disdrodb 0.1.2__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/__init__.py +64 -34
- disdrodb/_config.py +5 -4
- disdrodb/_version.py +16 -3
- disdrodb/accessor/__init__.py +20 -0
- disdrodb/accessor/methods.py +125 -0
- disdrodb/api/checks.py +139 -9
- disdrodb/api/configs.py +4 -2
- disdrodb/api/info.py +10 -10
- disdrodb/api/io.py +237 -18
- disdrodb/api/path.py +81 -75
- disdrodb/api/search.py +6 -6
- disdrodb/cli/disdrodb_create_summary_station.py +91 -0
- disdrodb/cli/disdrodb_run_l0.py +1 -1
- disdrodb/cli/disdrodb_run_l0_station.py +1 -1
- disdrodb/cli/disdrodb_run_l0b.py +1 -1
- disdrodb/cli/disdrodb_run_l0b_station.py +1 -1
- disdrodb/cli/disdrodb_run_l0c.py +1 -1
- disdrodb/cli/disdrodb_run_l0c_station.py +1 -1
- disdrodb/cli/disdrodb_run_l2e_station.py +1 -1
- disdrodb/configs.py +149 -4
- disdrodb/constants.py +61 -0
- disdrodb/data_transfer/download_data.py +5 -5
- disdrodb/etc/configs/attributes.yaml +339 -0
- disdrodb/etc/configs/encodings.yaml +473 -0
- disdrodb/etc/products/L1/global.yaml +13 -0
- disdrodb/etc/products/L2E/10MIN.yaml +12 -0
- disdrodb/etc/products/L2E/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/global.yaml +22 -0
- disdrodb/etc/products/L2M/10MIN.yaml +12 -0
- disdrodb/etc/products/L2M/GAMMA_ML.yaml +8 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_LOG_ND_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_ND_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_Z_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/global.yaml +26 -0
- disdrodb/l0/__init__.py +13 -0
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +4 -4
- disdrodb/l0/configs/PARSIVEL/l0b_cf_attrs.yml +1 -1
- disdrodb/l0/configs/PARSIVEL/l0b_encodings.yml +3 -3
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +1 -1
- disdrodb/l0/configs/PARSIVEL2/l0b_cf_attrs.yml +5 -5
- disdrodb/l0/configs/PARSIVEL2/l0b_encodings.yml +3 -3
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +1 -1
- disdrodb/l0/configs/PWS100/l0b_cf_attrs.yml +4 -4
- disdrodb/l0/configs/PWS100/raw_data_format.yml +1 -1
- disdrodb/l0/l0a_processing.py +30 -30
- disdrodb/l0/l0b_nc_processing.py +108 -2
- disdrodb/l0/l0b_processing.py +4 -4
- disdrodb/l0/l0c_processing.py +5 -13
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_LPM_NC.py +66 -0
- disdrodb/l0/readers/LPM/SLOVENIA/{CRNI_VRH.py → UL.py} +3 -0
- disdrodb/l0/readers/LPM/SWITZERLAND/INNERERIZ_LPM.py +195 -0
- disdrodb/l0/readers/PARSIVEL/GPM/PIERS.py +0 -2
- disdrodb/l0/readers/PARSIVEL/JAPAN/JMA.py +4 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/PECAN_MOBILE.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2009.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/BELGIUM/ILVO.py +168 -0
- disdrodb/l0/readers/PARSIVEL2/DENMARK/DTU.py +165 -0
- disdrodb/l0/readers/PARSIVEL2/FINLAND/FMI_PARSIVEL2.py +69 -0
- disdrodb/l0/readers/PARSIVEL2/FRANCE/ENPC_PARSIVEL2.py +255 -134
- disdrodb/l0/readers/PARSIVEL2/FRANCE/OSUG.py +525 -0
- disdrodb/l0/readers/PARSIVEL2/FRANCE/SIRTA_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/GPM/GCPEX.py +9 -7
- disdrodb/l0/readers/PARSIVEL2/KIT/BURKINA_FASO.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/KIT/TEAMX.py +123 -0
- disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +120 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/FARM_PARSIVEL2.py +1 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/PECAN_FP3.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_MIPS.py +126 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_PIPS.py +165 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_P2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_PIPS.py +20 -12
- disdrodb/l0/readers/PARSIVEL2/NETHERLANDS/DELFT_NC.py +2 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CENER.py +144 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CR1000DL.py +201 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/LIAISE.py +137 -0
- disdrodb/l0/readers/PARSIVEL2/{NETHERLANDS/DELFT.py → USA/C3WE.py} +65 -85
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100.py +105 -99
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100_SIRTA.py +151 -0
