disdrodb 0.1.2__py3-none-any.whl → 0.1.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/__init__.py +68 -34
- disdrodb/_config.py +5 -4
- disdrodb/_version.py +16 -3
- disdrodb/accessor/__init__.py +20 -0
- disdrodb/accessor/methods.py +125 -0
- disdrodb/api/checks.py +177 -24
- disdrodb/api/configs.py +3 -3
- disdrodb/api/info.py +13 -13
- disdrodb/api/io.py +281 -22
- disdrodb/api/path.py +184 -195
- disdrodb/api/search.py +18 -9
- disdrodb/cli/disdrodb_create_summary.py +103 -0
- disdrodb/cli/disdrodb_create_summary_station.py +91 -0
- disdrodb/cli/disdrodb_run_l0.py +1 -1
- disdrodb/cli/disdrodb_run_l0_station.py +1 -1
- disdrodb/cli/disdrodb_run_l0a_station.py +1 -1
- disdrodb/cli/disdrodb_run_l0b.py +1 -1
- disdrodb/cli/disdrodb_run_l0b_station.py +3 -3
- disdrodb/cli/disdrodb_run_l0c.py +1 -1
- disdrodb/cli/disdrodb_run_l0c_station.py +3 -3
- disdrodb/cli/disdrodb_run_l1_station.py +2 -2
- disdrodb/cli/disdrodb_run_l2e_station.py +2 -2
- disdrodb/cli/disdrodb_run_l2m_station.py +2 -2
- disdrodb/configs.py +149 -4
- disdrodb/constants.py +61 -0
- disdrodb/data_transfer/download_data.py +127 -11
- disdrodb/etc/configs/attributes.yaml +339 -0
- disdrodb/etc/configs/encodings.yaml +473 -0
- disdrodb/etc/products/L1/global.yaml +13 -0
- disdrodb/etc/products/L2E/10MIN.yaml +12 -0
- disdrodb/etc/products/L2E/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/global.yaml +22 -0
- disdrodb/etc/products/L2M/10MIN.yaml +12 -0
- disdrodb/etc/products/L2M/GAMMA_ML.yaml +8 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_LOG_ND_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_ND_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_Z_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/global.yaml +26 -0
- disdrodb/issue/writer.py +2 -0
- disdrodb/l0/__init__.py +13 -0
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +4 -4
- disdrodb/l0/configs/PARSIVEL/l0b_cf_attrs.yml +1 -1
- disdrodb/l0/configs/PARSIVEL/l0b_encodings.yml +3 -3
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +1 -1
- disdrodb/l0/configs/PARSIVEL2/l0b_cf_attrs.yml +5 -5
- disdrodb/l0/configs/PARSIVEL2/l0b_encodings.yml +3 -3
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +1 -1
- disdrodb/l0/configs/PWS100/l0b_cf_attrs.yml +4 -4
- disdrodb/l0/configs/PWS100/raw_data_format.yml +1 -1
- disdrodb/l0/l0a_processing.py +37 -32
- disdrodb/l0/l0b_nc_processing.py +118 -8
- disdrodb/l0/l0b_processing.py +30 -65
- disdrodb/l0/l0c_processing.py +369 -259
- disdrodb/l0/readers/LPM/ARM/ARM_LPM.py +7 -0
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_LPM_NC.py +66 -0
- disdrodb/l0/readers/LPM/SLOVENIA/{CRNI_VRH.py → UL.py} +3 -0
- disdrodb/l0/readers/LPM/SWITZERLAND/INNERERIZ_LPM.py +195 -0
- disdrodb/l0/readers/PARSIVEL/GPM/PIERS.py +0 -2
- disdrodb/l0/readers/PARSIVEL/JAPAN/JMA.py +4 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/PECAN_MOBILE.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2009.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/ARM/ARM_PARSIVEL2.py +4 -0
- disdrodb/l0/readers/PARSIVEL2/BELGIUM/ILVO.py +168 -0
- disdrodb/l0/readers/PARSIVEL2/CANADA/UQAM_NC.py +69 -0
- disdrodb/l0/readers/PARSIVEL2/DENMARK/DTU.py +165 -0
- disdrodb/l0/readers/PARSIVEL2/FINLAND/FMI_PARSIVEL2.py +69 -0
- disdrodb/l0/readers/PARSIVEL2/FRANCE/ENPC_PARSIVEL2.py +255 -134
- disdrodb/l0/readers/PARSIVEL2/FRANCE/OSUG.py +525 -0
- disdrodb/l0/readers/PARSIVEL2/FRANCE/SIRTA_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/GPM/GCPEX.py +9 -7
- disdrodb/l0/readers/PARSIVEL2/KIT/BURKINA_FASO.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/KIT/TEAMX.py +123 -0
- disdrodb/l0/readers/PARSIVEL2/{NETHERLANDS/DELFT.py → MPI/BCO_PARSIVEL2.py} +41 -71
- disdrodb/l0/readers/PARSIVEL2/MPI/BOWTIE.py +220 -0
- disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +120 -0
- disdrodb/l0/readers/PARSIVEL2/NASA/LPVEX.py +109 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/FARM_PARSIVEL2.py +1 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/PECAN_FP3.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_MIPS.py +126 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_PIPS.py +165 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_P2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_PIPS.py +20 -12
- disdrodb/l0/readers/PARSIVEL2/NETHERLANDS/DELFT_NC.py +5 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CENER.py +144 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CR1000DL.py +201 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/LIAISE.py +137 -0
- disdrodb/l0/readers/PARSIVEL2/USA/C3WE.py +146 -0
