensor_date",
|
|
99
|
+
"sensor_time",
|
|
100
|
+
"weather_code_synop_4677_5min",
|
|
101
|
+
"weather_code_synop_4680_5min",
|
|
102
|
+
"weather_code_metar_4678_5min",
|
|
103
|
+
"precipitation_rate_5min",
|
|
104
|
+
"weather_code_synop_4677",
|
|
105
|
+
"weather_code_synop_4680",
|
|
106
|
+
"weather_code_metar_4678",
|
|
107
|
+
"precipitation_rate",
|
|
108
|
+
"rainfall_rate",
|
|
109
|
+
"snowfall_rate",
|
|
110
|
+
"precipitation_accumulated",
|
|
111
|
+
"mor_visibility",
|
|
112
|
+
"reflectivity",
|
|
113
|
+
"quality_index",
|
|
114
|
+
"max_hail_diameter",
|
|
115
|
+
"laser_status",
|
|
116
|
+
"static_signal_status",
|
|
117
|
+
"laser_temperature_analog_status",
|
|
118
|
+
"laser_temperature_digital_status",
|
|
119
|
+
"laser_current_analog_status",
|
|
120
|
+
"laser_current_digital_status",
|
|
121
|
+
"sensor_voltage_supply_status",
|
|
122
|
+
"current_heating_pane_transmitter_head_status",
|
|
123
|
+
"current_heating_pane_receiver_head_status",
|
|
124
|
+
"temperature_sensor_status",
|
|
125
|
+
"current_heating_voltage_supply_status",
|
|
126
|
+
"current_heating_house_status",
|
|
127
|
+
"current_heating_heads_status",
|
|
128
|
+
"current_heating_carriers_status",
|
|
129
|
+
"control_output_laser_power_status",
|
|
130
|
+
"reserved_status",
|
|
131
|
+
"temperature_interior",
|
|
132
|
+
"laser_temperature",
|
|
133
|
+
"laser_current_average",
|
|
134
|
+
"control_voltage",
|
|
135
|
+
"optical_control_voltage_output",
|
|
136
|
+
"sensor_voltage_supply",
|
|
137
|
+
"current_heating_pane_transmitter_head",
|
|
138
|
+
"current_heating_pane_receiver_head",
|
|
139
|
+
"temperature_ambient",
|
|
140
|
+
"current_heating_voltage_supply",
|
|
141
|
+
"current_heating_house",
|
|
142
|
+
"current_heating_heads",
|
|
143
|
+
"current_heating_carriers",
|
|
144
|
+
"number_particles",
|
|
145
|
+
"number_particles_internal_data",
|
|
146
|
+
"number_particles_min_speed",
|
|
147
|
+
"number_particles_min_speed_internal_data",
|
|
148
|
+
"number_particles_max_speed",
|
|
149
|
+
"number_particles_max_speed_internal_data",
|
|
150
|
+
"number_particles_min_diameter",
|
|
151
|
+
"number_particles_min_diameter_internal_data",
|
|
152
|
+
"number_particles_no_hydrometeor",
|
|
153
|
+
"number_particles_no_hydrometeor_internal_data",
|
|
154
|
+
"number_particles_unknown_classification",
|
|
155
|
+
"number_particles_unknown_classification_internal_data",
|
|
156
|
+
"number_particles_class_1",
|
|
157
|
+
"number_particles_class_1_internal_data",
|
|
158
|
+
"number_particles_class_2",
|
|
159
|
+
"number_particles_class_2_internal_data",
|
|
160
|
+
"number_particles_class_3",
|
|
161
|
+
"number_particles_class_3_internal_data",
|
|
162
|
+
"number_particles_class_4",
|
|
163
|
+
"number_particles_class_4_internal_data",
|
|
164
|
+
"number_particles_class_5",
|
|
165
|
+
"number_particles_class_5_internal_data",
|
|
166
|
+
"number_particles_class_6",
|
|
167
|
+
"number_particles_class_6_internal_data",
|
|
168
|
+
"number_particles_class_7",
|
|
169
|
+
"number_particles_class_7_internal_data",
|
|
170
|
+
"number_particles_class_8",
|
|
171
|
+
"number_particles_class_8_internal_data",
|
|
172
|
+
"number_particles_class_9",
|
|
173
|
+
"number_particles_class_9_internal_data",
|
|
174
|
+
"TO_BE_FURTHER_PROCESSED",
|
|
175
|
+
]
|
|
176
|
+
df.columns = names
|
|
177
|
+
|
|
178
|
+
# Define datetime "time" column
|
|
179
|
+
df["time"] = df["date"] + " " + df["time"]
|
|
180
|
+
df["time"] = pd.to_datetime(df["time"], format="%Y-%m-%d %H:%M:%S", errors="coerce")
|
|
181
|
+
|
|
182
|
+
# Drop row if start_identifier different than 00
|
|
183
|
+
df = df[df["start_identifier"].astype(str) == "00"]
|
|
184
|
+
|
|
185
|
+