- disdrodb/l0/routines.py +105 -14
- disdrodb/l1/__init__.py +5 -0
- disdrodb/l1/filters.py +34 -20
- disdrodb/l1/processing.py +45 -44
- disdrodb/l1/resampling.py +77 -66
- disdrodb/l1/routines.py +35 -43
- disdrodb/l1_env/routines.py +18 -3
- disdrodb/l2/__init__.py +7 -0
- disdrodb/l2/empirical_dsd.py +58 -10
- disdrodb/l2/event.py +27 -120
- disdrodb/l2/processing.py +267 -116
- disdrodb/l2/routines.py +618 -254
- disdrodb/metadata/standards.py +3 -1
- disdrodb/psd/fitting.py +463 -144
- disdrodb/psd/models.py +8 -5
- disdrodb/routines.py +3 -3
- disdrodb/scattering/__init__.py +16 -4
- disdrodb/scattering/axis_ratio.py +56 -36
- disdrodb/scattering/permittivity.py +486 -0
- disdrodb/scattering/routines.py +701 -159
- disdrodb/summary/__init__.py +17 -0
- disdrodb/summary/routines.py +4120 -0
- disdrodb/utils/attrs.py +68 -125
- disdrodb/utils/compression.py +30 -1
- disdrodb/utils/dask.py +59 -8
- disdrodb/utils/dataframe.py +61 -7
- disdrodb/utils/directories.py +35 -15
- disdrodb/utils/encoding.py +33 -19
- disdrodb/utils/logger.py +13 -6
- disdrodb/utils/manipulations.py +71 -0
- disdrodb/utils/subsetting.py +214 -0
- disdrodb/utils/time.py +165 -19
- disdrodb/utils/writer.py +20 -7
- disdrodb/utils/xarray.py +2 -4
- disdrodb/viz/__init__.py +13 -0
- disdrodb/viz/plots.py +327 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.3.dist-info}/METADATA +3 -2
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.3.dist-info}/RECORD +121 -88
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.3.dist-info}/entry_points.txt +1 -0
- disdrodb/l1/encoding_attrs.py +0 -642
- disdrodb/l2/processing_options.py +0 -213
- /disdrodb/l0/readers/PARSIVEL/SLOVENIA/{UL_FGG.py → UL.py} +0 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.3.dist-info}/WHEEL +0 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.3.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.1.2.dist-info → disdrodb-0.1.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,144 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
import pandas as pd
|
|
19
|
+
|
|
20
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
21
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@is_documented_by(reader_generic_docstring)
|
|
25
|
+
def reader(
|
|
26
|
+
filepath,
|
|
27
|
+
logger=None,
|
|
28
|
+
):
|
|
29
|
+
"""Reader."""
|
|
30
|
+
##------------------------------------------------------------------------.
|
|
31
|
+
#### Define column names
|
|
32
|
+
column_names = ["TO_PARSE"]
|
|
33
|
+
|
|
34
|
+
##------------------------------------------------------------------------.
|
|
35
|
+
#### Define reader options
|
|
36
|
+
reader_kwargs = {}
|
|
37
|
+
# - Define delimiter
|
|
38
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
39
|
+
# - Skip first row as columns names
|
|
40
|
+
# - Define encoding
|
|
41
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
42
|
+
# - Avoid first column to become df index !!!
|
|
43
|
+
reader_kwargs["index_col"] = False
|
|
44
|
+
# - Define behaviour when encountering bad lines
|
|
45
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
46
|
+
# - Define reader engine
|
|
47
|
+
# - C engine is faster
|
|
48
|
+
# - Python engine is more feature-complete
|
|
49
|
+
reader_kwargs["engine"] = "python"
|
|
50
|
+
# - Define on-the-fly decompression of on-disk data
|
|
51
|
+
# - Available: gzip, bz2, zip
|
|
52
|
+
reader_kwargs["compression"] = "infer"
|
|
53
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
54
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
55
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
56
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
57
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
58
|
+
|
|
59
|
+
##------------------------------------------------------------------------.
|
|
60
|
+
#### Read the data
|
|
61
|
+
df = read_raw_text_file(
|
|
62
|
+
filepath=filepath,
|
|
63
|
+
column_names=column_names,
|
|
64
|
+
reader_kwargs=reader_kwargs,
|
|
65
|
+
logger=logger,
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
##------------------------------------------------------------------------.