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100.py +105 -99
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100_SIRTA.py +151 -0
- disdrodb/l1/__init__.py +5 -0
- disdrodb/l1/fall_velocity.py +46 -0
- disdrodb/l1/filters.py +34 -20
- disdrodb/l1/processing.py +46 -45
- disdrodb/l1/resampling.py +77 -66
- disdrodb/l1_env/routines.py +18 -3
- disdrodb/l2/__init__.py +7 -0
- disdrodb/l2/empirical_dsd.py +58 -10
- disdrodb/l2/processing.py +268 -117
- disdrodb/metadata/checks.py +132 -125
- disdrodb/metadata/standards.py +3 -1
- disdrodb/psd/fitting.py +631 -345
- disdrodb/psd/models.py +9 -6
- disdrodb/routines/__init__.py +54 -0
- disdrodb/{l0/routines.py → routines/l0.py} +316 -355
- disdrodb/{l1/routines.py → routines/l1.py} +76 -116
- disdrodb/routines/l2.py +1019 -0
- disdrodb/{routines.py → routines/wrappers.py} +98 -10
- disdrodb/scattering/__init__.py +16 -4
- disdrodb/scattering/axis_ratio.py +61 -37
- disdrodb/scattering/permittivity.py +504 -0
- disdrodb/scattering/routines.py +746 -184
- disdrodb/summary/__init__.py +17 -0
- disdrodb/summary/routines.py +4196 -0
- disdrodb/utils/archiving.py +434 -0
- disdrodb/utils/attrs.py +68 -125
- disdrodb/utils/cli.py +5 -5
- disdrodb/utils/compression.py +30 -1
- disdrodb/utils/dask.py +121 -9
- disdrodb/utils/dataframe.py +61 -7
- disdrodb/utils/decorators.py +31 -0
- disdrodb/utils/directories.py +35 -15
- disdrodb/utils/encoding.py +37 -19
- disdrodb/{l2 → utils}/event.py +15 -173
- disdrodb/utils/logger.py +14 -7
- disdrodb/utils/manipulations.py +81 -0
- disdrodb/utils/routines.py +166 -0
- disdrodb/utils/subsetting.py +214 -0
- disdrodb/utils/time.py +35 -177
- disdrodb/utils/writer.py +20 -7
- disdrodb/utils/xarray.py +5 -4
- disdrodb/viz/__init__.py +13 -0
- disdrodb/viz/plots.py +398 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.4.dist-info}/METADATA +4 -3
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.4.dist-info}/RECORD +139 -98
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.4.dist-info}/entry_points.txt +2 -0
- disdrodb/l1/encoding_attrs.py +0 -642
- disdrodb/l2/processing_options.py +0 -213
- disdrodb/l2/routines.py +0 -868
- /disdrodb/l0/readers/PARSIVEL/SLOVENIA/{UL_FGG.py → UL.py} +0 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.4.dist-info}/WHEEL +0 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.4.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.4.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
import numpy as np
|
|
19
|
+
import pandas as pd
|
|
20
|
+
|
|
21
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
22
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@is_documented_by(reader_generic_docstring)
|
|
26
|
+
def reader(
|
|
27
|
+
filepath,
|
|
28
|
+
logger=None,
|
|
29
|
+
):
|
|
30
|
+
"""Reader."""
|
|
31
|
+
##------------------------------------------------------------------------.
|
|
32
|
+
#### Define column names
|
|
33
|
+
column_names = ["TO_PARSE"]
|
|
34
|
+
|
|
35
|
+
##------------------------------------------------------------------------.
|
|
36
|
+
#### Define reader options
|
|
37
|
+
reader_kwargs = {}
|
|
38
|
+
# - Define delimiter
|
|
39
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
40
|
+
# - Skip first row as columns names
|
|
41
|
+
# - Define encoding
|
|
42
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
43
|
+
# - Avoid first column to become df index !!!
|
|
44
|
+
reader_kwargs["index_col"] = False
|
|
45
|
+
# - Define behaviour when encountering bad lines
|
|
46
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
47
|
+
# - Define reader engine
|
|
48
|
+
# - C engine is faster
|
|
49
|
+
# - Python engine is more feature-complete
|
|
50
|
+
reader_kwargs["engine"] = "python"
|
|
51
|
+
# - Define on-the-fly decompression of on-disk data
|
|
52
|
+
# - Available: gzip, bz2, zip
|
|
53
|
+
reader_kwargs["compression"] = "infer"
|
|
54
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
55
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
56
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
57
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
58
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
59
|
+
|
|
60
|
+
##------------------------------------------------------------------------.
|
|
61
|
+
#### Read the data
|
|
62
|
+
df = read_raw_text_file(
|
|
63
|
+
filepath=filepath,
|
|
64
|
+
column_names=column_names,
|
|
65
|
+
reader_kwargs=reader_kwargs,
|
|
66
|
+
logger=logger,
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
##------------------------------------------------------------------------.