# Extract the last variables remained in raw_drop_number
|
|
186
|
+
df_parsed = df["TO_BE_FURTHER_PROCESSED"].str.rsplit(" ", n=5, expand=True)
|
|
187
|
+
df_parsed.columns = [
|
|
188
|
+
"raw_drop_number",
|
|
189
|
+
"air_temperature",
|
|
190
|
+
"relative_humidity",
|
|
191
|
+
"wind_speed",
|
|
192
|
+
"wind_direction",
|
|
193
|
+
"checksum",
|
|
194
|
+
]
|
|
195
|
+
|
|
196
|
+
# Assign columns to the original dataframe
|
|
197
|
+
df[df_parsed.columns] = df_parsed
|
|
198
|
+
|
|
199
|
+
# Drop rows with invalid raw_drop_number
|
|
200
|
+
# --> 440 value # 22x20
|
|
201
|
+
df = df[df["raw_drop_number"].astype(str).str.len() == 1759]
|
|
202
|
+
|
|
203
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
204
|
+
columns_to_drop = [
|
|
205
|
+
"start_identifier",
|
|
206
|
+
"device_address",
|
|
207
|
+
"sensor_serial_number",
|
|
208
|
+
"sensor_date",
|
|
209
|
+
"sensor_time",
|
|
210
|
+
"date",
|
|
211
|
+
"unknown",
|
|
212
|
+
"TO_BE_FURTHER_PROCESSED",
|
|
213
|
+
"air_temperature",
|
|
214
|
+
"relative_humidity",
|
|
215
|
+
"wind_speed",
|
|
216
|
+
"wind_direction",
|
|
217
|
+
"checksum",
|
|
218
|
+
]
|
|
219
|
+
df = df.drop(columns=columns_to_drop)
|
|
220
|
+
return df
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
@is_documented_by(reader_generic_docstring)
|
|
224
|
+
def reader(
|
|
225
|
+
filepath,
|
|
226
|
+
logger=None,
|
|
227
|
+
):
|
|
228
|
+
"""Reader."""
|
|
229
|
+
import zipfile
|
|
230
|
+
|
|
231
|
+
##------------------------------------------------------------------------.
|
|
232
|
+
# filename = os.path.basename(filepath)
|
|
233
|
+
# return read_txt_file(file=filepath, filename=filename, logger=logger)
|
|
234
|
+
|
|
235
|
+
# ---------------------------------------------------------------------.
|
|
236
|
+
#### Iterate over all files (aka timesteps) in the daily zip archive
|
|
237
|
+
# - Each file contain a single timestep !
|
|
238
|
+
# list_df = []
|
|
239
|
+
# with tempfile.TemporaryDirectory() as temp_dir:
|
|
240
|
+
# # Extract all files
|
|
241
|
+
# unzip_file_on_terminal(filepath, temp_dir)
|
|
242
|
+
|
|
243
|
+
# # Walk through extracted files
|
|
244
|
+
# for root, _, files in os.walk(temp_dir):
|
|
245
|
+
# for filename in sorted(files):
|
|
246
|
+
# if filename.endswith(".txt"):
|
|
247
|
+
# full_path = os.path.join(root, filename)
|
|
248
|
+
# try:
|
|
249
|
+
# df = read_txt_file(file=full_path, filename=filename, logger=logger)
|
|
250
|
+
# if df is not None:
|
|
251
|
+
# list_df.append(df)
|
|
252
|
+
# except Exception as e:
|
|
253
|
+
# msg = f"An error occurred while reading {filename}: {e}"
|
|
254
|
+
# log_error(logger=logger, msg=msg, verbose=True)
|
|
255
|
+
|
|
256
|
+
list_df = []
|
|
257
|
+
with zipfile.ZipFile(filepath, "r") as zip_ref:
|
|
258
|
+
filenames = sorted(zip_ref.namelist())
|
|
259
|
+
for filename in filenames:
|
|
260
|
+
if filename.endswith(".txt"):
|
|
261
|
+
# Open file
|
|
262
|
+
with zip_ref.open(filename) as file:
|
|
263
|
+
try:
|
|
264
|
+
df = read_txt_file(file=file, filename=filename, logger=logger)
|
|
265
|
+
if df is not None:
|
|
266
|
+
list_df.append(df)
|
|
267
|
+
except Exception as e:
|
|
268
|
+
msg = f"An error occurred while reading {filename}. The error is: {e}"
|
|
269
|
+
log_error(logger=logger, msg=msg, verbose=True)
|
|
270
|
+
|
|
271
|
+
# Check the zip file contains at least some non.empty files
|
|
272
|
+
if len(list_df) == 0:
|
|
273
|
+
raise ValueError(f"{filepath} contains only empty files!")
|
|
274
|
+
|
|
275
|
+
# Concatenate all dataframes into a single one
|
|
276
|
+
df = pd.concat(list_df)
|
|
277
|
+
|
|
278
|
+
# ---------------------------------------------------------------------.
|
|
279
|
+
return df
|