|
|
69
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
70
|
+
# Define time
|
|
71
|
+
df = df["TO_PARSE"].str.split(",", n=2, expand=True)
|
|
72
|
+
df.columns = ["date", "time", "TO_PARSE"]
|
|
73
|
+
datetime_str = df["date"] + " " + df["time"]
|
|
74
|
+
df["time"] = pd.to_datetime(datetime_str, format="%d.%m.%Y %H:%M:%S", errors="coerce")
|
|
75
|
+
|
|
76
|
+
# Identify rows with integral variables
|
|
77
|
+
df_vars = df[df["TO_PARSE"].str.len() == 94]
|
|
78
|
+
|
|
79
|
+
# Split and assign column names
|
|
80
|
+
df_data = df_vars["TO_PARSE"].str.split(",", expand=True)
|
|
81
|
+
var_names = [
|
|
82
|
+
"rainfall_rate_32bit",
|
|
83
|
+
"rainfall_accumulated_32bit",
|
|
84
|
+
"weather_code_synop_4680",
|
|
85
|
+
"weather_code_synop_4677",
|
|
86
|
+
"reflectivity_32bit",
|
|
87
|
+
"mor_visibility",
|
|
88
|
+
"laser_amplitude",
|
|
89
|
+
"number_particles",
|
|
90
|
+
"sensor_temperature",
|
|
91
|
+
"sensor_heating_current",
|
|
92
|
+
"sensor_battery_voltage",
|
|
93
|
+
"sensor_status",
|
|
94
|
+
"sensor_serial_number",
|
|
95
|
+
"sensor_temperature_receiver",
|
|
96
|
+
"sensor_temperature_trasmitter",
|
|
97
|
+
"snowfall_rate",
|
|
98
|
+
"rain_kinetic_energy",
|
|
99
|
+
]
|
|
100
|
+
df_data.columns = var_names
|
|
101
|
+
df_data["time"] = df_vars["time"]
|
|
102
|
+
df_data = df_data.drop(columns="sensor_serial_number")
|
|
103
|
+
|
|
104
|
+
# Initialize empty arrays
|
|
105
|
+
# --> 0 values array produced in L0B
|
|
106
|
+
df_data["raw_drop_concentration"] = ""
|
|
107
|
+
df_data["raw_drop_average_velocity"] = ""
|
|
108
|
+
df_data["raw_drop_number"] = ""
|
|
109
|
+
|
|
110
|
+
# Identify raw spectrum
|
|
111
|
+
df_raw_spectrum = df[df["TO_PARSE"].str.len() == 4545]
|
|
112
|
+
|
|
113
|
+
# Derive raw drop arrays
|
|
114
|
+
def split_string(s):
|
|
115
|
+
vals = [v.strip() for v in s.split(",")]
|
|
116
|
+
c1 = ",".join(vals[:32])
|
|
117
|
+
c2 = ",".join(vals[32:64])
|
|
118
|
+
c3 = ",".join(vals[64].replace("r", "").split("/"))
|
|
119
|
+
series = pd.Series(
|
|
120
|
+
{
|
|
121
|
+
"raw_drop_concentration": c1,
|
|
122
|
+
"raw_drop_average_velocity": c2,
|
|
123
|
+
"raw_drop_number": c3,
|
|
124
|
+
},
|
|
125
|
+
)
|
|
126
|
+
return series
|
|
127
|
+
|
|
128
|
+
splitted_string = df_raw_spectrum["TO_PARSE"].apply(split_string)
|
|
129
|
+
df_raw_spectrum["raw_drop_concentration"] = splitted_string["raw_drop_concentration"]
|
|
130
|
+
df_raw_spectrum["raw_drop_average_velocity"] = splitted_string["raw_drop_average_velocity"]
|
|
131
|
+
df_raw_spectrum["raw_drop_number"] = splitted_string["raw_drop_number"]
|
|
132
|
+
df_raw_spectrum = df_raw_spectrum.drop(columns=["date", "TO_PARSE"])
|
|
133
|
+
|
|
134
|
+
# Add raw array
|
|
135
|
+
df = df_data.set_index("time")
|
|
136
|
+
df_raw_spectrum = df_raw_spectrum.set_index("time")
|
|
137
|
+
|
|
138
|
+
df.update(df_raw_spectrum)
|
|
139
|
+
|
|
140
|
+
# Set back time as column
|
|
141
|
+
df = df.reset_index()
|
|
142
|
+
|
|
143
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
144
|
+
return df
|
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
import pandas as pd
|
|
19
|
+
|
|
20
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
21
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def reader_parsivel(filepath, logger):
|
|
25
|
+
"""Reader for Parsivel CR1000 Data Logger file."""
|
|
26
|
+
##------------------------------------------------------------------------.
|
|
27
|
+
#### Define column names
|
|
28
|
+
column_names = [
|
|
29
|
+
"time",
|
|
30
|
+
"RECORD",
|
|
31
|
+
"rainfall_rate_32bit",
|
|
32
|
+
"rainfall_accumulated_32bit",
|
|
33
|
+
"weather_code_synop_4680",
|
|
34
|
+
"weather_code_synop_4677",
|
|
35
|
+
"reflectivity_32bit",
|
|
36
|
+
"mor_visibility",
|
|
37
|
+
"laser_amplitude",
|
|
38
|
+
"number_particles",
|
|
39
|
+
"sensor_temperature",
|
|
40
|
+
"sensor_heating_current",
|
|
41
|
+
"sensor_battery_voltage",
|
|
42
|
+
"sensor_status",
|
|
43
|
+
"rain_kinetic_energy",
|
|
44
|
+
"V_Batt_Min",
|
|
45
|
+
]
|
|
46
|
+
|
|
47
|
+
##------------------------------------------------------------------------.