|
|
70
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
71
|
+
# Create ID and Value columns
|
|
72
|
+
df = df["TO_PARSE"].str.split(":", expand=True, n=1)
|
|
73
|
+
df.columns = ["ID", "Value"]
|
|
74
|
+
|
|
75
|
+
# Select only rows with values
|
|
76
|
+
df = df[df["Value"].astype(bool)]
|
|
77
|
+
df = df[df["Value"].apply(lambda x: x is not None)]
|
|
78
|
+
|
|
79
|
+
# Drop rows with invalid IDs
|
|
80
|
+
# - Corrupted rows
|
|
81
|
+
valid_id_str = np.char.rjust(np.arange(0, 94).astype(str), width=2, fillchar="0")
|
|
82
|
+
df = df[df["ID"].astype(str).isin(valid_id_str)]
|
|
83
|
+
|
|
84
|
+
# Create the dataframe with each row corresponding to a timestep
|
|
85
|
+
# - Group rows based on when ID values restart
|
|
86
|
+
groups = df.groupby((df["ID"].astype(int).diff() <= 0).cumsum())
|
|
87
|
+
|
|
88
|
+
# Reshape the dataframe
|
|
89
|
+
group_dfs = []
|
|
90
|
+
for _, group in groups:
|
|
91
|
+
group_df = group.set_index("ID").T
|
|
92
|
+
group_dfs.append(group_df)
|
|
93
|
+
|
|
94
|
+
# Merge each timestep dataframe
|
|
95
|
+
# --> Missing columns are infilled by NaN
|
|
96
|
+
df = pd.concat(group_dfs, axis=0)
|
|
97
|
+
df.columns = df.columns.astype(str).str.pad(width=2, side="left", fillchar="0")
|
|
98
|
+
|
|
99
|
+
# Define available column names
|
|
100
|
+
column_dict = {
|
|
101
|
+
"01": "rainfall_rate_32bit",
|
|
102
|
+
"02": "rainfall_accumulated_32bit",
|
|
103
|
+
"03": "weather_code_synop_4680",
|
|
104
|
+
"04": "weather_code_synop_4677",
|
|
105
|
+
"05": "weather_code_metar_4678",
|
|
106
|
+
"06": "weather_code_nws",
|
|
107
|
+
"07": "reflectivity_32bit",
|
|
108
|
+
"08": "mor_visibility",
|
|
109
|
+
"09": "sample_interval",
|
|
110
|
+
"10": "laser_amplitude",
|
|
111
|
+
"11": "number_particles",
|
|
112
|
+
"12": "sensor_temperature",
|
|
113
|
+
# "13": "sensor_serial_number",
|
|
114
|
+
# "14": "firmware_iop",
|
|
115
|
+
# "15": "firmware_dsp",
|
|
116
|
+
"16": "sensor_heating_current",
|
|
117
|
+
"17": "sensor_battery_voltage",
|
|
118
|
+
"18": "sensor_status",
|
|
119
|
+
# "19": "start_time",
|
|
120
|
+
"20": "sensor_time",
|
|
121
|
+
"21": "sensor_date",
|
|
122
|
+
# "22": "station_name",
|
|
123
|
+
# "23": "station_number",
|
|
124
|
+
"24": "rainfall_amount_absolute_32bit",
|
|
125
|
+
"25": "error_code",
|
|
126
|
+
# "30": "rainfall_rate_16_bit_30",
|
|
127
|
+
# "31": "rainfall_rate_16_bit_1200",
|
|
128
|
+
# "32": "rainfall_accumulated_16bit",
|
|
129
|
+
"34": "rain_kinetic_energy",
|
|
130
|
+
"35": "snowfall_rate",
|
|
131
|
+
"90": "raw_drop_concentration",
|
|
132
|
+
"91": "raw_drop_average_velocity",
|
|
133
|
+
"93": "raw_drop_number",
|
|
134
|
+
}
|
|
135
|
+
|
|
136
|
+
# Identify missing columns and add NaN
|
|
137
|
+
expected_columns = np.array(list(column_dict.keys()))
|
|
138
|
+
missing_columns = expected_columns[np.isin(expected_columns, df.columns, invert=True)].tolist()
|
|
139
|
+
if len(missing_columns) > 0:
|
|
140
|
+
for column in missing_columns:
|
|
141
|
+
df[column] = "NaN"
|
|
142
|
+
|
|
143
|
+
# Rename columns
|
|
144
|
+
df = df.rename(column_dict, axis=1)
|
|
145
|
+
|
|
146
|
+
# Keep only columns defined in the dictionary
|
|
147
|
+
df = df[list(column_dict.values())]
|
|
148
|
+
|
|
149
|
+
# Define datetime "time" column
|
|
150
|
+
df["time"] = df["sensor_date"] + "-" + df["sensor_time"]
|
|
151
|
+
df["time"] = pd.to_datetime(df["time"], format="%d.%m.%Y-%H:%M:%S", errors="coerce")
|
|
152
|
+
|
|
153
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
154
|
+
columns_to_drop = [
|
|
155
|
+
"sensor_date",
|
|
156
|
+
"sensor_time",
|
|
157
|
+
# "firmware_iop",
|
|
158
|
+
# "firmware_dsp",
|
|
159
|
+
# "sensor_serial_number",
|
|
160
|
+
# "station_name",
|
|
161
|
+
# "station_number",
|
|
162
|
+
]
|
|
163
|
+
df = df.drop(columns=columns_to_drop)
|
|
164
|
+
|
|
165
|
+
return df
|
|
@@ -0,0 +1,69 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
"""Reader for DELFT OTT PARSIVEL2 sensor in netCDF format."""
|
|
19
|
+
|
|
20
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
21
|
+
from disdrodb.l0.l0b_nc_processing import open_raw_netcdf_file, standardize_raw_dataset
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@is_documented_by(reader_generic_docstring)
|
|
25
|
+
def reader(
|
|
26
|
+
filepath,
|
|
27
|
+
logger=None,
|
|
28
|
+
):
|
|
29
|
+
"""Reader."""
|
|
30
|
+
##------------------------------------------------------------------------.
|
|
31
|
+
#### Open the netCDF
|
|
32
|
+
ds = open_raw_netcdf_file(filepath=filepath, logger=logger)
|
|
33
|
+
|
|
34
|
+
##------------------------------------------------------------------------.
|
|
35
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
36
|
+
# Define dictionary mapping dataset variables to select and rename
|
|
37
|
+
dict_names = {
|
|
38
|
+
### Dimensions
|
|
39
|
+
"diameter": "diameter_bin_center",
|
|
40
|
+
"velocity": "velocity_bin_center",
|
|
41
|
+
### Variables
|
|
42
|
+
"rainfall_rate_32bit": "rainfall_rate_32bit",
|
|
43
|
+
"synop_WaWa": "weather_code_synop_4680",
|
|
44
|
+
"synop_WW": "weather_code_synop_4677",
|
|
45
|
+
"radar_reflectivity": "reflectivity_32bit",
|
|
46
|
+
"visibility": "mor_visibility",
|
|
47
|
+
"interval": "sample_interval",
|
|
48
|
+
"sig_laser": "laser_amplitude",
|
|
49
|
+
"n_particles": "number_particles",
|
|
50
|
+
"T_sensor": "sensor_temperature",
|
|
51
|
+
"I_heating": "sensor_heating_current",
|
|
52
|
+
"V_power_supply": "sensor_battery_voltage",
|
|
53
|
+
"state_sensor": "sensor_status",
|
|
54
|
+
"error_code": "error_code",
|
|
55
|
+
"kinetic_energy": "rain_kinetic_energy",
|
|
56
|
+
"snowfall_rate": "snowfall_rate",
|
|
57
|
+
"fall_velocity": "raw_drop_average_velocity",
|
|
58
|
+
"number_concentration": "raw_drop_concentration",
|
|
59
|
+
"data_raw": "raw_drop_number",
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
# Rename dataset variables and columns and infill missing variables
|
|
63
|
+
ds = standardize_raw_dataset(ds=ds, dict_names=dict_names, sensor_name="PARSIVEL2")
|
|
64
|
+
|
|
65
|
+
# Ensure sensor_temperature in Celsius degree (as logged by sensor)
|
|
66
|
+
ds["sensor_temperature"] = ds["sensor_temperature"] - 273.15
|
|
67
|
+
|
|
68
|
+
# Return the dataset adhering to DISDRODB L0B standards
|
|
69
|
+
return ds
|
|
@@ -17,7 +17,9 @@
|
|
|
17
17
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
18
|
# -----------------------------------------------------------------------------.
|
|
19
19
|
"""DISDRODB reader for ENPC PARSIVEL2 raw text data."""
|
|
20
|
-
import
|
|
20
|
+
# import os
|
|
21
|
+
# import tempfile
|
|
22
|
+
# from disdrodb.utils.compression import unzip_file_on_terminal
|
|
21
23
|
|
|
22
24
|
import numpy as np
|
|
23
25
|
import pandas as pd
|
|
@@ -26,6 +28,232 @@ from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
|
26
28
|
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
27
29
|
from disdrodb.utils.logger import log_error
|
|
28
30
|
|
|
31
|
+
COLUMN_DICT = {
|
|
32
|
+
"01": "rainfall_rate_32bit",
|
|
33
|
+
"02": "rainfall_accumulated_32bit",
|
|
34
|
+
"03": "weather_code_synop_4680",
|
|
35
|
+
"04": "weather_code_synop_4677",
|
|
36
|
+
"05": "weather_code_metar_4678",
|
|
37
|
+
"06": "weather_code_nws",
|
|
38
|
+
"07": "reflectivity_32bit",
|
|
39
|
+
"08": "mor_visibility",
|
|
40
|
+
# "09": "sample_interval",
|
|
41
|
+
"10": "laser_amplitude",
|
|
42
|
+
"11": "number_particles",
|
|
43
|
+
"12": "sensor_temperature",
|
|
44
|
+
# "13": "sensor_serial_number",
|
|
45
|
+
# "14": "firmware_iop",
|
|
46
|
+
# "15": "firmware_dsp",
|
|
47
|
+
"16": "sensor_heating_current",
|
|
48
|
+
"17": "sensor_battery_voltage",
|
|
49
|
+
"18": "sensor_status",
|
|
50
|
+
# "19": "start_time",
|
|
51
|
+
# "20": "sensor_time",
|
|
52
|
+
# "21": "sensor_date",
|
|
53
|
+
# "22": "station_name",
|
|
54
|
+
# "23": "station_number",
|
|
55
|
+
"24": "rainfall_amount_absolute_32bit",
|
|
56
|
+
"25": "error_code",
|
|
57
|
+
"26": "sensor_temperature_pcb",
|
|
58
|
+
"27": "sensor_temperature_receiver",
|
|
59
|
+
"28": "sensor_temperature_trasmitter",
|
|
60
|
+
"30": "rainfall_rate_16_bit_30",
|
|
61
|
+
"31": "rainfall_rate_16_bit_1200",
|
|
62
|
+
"32": "rainfall_accumulated_16bit",
|
|
63
|
+
"34": "rain_kinetic_energy",
|
|
64
|
+
"35": "snowfall_rate",
|
|
65
|
+
"90": "raw_drop_concentration",
|
|
66
|
+
"91": "raw_drop_average_velocity",
|
|
67
|
+
"93": "raw_drop_number",
|
|
68
|
+
}
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
def parse_single_line_format(df, filename, logger): # noqa: ARG001
|
|
72
|
+
"""Read single-line format."""