|
|
48
|
+
#### Define reader options
|
|
49
|
+
reader_kwargs = {}
|
|
50
|
+
# - Define delimiter
|
|
51
|
+
reader_kwargs["delimiter"] = ","
|
|
52
|
+
# - Skip first row as columns names
|
|
53
|
+
reader_kwargs["header"] = None
|
|
54
|
+
# - Skip first 3 rows
|
|
55
|
+
reader_kwargs["skiprows"] = 4
|
|
56
|
+
# - Define encoding
|
|
57
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
58
|
+
# - Avoid first column to become df index !!!
|
|
59
|
+
reader_kwargs["index_col"] = False
|
|
60
|
+
# - Define behaviour when encountering bad lines
|
|
61
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
62
|
+
# - Define reader engine
|
|
63
|
+
# - C engine is faster
|
|
64
|
+
# - Python engine is more feature-complete
|
|
65
|
+
reader_kwargs["engine"] = "python"
|
|
66
|
+
# - Define on-the-fly decompression of on-disk data
|
|
67
|
+
# - Available: gzip, bz2, zip
|
|
68
|
+
reader_kwargs["compression"] = "infer"
|
|
69
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
70
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
71
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
72
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
73
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
74
|
+
|
|
75
|
+
##------------------------------------------------------------------------.
|
|
76
|
+
#### Read the data
|
|
77
|
+
df = read_raw_text_file(
|
|
78
|
+
filepath=filepath,
|
|
79
|
+
column_names=column_names,
|
|
80
|
+
reader_kwargs=reader_kwargs,
|
|
81
|
+
logger=logger,
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
##------------------------------------------------------------------------.
|
|
85
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
86
|
+
# Define time
|
|
87
|
+
df["time"] = pd.to_datetime(df["time"], format="%Y-%m-%d %H:%M:%S", errors="coerce")
|
|
88
|
+
|
|
89
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
90
|
+
df = df.drop(columns=["RECORD", "V_Batt_Min"])
|
|
91
|
+
return df
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def reader_spectrum(filepath, logger):
|
|
95
|
+
"""Reader for Spectrum CR1000 Data Logger file."""
|
|
96
|
+
##------------------------------------------------------------------------.
|
|
97
|
+
#### Define column names
|
|
98
|
+
column_names = ["TO_PARSE"]
|
|
99
|
+
|
|
100
|
+
##------------------------------------------------------------------------.
|
|
101
|
+
#### Define reader options
|
|
102
|
+
reader_kwargs = {}
|
|
103
|
+
# - Define delimiter
|
|
104
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
105
|
+
# - Skip first row as columns names
|
|
106
|
+
reader_kwargs["header"] = None
|
|
107
|
+
# - Skip first 3 rows
|
|
108
|
+
reader_kwargs["skiprows"] = 4
|
|
109
|
+
# - Define encoding
|
|
110
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
111
|
+
# - Avoid first column to become df index !!!
|
|
112
|
+
reader_kwargs["index_col"] = False
|
|
113
|
+
# - Define behaviour when encountering bad lines
|
|
114
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
115
|
+
# - Define reader engine
|
|
116
|
+
# - C engine is faster
|
|
117
|
+
# - Python engine is more feature-complete
|
|
118
|
+
reader_kwargs["engine"] = "python"
|
|
119
|
+
# - Define on-the-fly decompression of on-disk data
|
|
120
|
+
# - Available: gzip, bz2, zip
|
|
121
|
+
reader_kwargs["compression"] = "infer"
|
|
122
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
123
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
124
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
125
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
126
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
127
|
+
|
|
128
|
+
##------------------------------------------------------------------------.
|
|
129
|
+
#### Read the data
|
|
130
|
+
df = read_raw_text_file(
|
|
131
|
+
filepath=filepath,
|
|
132
|
+
column_names=column_names,
|
|
133
|
+
reader_kwargs=reader_kwargs,
|
|
134
|
+
logger=logger,
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
##------------------------------------------------------------------------.