|
|
73
|
+
# Split into lines
|
|
74
|
+
text = df["TO_PARSE"].iloc[0]
|
|
75
|
+
decoded_text = text.encode().decode("unicode_escape")
|
|
76
|
+
lines = decoded_text.splitlines() # handles \r\n, \r, \n
|
|
77
|
+
|
|
78
|
+
# Split each line at the first colon
|
|
79
|
+
data = [line.split(":", 1) for line in lines if ":" in line]
|
|
80
|
+
|
|
81
|
+
# Create the DataFrame
|
|
82
|
+
df = pd.DataFrame(data, columns=["ID", "Value"])
|
|
83
|
+
|
|
84
|
+
# Drop rows with invalid IDs
|
|
85
|
+
valid_id_str = np.char.rjust(np.arange(0, 94).astype(str), width=2, fillchar="0")
|
|
86
|
+
df = df[df["ID"].astype(str).isin(valid_id_str)]
|
|
87
|
+
|
|
88
|
+
# Select only rows with values
|
|
89
|
+
df = df[df["Value"].apply(lambda x: x is not None)]
|
|
90
|
+
|
|
91
|
+
# Reshape dataframe
|
|
92
|
+
df = df.set_index("ID").T
|
|
93
|
+
|
|
94
|
+
# Assign column names
|
|
95
|
+
df = df.rename(COLUMN_DICT, axis=1)
|
|
96
|
+
|
|
97
|
+
# Keep only columns defined in the dictionary
|
|
98
|
+
df = df.filter(items=list(COLUMN_DICT.values()))
|
|
99
|
+
|
|
100
|
+
# Infill missing columns
|
|
101
|
+
df = infill_missing_columns(df)
|
|
102
|
+
|
|
103
|
+
# Define datetime "time" column from filename
|
|
104
|
+
# Formats:
|
|
105
|
+
# - Raw_pars2_2017_12_28_23_58_30.txt
|
|
106
|
+
# - Raw_Pars_RW_turb_1_20201211_235930.txt
|
|
107
|
+
if filename.startswith("Raw_Pars_RW_turb"):
|
|
108
|
+
datetime_str = " ".join(filename.replace(".txt", "").split("_")[5:])
|
|
109
|
+
df["time"] = pd.to_datetime(datetime_str, format="%Y%m%d %H%M%S", errors="coerce")
|
|
110
|
+
else:
|
|
111
|
+
datetime_str = " ".join(filename.replace(".txt", "").split("_")[-6:])
|
|
112
|
+
df["time"] = pd.to_datetime(datetime_str, format="%Y %m %d %H %M %S", errors="coerce")
|
|
113
|
+
|
|
114
|
+
return df
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
def parse_multiline_format(df, filename):
|
|
118
|
+
"""Read multi-line format."""
|
|
119
|
+
# Create ID and Value columns
|
|
120
|
+
df = df["TO_PARSE"].str.split(":", expand=True, n=1)
|
|
121
|
+
df.columns = ["ID", "Value"]
|
|
122
|
+
|
|
123
|
+
# Drop rows with invalid IDs
|
|
124
|
+
valid_id_str = np.char.rjust(np.arange(0, 94).astype(str), width=2, fillchar="0")
|
|
125
|
+
df = df[df["ID"].astype(str).isin(valid_id_str)]
|
|
126
|
+
|
|
127
|
+
# Select only rows with values
|
|
128
|
+
df = df[df["Value"].apply(lambda x: x is not None)]
|
|
129
|
+
|
|
130
|
+
# Reshape dataframe
|
|
131
|
+
df = df.set_index("ID").T
|
|
132
|
+
|
|
133
|
+
# Assign column names
|
|
134
|
+
df = df.rename(COLUMN_DICT, axis=1)
|
|
135
|
+
|
|
136
|
+
# Keep only columns defined in the dictionary
|
|
137
|
+
df = df.filter(items=list(COLUMN_DICT.values()))
|
|
138
|
+
|
|
139
|
+
# Infill missing columns
|
|
140
|
+
df = infill_missing_columns(df)
|
|
141
|
+
|
|
142
|
+
# Define datetime "time" column from filename
|
|
143
|
+
# Formats:
|
|
144
|
+
# - Raw_pars2_2017_12_28_23_58_30.txt
|
|
145
|
+
# - Raw_Pars_RW_turb_1_20201211_235930.txt
|
|
146
|
+
if filename.startswith("Raw_Pars_RW_turb"):
|
|
147
|
+
datetime_str = " ".join(filename.replace(".txt", "").split("_")[5:])
|
|
148
|
+
df["time"] = pd.to_datetime(datetime_str, format="%Y%m%d %H%M%S")
|
|
149
|
+
else:
|
|
150
|
+
datetime_str = " ".join(filename.replace(".txt", "").split("_")[-6:])
|
|
151
|
+
df["time"] = pd.to_datetime(datetime_str, format="%Y %m %d %H %M %S")
|
|
152
|
+
|
|
153
|
+
return df
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
def parse_older_format(df, filename, logger):
|
|
157
|
+
"""Read old single-line format."""