|
|
138
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
139
|
+
# Define time
|
|
140
|
+
df = df["TO_PARSE"].str.split(",", n=2, expand=True)
|
|
141
|
+
df.columns = ["time", "RECORD", "TO_PARSE"]
|
|
142
|
+
|
|
143
|
+
df["time"] = pd.to_datetime(df["time"].str.strip('"'), format="%Y-%m-%d %H:%M:%S", errors="coerce")
|
|
144
|
+
|
|
145
|
+
# Derive raw drop arrays
|
|
146
|
+
def split_string(s):
|
|
147
|
+
vals = [v.strip() for v in s.split(",")]
|
|
148
|
+
c1 = ",".join(vals[:32]) # -10
|
|
149
|
+
c1 = c1.replace("-10", "0")
|
|
150
|
+
c2 = "0,0," + ",".join(vals[32:62])
|
|
151
|
+
c3 = ",".join(vals[62:])
|
|
152
|
+
series = pd.Series(
|
|
153
|
+
{
|
|
154
|
+
"raw_drop_concentration": c1,
|
|
155
|
+
"raw_drop_average_velocity": c2,
|
|
156
|
+
"raw_drop_number": c3,
|
|
157
|
+
},
|
|
158
|
+
)
|
|
159
|
+
return series
|
|
160
|
+
|
|
161
|
+
splitted_string = df["TO_PARSE"].apply(split_string)
|
|
162
|
+
df["raw_drop_concentration"] = splitted_string["raw_drop_concentration"]
|
|
163
|
+
df["raw_drop_average_velocity"] = splitted_string["raw_drop_average_velocity"]
|
|
164
|
+
df["raw_drop_number"] = splitted_string["raw_drop_number"]
|
|
165
|
+
|
|
166
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
167
|
+
df = df.drop(columns=["TO_PARSE", "RECORD"])
|
|
168
|
+
return df
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
@is_documented_by(reader_generic_docstring)
|
|
172
|
+
def reader(
|
|
173
|
+
filepath,
|
|
174
|
+
logger=None,
|
|
175
|
+
):
|
|
176
|
+
"""Reader."""
|
|
177
|
+
# Retrieve Spectrum filepath
|
|
178
|
+
spectrum_filepath = filepath.replace("Parsivel", "Spectre")
|
|
179
|
+
|
|
180
|
+
# Read integral variables
|
|
181
|
+
df = reader_parsivel(filepath, logger=logger)
|
|
182
|
+
|
|
183
|
+
# Initialize empty arrays
|
|
184
|
+
# --> 0 values array produced in L0B
|
|
185
|
+
df["raw_drop_concentration"] = ""
|
|
186
|
+
df["raw_drop_average_velocity"] = ""
|
|
187
|
+
df["raw_drop_number"] = ""
|
|
188
|
+
|
|
189
|
+
# Read raw spectrum for corresponding timesteps
|
|
190
|
+
df_raw_spectrum = reader_spectrum(spectrum_filepath, logger=logger)
|
|
191
|
+
|
|
192
|
+
# Add raw array to df
|
|
193
|
+
df = df.set_index("time")
|
|
194
|
+
df_raw_spectrum = df_raw_spectrum.set_index("time")
|
|
195
|
+
df.update(df_raw_spectrum)
|
|
196
|
+
|
|
197
|
+
# Set back time as column
|
|
198
|
+
df = df.reset_index()
|
|
199
|
+
|
|
200
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
201
|
+
return df
|
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
import pandas as pd
|
|
19
|
+
|
|
20
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
21
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@is_documented_by(reader_generic_docstring)
|
|
25
|
+
def reader(
|
|
26
|
+
filepath,
|
|
27
|
+
logger=None,
|
|
28
|
+
):
|
|
29
|
+
"""Reader."""
|
|
30
|
+
##------------------------------------------------------------------------.
|
|
31
|
+
#### Define column names
|
|
32
|
+
column_names = ["TO_PARSE"]
|
|
33
|
+
|
|
34
|
+
##------------------------------------------------------------------------.
|
|
35
|
+
#### Define reader options
|
|
36
|
+
reader_kwargs = {}
|
|
37
|
+
# - Define delimiter
|
|
38
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
39
|
+
# - Skip first row as columns names
|
|
40
|
+
# - Define encoding
|
|
41
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
42
|
+
# - Avoid first column to become df index !!!
|
|
43
|
+
reader_kwargs["index_col"] = False
|
|
44
|
+
# - Define behaviour when encountering bad lines
|
|
45
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
46
|
+
# - Define reader engine
|
|
47
|
+
# - C engine is faster
|
|
48
|
+
# - Python engine is more feature-complete
|
|
49
|
+
reader_kwargs["engine"] = "python"
|
|
50
|
+
# - Define on-the-fly decompression of on-disk data
|
|
51
|
+
# - Available: gzip, bz2, zip
|
|
52
|
+
reader_kwargs["compression"] = "infer"
|
|
53
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
54
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
55
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
56
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
57
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
58
|
+
|
|
59
|
+
##------------------------------------------------------------------------.