|
|
158
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
159
|
+
df = df["TO_PARSE"].str.split(";", expand=True)
|
|
160
|
+
|
|
161
|
+
if len(df.columns) != 5 or len(df[0].iloc[0]) > 9:
|
|
162
|
+
log_error(logger, msg=f"{filename} is corrupted", verbose=False)
|
|
163
|
+
return None
|
|
164
|
+
|
|
165
|
+
names = [
|
|
166
|
+
"rainfall_rate_32bit",
|
|
167
|
+
"raw_drop_concentration",
|
|
168
|
+
"raw_drop_number",
|
|
169
|
+
"unknown",
|
|
170
|
+
"TO_SPLIT",
|
|
171
|
+
]
|
|
172
|
+
df.columns = names
|
|
173
|
+
|
|
174
|
+
# Extract and clean out additional variables
|
|
175
|
+
df["rainfall_rate_32bit"] = df["rainfall_rate_32bit"].str.strip(",")
|
|
176
|
+
df["mor_visibility"] = df["TO_SPLIT"].str.split(",", expand=True)[0]
|
|
177
|
+
|
|
178
|
+
# Define datetime "time" column from filename
|
|
179
|
+
datetime_str = " ".join(filename.replace(".txt", "").split("_")[-6:])
|
|
180
|
+
df["time"] = pd.to_datetime(datetime_str, format="%Y %m %d %H %M %S")
|
|
181
|
+
|
|
182
|
+
# # Drop columns not agreeing with DISDRODB L0 standards
|
|
183
|
+
columns_to_drop = [
|
|
184
|
+
"TO_SPLIT",
|
|
185
|
+
"unknown",
|
|
186
|
+
]
|
|
187
|
+
df = df.drop(columns=columns_to_drop)
|
|
188
|
+
|
|
189
|
+
# Infill missing columns
|
|
190
|
+
df = infill_missing_columns(df)
|
|
191
|
+
return df
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
def infill_missing_columns(df):
|
|
195
|
+
"""Infill with NaN missing columns."""
|
|
196
|
+
columns = set(COLUMN_DICT.values())
|
|
197
|
+
for c in columns:
|
|
198
|
+
if c not in df.columns:
|
|
199
|
+
df[c] = "NaN"
|
|
200
|
+
return df
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
def read_txt_file(file, filename, logger):
|
|
204
|
+
"""Parse a single txt file within the daily zip file."""
|
|
205
|
+
##------------------------------------------------------------------------.
|
|
206
|
+
#### Define column names
|
|
207
|
+
column_names = ["TO_PARSE"]
|
|
208
|
+
|
|
209
|
+
##------------------------------------------------------------------------.
|
|
210
|
+
#### Define reader options
|
|
211
|
+
reader_kwargs = {}
|
|
212
|
+
# - Define delimiter
|
|
213
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
214
|
+
# - Skip first row as columns names
|
|
215
|
+
# - Define encoding
|
|
216
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
217
|
+
# - Avoid first column to become df index !!!
|
|
218
|
+
reader_kwargs["index_col"] = False
|
|
219
|
+
# - Define behaviour when encountering bad lines
|
|
220
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
221
|
+
# - Define reader engine
|
|
222
|
+
# - C engine is faster
|
|
223
|
+
# - Python engine is more feature-complete
|
|
224
|
+
reader_kwargs["engine"] = "python"
|
|
225
|
+
# - Define on-the-fly decompression of on-disk data
|
|
226
|
+
# - Available: gzip, bz2, zip
|
|
227
|
+
reader_kwargs["compression"] = "infer"
|
|
228
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
229
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
230
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
231
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
232
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
233
|
+
|
|
234
|
+
##------------------------------------------------------------------------.
|
|
235
|
+
#### Read the data
|
|
236
|
+
df = read_raw_text_file(
|
|
237
|
+
filepath=file,
|
|
238
|
+
column_names=column_names,
|
|
239
|
+
reader_kwargs=reader_kwargs,
|
|
240
|
+
logger=logger,
|
|
241
|
+
)
|
|
242
|
+
##--------------------------------\----------------------------------------.
|
|
243
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
244
|
+
# Empty file, return None
|
|
245
|
+
if len(df) == 0:
|
|
246
|
+
raise ValueError(f"{filename} is empty.")