|
|
60
|
+
#### Read the data
|
|
61
|
+
df = read_raw_text_file(
|
|
62
|
+
filepath=filepath,
|
|
63
|
+
column_names=column_names,
|
|
64
|
+
reader_kwargs=reader_kwargs,
|
|
65
|
+
logger=logger,
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
##------------------------------------------------------------------------.
|
|
69
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
70
|
+
# Define time
|
|
71
|
+
df = df["TO_PARSE"].str.split(",", n=2, expand=True)
|
|
72
|
+
df.columns = ["date", "time", "TO_PARSE"]
|
|
73
|
+
datetime_str = df["date"] + " " + df["time"]
|
|
74
|
+
df["time"] = pd.to_datetime(datetime_str, format="%d.%m.%Y %H:%M:%S", errors="coerce")
|
|
75
|
+
|
|
76
|
+
# Identify rows with integral variables
|
|
77
|
+
df_vars = df[df["TO_PARSE"].str.len() == 61]
|
|
78
|
+
|
|
79
|
+
# Split and assign column names
|
|
80
|
+
df_data = df_vars["TO_PARSE"].str.split(",", expand=True)
|
|
81
|
+
var_names = [
|
|
82
|
+
"rainfall_rate_32bit",
|
|
83
|
+
"rainfall_accumulated_32bit",
|
|
84
|
+
"weather_code_synop_4680",
|
|
85
|
+
"weather_code_synop_4677",
|
|
86
|
+
"reflectivity_32bit",
|
|
87
|
+
"mor_visibility",
|
|
88
|
+
"laser_amplitude",
|
|
89
|
+
"number_particles",
|
|
90
|
+
"sensor_temperature",
|
|
91
|
+
"sensor_heating_current",
|
|
92
|
+
"sensor_battery_voltage",
|
|
93
|
+
]
|
|
94
|
+
df_data.columns = var_names
|
|
95
|
+
df_data["time"] = df_vars["time"]
|
|
96
|
+
|
|
97
|
+
# Initialize empty arrays
|
|
98
|
+
# --> 0 values array produced in L0B
|
|
99
|
+
df_data["raw_drop_concentration"] = ""
|
|
100
|
+
df_data["raw_drop_average_velocity"] = ""
|
|
101
|
+
df_data["raw_drop_number"] = ""
|
|
102
|
+
|
|
103
|
+
# Identify raw spectrum
|
|
104
|
+
df_raw_spectrum = df[df["TO_PARSE"].str.len() == 4545]
|
|
105
|
+
|
|
106
|
+
# Derive raw drop arrays
|
|
107
|
+
def split_string(s):
|
|
108
|
+
vals = [v.strip() for v in s.split(",")]
|
|
109
|
+
c1 = ",".join(vals[:32])
|
|
110
|
+
c2 = ",".join(vals[32:64])
|
|
111
|
+
c3 = ",".join(vals[64].replace("r", "").split("/"))
|
|
112
|
+
series = pd.Series(
|
|
113
|
+
{
|
|
114
|
+
"raw_drop_concentration": c1,
|
|
115
|
+
"raw_drop_average_velocity": c2,
|
|
116
|
+
"raw_drop_number": c3,
|
|
117
|
+
},
|
|
118
|
+
)
|
|
119
|
+
return series
|
|
120
|
+
|
|
121
|
+
splitted_string = df_raw_spectrum["TO_PARSE"].apply(split_string)
|
|
122
|
+
df_raw_spectrum["raw_drop_concentration"] = splitted_string["raw_drop_concentration"]
|
|
123
|
+
df_raw_spectrum["raw_drop_average_velocity"] = splitted_string["raw_drop_average_velocity"]
|
|
124
|
+
df_raw_spectrum["raw_drop_number"] = splitted_string["raw_drop_number"]
|
|
125
|
+
df_raw_spectrum = df_raw_spectrum.drop(columns=["date", "TO_PARSE"])
|
|
126
|
+
|
|
127
|
+
# Add raw array
|
|
128
|
+
df = df_data.set_index("time")
|
|
129
|
+
df_raw_spectrum = df_raw_spectrum.set_index("time")
|
|
130
|
+
|
|
131
|
+
df.update(df_raw_spectrum)
|
|
132
|
+
|
|
133
|
+
# Set back time as column
|
|
134
|
+
df = df.reset_index()
|
|
135
|
+
|
|
136
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
137
|
+
return df
|
|
@@ -29,33 +29,34 @@ def reader(
|
|
|
29
29
|
"""Reader."""
|
|
30
30
|
##------------------------------------------------------------------------.
|
|
31
31
|
#### Define column names
|
|
32
|
-
column_names = ["
|
|
32
|
+
column_names = ["TO_PARSE"]
|
|
33
33
|
|
|
34
34
|
##------------------------------------------------------------------------.
|
|
35
35
|
#### Define reader options
|
|
36
36
|
reader_kwargs = {}
|
|
37
|
-
#
|
|
38
|
-
reader_kwargs["delimiter"] = ";"
|
|
39
|
-
# - Skip first row as columns names
|
|
37
|
+
# Skip first row as columns names
|
|
40
38
|
reader_kwargs["header"] = None
|
|
41
|
-
#
|
|
39
|
+
# Skip file with encoding errors
|
|
40
|
+
reader_kwargs["encoding_errors"] = "ignore"
|
|
41
|
+
# - Define delimiter
|
|
42
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
43
|
+
# - Avoid first column to become df index !!!
|
|
42
44
|
reader_kwargs["index_col"] = False
|
|
43
45
|
# - Define behaviour when encountering bad lines
|
|
44
46
|
reader_kwargs["on_bad_lines"] = "skip"
|
|
45
|
-
# - Define
|
|
47
|
+
# - Define reader engine
|
|
46
48
|
# - C engine is faster
|
|
47
49
|
# - Python engine is more feature-complete
|
|
48
50
|
reader_kwargs["engine"] = "python"
|
|
49
51
|
# - Define on-the-fly decompression of on-disk data
|
|
50
52
|
# - Available: gzip, bz2, zip
|
|
51
53
|
reader_kwargs["compression"] = "infer"
|
|
52
|
-
# reader_kwargs['zipped'] = False
|
|
53
|
-
# reader_kwargs['zipped'] = True
|
|
54
54
|
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
55
55
|
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
56
56
|
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
57
57
|
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
58
|
-
reader_kwargs["na_values"] = ["na", "", "error", "
|
|
58
|
+
reader_kwargs["na_values"] = ["na", "", "error", "NA", "-.-"]
|
|
59
|
+
|
|
59
60
|
##------------------------------------------------------------------------.
|
|
60
61
|
#### Read the data
|
|
61
62
|
df = read_raw_text_file(
|
|
@@ -67,98 +68,77 @@ def reader(
|
|
|
67
68
|
|
|
68
69
|
##------------------------------------------------------------------------.
|
|
69
70
|
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
70
|
-
#
|
|
71
|
-
|
|
72
|
-
# Remove rows that have a corrupted "TO_BE_PARSED" column
|
|
73
|
-
# - PAR001, PAR002 have length 3726 (no station_name)
|
|
74
|
-
# - PAR007 have length 3736 ()
|
|
75
|
-
df = df.loc[df["TO_BE_PARSED"].astype(str).str.len() >= 3726]
|
|
76
|
-
df = df.loc[df["TO_BE_PARSED"].astype(str).str.len() <= 3736]
|
|
71
|
+
# Define 'time' datetime
|
|
77
72
|
|
|
78
|
-
#
|
|
79
|
-
|
|
73
|
+
# Split the columns
|
|
74
|
+
df["TO_PARSE"].iloc[0:5].str.split(";", n=16, expand=True).iloc[0]
|
|
80
75
|
|
|
81
|
-
|
|
82
|
-
df["TO_BE_PARSED"] = df["TO_BE_PARSED"].str.lstrip("b'").str.rstrip("'").str.rstrip("\\r\\n'") # noqa: B005
|
|
83
|
-
|
|
84
|
-
# Split the column 'TO_BE_PARSED'
|
|
85
|
-
df_to_parse = df["TO_BE_PARSED"].str.split(";", expand=True, n=99)
|
|
86
|
-
|
|
87
|
-
# Retrieve DISDRODB compliant columns
|
|
88
|
-
df = df_to_parse.iloc[:, 0:35]
|
|
76
|
+
df = df["TO_PARSE"].str.split(";", n=16, expand=True)
|
|
89
77
|
|
|
90
78
|
# Assign column names
|
|
91
|
-
|
|
92
|
-
"rainfall_rate_32bit",
|
|
93
|
-
"rainfall_accumulated_32bit",
|
|
94
|
-
"weather_code_synop_4680",
|
|
95
|
-
"weather_code_synop_4677",
|
|
96
|
-
"weather_code_metar_4678",
|
|
97
|
-
"weather_code_nws",
|
|
98
|
-
"reflectivity_32bit",
|
|
99
|
-
"mor_visibility",
|
|
100
|
-
"sample_interval",
|
|
101
|
-
"laser_amplitude",
|
|