|
|
247
|
+
|
|
248
|
+
# Deal with different data formats
|
|
249
|
+
if len(df) == 1:
|
|
250
|
+
# If TYP in first row --> single-line new format
|
|
251
|
+
if "TYP" in df["TO_PARSE"].iloc[0]:
|
|
252
|
+
return parse_single_line_format(df, filename, logger=logger)
|
|
253
|
+
# Otherwise old format
|
|
254
|
+
return parse_older_format(df, filename, logger=logger)
|
|
255
|
+
return parse_multiline_format(df, filename)
|
|
256
|
+
|
|
29
257
|
|
|
30
258
|
@is_documented_by(reader_generic_docstring)
|
|
31
259
|
def reader(
|
|
@@ -33,141 +261,29 @@ def reader(
|
|
|
33
261
|
logger=None,
|
|
34
262
|
):
|
|
35
263
|
"""Reader."""
|
|
36
|
-
|
|
37
|
-
##------------------------------------------------------------------------.
|
|
38
|
-
#### Define function to read each txt file inside each daily zip file
|
|
39
|
-
def read_txt_file(file, filename):
|
|
40
|
-
"""Parse a single txt file within the daily zip file."""
|
|
41
|
-
##------------------------------------------------------------------------.
|
|
42
|
-
#### Define column names
|
|
43
|
-
column_names = ["TO_PARSE"]
|
|
44
|
-
|
|
45
|
-
##------------------------------------------------------------------------.
|
|
46
|
-
#### Define reader options
|
|
47
|
-
reader_kwargs = {}
|
|
48
|
-
# - Define delimiter
|
|
49
|
-
reader_kwargs["delimiter"] = "\\n"
|
|
50
|
-
# - Skip first row as columns names
|
|
51
|
-
# - Define encoding
|
|
52
|
-
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
53
|
-
# - Avoid first column to become df index !!!
|
|
54
|
-
reader_kwargs["index_col"] = False
|
|
55
|
-
# - Define behaviour when encountering bad lines
|
|
56
|
-
reader_kwargs["on_bad_lines"] = "skip"
|
|
57
|
-
# - Define reader engine
|
|
58
|
-
# - C engine is faster
|
|
59
|
-
# - Python engine is more feature-complete
|
|
60
|
-
reader_kwargs["engine"] = "python"
|
|
61
|
-
# - Define on-the-fly decompression of on-disk data
|
|
62
|
-
# - Available: gzip, bz2, zip
|
|
63
|
-
reader_kwargs["compression"] = "infer"
|
|
64
|
-
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
65
|
-
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
66
|
-
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
67
|
-
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
68
|
-
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
69
|
-
|
|
70
|
-
##------------------------------------------------------------------------.
|
|
71
|
-
#### Read the data
|
|
72
|
-
df = read_raw_text_file(
|
|
73
|
-
filepath=file,
|
|
74
|
-
column_names=column_names,
|
|
75
|
-
reader_kwargs=reader_kwargs,
|
|
76
|
-
logger=logger,
|
|
77
|
-
)
|
|
78
|
-
|
|
79
|
-
##------------------------------------------------------------------------.
|
|
80
|
-
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
81
|
-
# Create ID and Value columns
|
|
82
|
-
df = df["TO_PARSE"].str.split(":", expand=True, n=1)
|
|
83
|
-
df.columns = ["ID", "Value"]
|
|
84
|
-
|
|
85
|
-
# Select only rows with values
|
|
86
|
-
df = df[df["Value"].apply(lambda x: x is not None)]
|
|
87
|
-
|
|
88
|
-
# Drop rows with invalid IDs
|
|
89
|
-
valid_id_str = np.char.rjust(np.arange(0, 94).astype(str), width=2, fillchar="0")
|
|
90
|
-
df = df[df["ID"].astype(str).isin(valid_id_str)]
|
|
91
|
-
|
|
92
|
-
# Create the dataframe with each row corresponding to a timestep
|
|
93
|
-
# - Group rows based on when ID values restart
|
|
94
|
-
groups = df.groupby((df["ID"].astype(int).diff() <= 0).cumsum())
|
|
95
|
-
|
|
96
|
-
# Reshape the dataframe
|
|
97
|
-
group_dfs = []
|
|
98
|
-
for _, group in groups:
|
|
99
|
-
group_df = group.set_index("ID").T
|
|
100
|
-
group_dfs.append(group_df)
|
|
101
|
-
|
|
102
|
-
# Merge each timestep dataframe
|
|
103
|
-
# --> Missing columns are infilled by NaN
|
|
104
|
-
df = pd.concat(group_dfs, axis=0)
|
|
105
|
-
|
|
106
|
-
# Assign column names
|
|
107
|
-
column_dict = {
|
|
108
|
-
"01": "rainfall_rate_32bit",
|
|
109
|
-
"02": "rainfall_accumulated_32bit",
|
|
110
|
-
"03": "weather_code_synop_4680",
|
|
111
|
-
"04": "weather_code_synop_4677",
|
|
112
|
-
"05": "weather_code_metar_4678",
|
|
113
|
-