102
|
-
"number_particles",
|
|
103
|
-
"sensor_temperature",
|
|
79
|
+
names = [
|
|
104
80
|
"sensor_serial_number",
|
|
105
|
-
"
|
|
106
|
-
"
|
|
81
|
+
"sensor_status",
|
|
82
|
+
"laser_amplitude",
|
|
107
83
|
"sensor_heating_current",
|
|
108
84
|
"sensor_battery_voltage",
|
|
109
|
-
"
|
|
110
|
-
"sensor_time_measurement_start",
|
|
85
|
+
"dummy_date",
|
|
111
86
|
"sensor_time",
|
|
112
87
|
"sensor_date",
|
|
113
|
-
"
|
|
114
|
-
"
|
|
115
|
-
"
|
|
116
|
-
"
|
|
117
|
-
"sensor_temperature_pcb",
|
|
118
|
-
"sensor_temperature_receiver",
|
|
119
|
-
"sensor_temperature_trasmitter",
|
|
120
|
-
"rainfall_rate_16_bit_30",
|
|
121
|
-
"rainfall_rate_16_bit_1200",
|
|
88
|
+
"sensor_temperature",
|
|
89
|
+
"number_particles",
|
|
90
|
+
"rainfall_rate_32bit",
|
|
91
|
+
"reflectivity_32bit",
|
|
122
92
|
"rainfall_accumulated_16bit",
|
|
123
|
-
"
|
|
124
|
-
"
|
|
125
|
-
"
|
|
126
|
-
"
|
|
127
|
-
# "number_particles_all_detected",
|
|
93
|
+
"mor_visibility",
|
|
94
|
+
"weather_code_synop_4680",
|
|
95
|
+
"weather_code_synop_4677",
|
|
96
|
+
"TO_SPLIT",
|
|
128
97
|
]
|
|
129
|
-
df.columns =
|
|
130
|
-
|
|
131
|
-
#
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
98
|
+
df.columns = names
|
|
99
|
+
|
|
100
|
+
# Derive raw drop arrays
|
|
101
|
+
def split_string(s):
|
|
102
|
+
vals = [v.strip() for v in s.split(";")]
|
|
103
|
+
c1 = ";".join(vals[:32])
|
|
104
|
+
c2 = ";".join(vals[32:64])
|
|
105
|
+
c3 = ";".join(vals[64:1088])
|
|
106
|
+
c4 = vals[1088]
|
|
107
|
+
c5 = vals[1089]
|
|
108
|
+
series = pd.Series(
|
|
109
|
+
{
|
|
110
|
+
"raw_drop_concentration": c1,
|
|
111
|
+
"raw_drop_average_velocity": c2,
|
|
112
|
+
"raw_drop_number": c3,
|
|
113
|
+
"rain_kinetic_energy": c4,
|
|
114
|
+
"CHECK_EMPTY": c5,
|
|
115
|
+
},
|
|
116
|
+
)
|
|
117
|
+
return series
|
|
118
|
+
|
|
119
|
+
splitted_string = df["TO_SPLIT"].apply(split_string)
|
|
120
|
+
df["raw_drop_concentration"] = splitted_string["raw_drop_concentration"]
|
|
121
|
+
df["raw_drop_average_velocity"] = splitted_string["raw_drop_average_velocity"]
|
|
122
|
+
df["raw_drop_number"] = splitted_string["raw_drop_number"]
|
|
123
|
+
df["rain_kinetic_energy"] = splitted_string["rain_kinetic_energy"]
|
|
124
|
+
df["CHECK_EMPTY"] = splitted_string["CHECK_EMPTY"]
|
|
125
|
+
|
|
126
|
+
# Ensure valid observation
|
|
127
|
+
df = df[df["CHECK_EMPTY"] == ""]
|
|
128
|
+
|
|
129
|
+
# Add the time column
|
|
130
|
+
time_str = df["sensor_date"] + "-" + df["sensor_time"]
|
|
131
|
+
df["time"] = pd.to_datetime(time_str, format="%d.%m.%Y-%H:%M:%S", errors="coerce")
|
|
149
132
|
|
|
150
133
|
# Drop columns not agreeing with DISDRODB L0 standards
|
|
151
134
|
columns_to_drop = [
|
|
152
|
-
"
|
|
153
|
-
"firmware_dsp",
|
|
154
|
-
"sensor_time_measurement_start",
|
|
155
|
-
"sensor_time",
|
|
135
|
+
"dummy_date",
|
|
156
136
|
"sensor_date",
|
|
157
|
-
"
|
|
158
|
-
"station_number",
|
|
159
|
-
"sensor_serial_number",
|
|
137
|
+
"sensor_time",
|
|
160
138
|
"sensor_serial_number",
|
|
161
|
-
|
|
139
|
+
"rainfall_accumulated_16bit", # unexpected format
|
|
140
|
+
"CHECK_EMPTY",
|
|
141
|
+
"TO_SPLIT",
|
|
162
142
|
]
|
|
163
143
|
df = df.drop(columns=columns_to_drop)
|
|
164
144
|
|