"06": "weather_code_nws",
|
|
114
|
-
"07": "reflectivity_32bit",
|
|
115
|
-
"08": "mor_visibility",
|
|
116
|
-
"09": "sample_interval",
|
|
117
|
-
"10": "laser_amplitude",
|
|
118
|
-
"11": "number_particles",
|
|
119
|
-
"12": "sensor_temperature",
|
|
120
|
-
# "13": "sensor_serial_number",
|
|
121
|
-
# "14": "firmware_iop",
|
|
122
|
-
# "15": "firmware_dsp",
|
|
123
|
-
"16": "sensor_heating_current",
|
|
124
|
-
"17": "sensor_battery_voltage",
|
|
125
|
-
"18": "sensor_status",
|
|
126
|
-
# "19": "start_time",
|
|
127
|
-
# "20": "sensor_time",
|
|
128
|
-
# "21": "sensor_date",
|
|
129
|
-
# "22": "station_name",
|
|
130
|
-
# "23": "station_number",
|
|
131
|
-
"24": "rainfall_amount_absolute_32bit",
|
|
132
|
-
"25": "error_code",
|
|
133
|
-
"26": "sensor_temperature_pcb",
|
|
134
|
-
"27": "sensor_temperature_receiver",
|
|
135
|
-
"28": "sensor_temperature_trasmitter",
|
|
136
|
-
"30": "rainfall_rate_16_bit_30",
|
|
137
|
-
"31": "rainfall_rate_16_bit_1200",
|
|
138
|
-
"32": "rainfall_accumulated_16bit",
|
|
139
|
-
"34": "rain_kinetic_energy",
|
|
140
|
-
"35": "snowfall_rate",
|
|
141
|
-
"90": "raw_drop_concentration",
|
|
142
|
-
"91": "raw_drop_average_velocity",
|
|
143
|
-
"93": "raw_drop_number",
|
|
144
|
-
}
|
|
145
|
-
|
|
146
|
-
df = df.rename(column_dict, axis=1)
|
|
147
|
-
|
|
148
|
-
# Keep only columns defined in the dictionary
|
|
149
|
-
df = df[list(column_dict.values())]
|
|
150
|
-
|
|
151
|
-
# Define datetime "time" column from filename
|
|
152
|
-
datetime_str = " ".join(filename.replace(".txt", "").split("_")[-6:])
|
|
153
|
-
df["time"] = pd.to_datetime(datetime_str, format="%Y %m %d %H %M %S")
|
|
154
|
-
|
|
155
|
-
# # Drop columns not agreeing with DISDRODB L0 standards
|
|
156
|
-
# columns_to_drop = [
|
|
157
|
-
# "sensor_date",
|
|
158
|
-
# "sensor_time",
|
|
159
|
-
# "firmware_iop",
|
|
160
|
-
# "firmware_dsp",
|
|
161
|
-
# "sensor_serial_number",
|
|
162
|
-
# "station_name",
|
|
163
|
-
# "station_number",
|
|
164
|
-
# ]
|
|
165
|
-
# df = df.drop(columns=columns_to_drop)
|
|
166
|
-
return df
|
|
264
|
+
import zipfile
|
|
167
265
|
|
|
168
266
|
# ---------------------------------------------------------------------.
|
|
169
267
|
#### Iterate over all files (aka timesteps) in the daily zip archive
|
|
170
268
|
# - Each file contain a single timestep !
|
|
269
|
+
# list_df = []
|
|
270
|
+
# with tempfile.TemporaryDirectory() as temp_dir:
|
|
271
|
+
# # Extract all files
|
|
272
|
+
# unzip_file_on_terminal(filepath, temp_dir)
|
|
273
|
+
|
|
274
|
+
# # Walk through extracted files
|
|
275
|
+
# for root, _, files in os.walk(temp_dir):
|
|
276
|
+
# for filename in sorted(files):
|
|
277
|
+
# if filename.endswith(".txt"):
|
|
278
|
+
# full_path = os.path.join(root, filename)
|
|
279
|
+
# try:
|
|
280
|
+
# df = read_txt_file(file=full_path, filename=filename, logger=logger)
|
|
281
|
+
# if df is not None:
|
|
282
|
+
# list_df.append(df)
|
|
283
|
+
# except Exception as e:
|
|
284
|
+
# msg = f"An error occurred while reading {filename}: {e}"
|
|
285
|
+
# log_error(logger=logger, msg=msg, verbose=True)
|
|
286
|
+
|
|
171
287
|
list_df = []
|
|
172
288
|
with zipfile.ZipFile(filepath, "r") as zip_ref:
|
|
173
289
|
filenames = sorted(zip_ref.namelist())
|
|
@@ -176,12 +292,17 @@ def reader(
|
|
|
176
292
|
# Open file
|
|
177
293
|
with zip_ref.open(filename) as file:
|
|
178
294
|
try:
|
|
179
|
-
df = read_txt_file(file=file, filename=filename)
|
|
180
|
-
|
|
295
|
+
df = read_txt_file(file=file, filename=filename, logger=logger)
|
|
296
|
+
if df is not None:
|
|
297
|
+
list_df.append(df)
|
|
181
298
|
except Exception as e:
|
|
182
299
|
msg = f"An error occurred while reading {filename}. The error is: {e}."
|
|
183
300
|
log_error(logger=logger, msg=msg, verbose=True)
|
|
184
301
|
|
|
302
|
+
# Check the zip file contains at least some non.empty files
|
|
303
|
+
if len(list_df) == 0:
|
|
304
|
+
raise ValueError(f"{filepath} contains only empty files!")
|
|
305
|
+
|
|
185
306
|
# Concatenate all dataframes into a single one
|
|
186
307
|
df = pd.concat(list_df)
|
|
187
308
|
|