disdrodb 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/__init__.py +64 -34
- disdrodb/_config.py +5 -4
- disdrodb/_version.py +16 -3
- disdrodb/accessor/__init__.py +20 -0
- disdrodb/accessor/methods.py +125 -0
- disdrodb/api/checks.py +139 -9
- disdrodb/api/configs.py +4 -2
- disdrodb/api/info.py +10 -10
- disdrodb/api/io.py +237 -18
- disdrodb/api/path.py +81 -75
- disdrodb/api/search.py +6 -6
- disdrodb/cli/disdrodb_create_summary_station.py +91 -0
- disdrodb/cli/disdrodb_run_l0.py +1 -1
- disdrodb/cli/disdrodb_run_l0_station.py +1 -1
- disdrodb/cli/disdrodb_run_l0b.py +1 -1
- disdrodb/cli/disdrodb_run_l0b_station.py +1 -1
- disdrodb/cli/disdrodb_run_l0c.py +1 -1
- disdrodb/cli/disdrodb_run_l0c_station.py +1 -1
- disdrodb/cli/disdrodb_run_l2e_station.py +1 -1
- disdrodb/configs.py +149 -4
- disdrodb/constants.py +61 -0
- disdrodb/data_transfer/download_data.py +145 -14
- disdrodb/etc/configs/attributes.yaml +339 -0
- disdrodb/etc/configs/encodings.yaml +473 -0
- disdrodb/etc/products/L1/global.yaml +13 -0
- disdrodb/etc/products/L2E/10MIN.yaml +12 -0
- disdrodb/etc/products/L2E/1MIN.yaml +1 -0
- disdrodb/etc/products/L2E/global.yaml +22 -0
- disdrodb/etc/products/L2M/10MIN.yaml +12 -0
- disdrodb/etc/products/L2M/GAMMA_ML.yaml +8 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_LOG_ND_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_ND_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/NGAMMA_GS_Z_MAE.yaml +6 -0
- disdrodb/etc/products/L2M/global.yaml +26 -0
- disdrodb/l0/__init__.py +13 -0
- disdrodb/l0/configs/LPM/bins_diameter.yml +3 -3
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +4 -4
- disdrodb/l0/configs/PARSIVEL/l0b_cf_attrs.yml +1 -1
- disdrodb/l0/configs/PARSIVEL/l0b_encodings.yml +3 -3
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +1 -1
- disdrodb/l0/configs/PARSIVEL2/l0a_encodings.yml +4 -0
- disdrodb/l0/configs/PARSIVEL2/l0b_cf_attrs.yml +20 -4
- disdrodb/l0/configs/PARSIVEL2/l0b_encodings.yml +44 -3
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +41 -1
- disdrodb/l0/configs/PWS100/l0b_cf_attrs.yml +4 -4
- disdrodb/l0/configs/PWS100/raw_data_format.yml +1 -1
- disdrodb/l0/l0a_processing.py +30 -30
- disdrodb/l0/l0b_nc_processing.py +108 -2
- disdrodb/l0/l0b_processing.py +4 -4
- disdrodb/l0/l0c_processing.py +5 -13
- disdrodb/l0/manuals/SWS250.pdf +0 -0
- disdrodb/l0/manuals/VPF730.pdf +0 -0
- disdrodb/l0/manuals/VPF750.pdf +0 -0
- disdrodb/l0/readers/LPM/NETHERLANDS/DELFT_LPM_NC.py +66 -0
- disdrodb/l0/readers/LPM/SLOVENIA/{CRNI_VRH.py → UL.py} +3 -0
- disdrodb/l0/readers/LPM/SWITZERLAND/INNERERIZ_LPM.py +195 -0
- disdrodb/l0/readers/PARSIVEL/GPM/PIERS.py +105 -0
- disdrodb/l0/readers/PARSIVEL/JAPAN/JMA.py +128 -0
- disdrodb/l0/readers/PARSIVEL/NCAR/PECAN_MOBILE.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2009.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/BELGIUM/ILVO.py +168 -0
- disdrodb/l0/readers/PARSIVEL2/DENMARK/DTU.py +165 -0
- disdrodb/l0/readers/PARSIVEL2/FINLAND/FMI_PARSIVEL2.py +69 -0
- disdrodb/l0/readers/PARSIVEL2/FRANCE/ENPC_PARSIVEL2.py +255 -134
- disdrodb/l0/readers/PARSIVEL2/FRANCE/OSUG.py +525 -0
- disdrodb/l0/readers/PARSIVEL2/FRANCE/SIRTA_PARSIVEL2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/GPM/GCPEX.py +9 -7
- disdrodb/l0/readers/{PARSIVEL → PARSIVEL2}/KIT/BURKINA_FASO.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/KIT/TEAMX.py +123 -0
- disdrodb/l0/readers/PARSIVEL2/NASA/APU.py +120 -0
- disdrodb/l0/readers/PARSIVEL2/{NETHERLANDS/DELFT.py → NCAR/FARM_PARSIVEL2.py} +43 -70
- disdrodb/l0/readers/PARSIVEL2/NCAR/PECAN_FP3.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_MIPS.py +126 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/PERILS_PIPS.py +165 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_P2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_PIPS.py +29 -12
- disdrodb/l0/readers/PARSIVEL2/NETHERLANDS/DELFT_NC.py +69 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CENER.py +144 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/CR1000DL.py +201 -0
- disdrodb/l0/readers/PARSIVEL2/SPAIN/LIAISE.py +137 -0
- disdrodb/l0/readers/PARSIVEL2/USA/C3WE.py +146 -0
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100.py +105 -99
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100_SIRTA.py +151 -0
- disdrodb/l0/readers/RD80/NOAA/PSL_RD80.py +31 -14
- disdrodb/l0/routines.py +105 -14
- disdrodb/l1/__init__.py +5 -0
- disdrodb/l1/filters.py +34 -20
- disdrodb/l1/processing.py +45 -44
- disdrodb/l1/resampling.py +77 -66
- disdrodb/l1/routines.py +35 -42
- disdrodb/l1_env/routines.py +18 -3
- disdrodb/l2/__init__.py +7 -0
- disdrodb/l2/empirical_dsd.py +58 -10
- disdrodb/l2/event.py +27 -120
- disdrodb/l2/processing.py +267 -116
- disdrodb/l2/routines.py +618 -254
- disdrodb/metadata/standards.py +3 -1
- disdrodb/psd/fitting.py +463 -144
- disdrodb/psd/models.py +8 -5
- disdrodb/routines.py +3 -3
- disdrodb/scattering/__init__.py +16 -4
- disdrodb/scattering/axis_ratio.py +56 -36
- disdrodb/scattering/permittivity.py +486 -0
- disdrodb/scattering/routines.py +701 -159
- disdrodb/summary/__init__.py +17 -0
- disdrodb/summary/routines.py +4120 -0
- disdrodb/utils/attrs.py +68 -125
- disdrodb/utils/compression.py +30 -1
- disdrodb/utils/dask.py +59 -8
- disdrodb/utils/dataframe.py +63 -9
- disdrodb/utils/directories.py +49 -17
- disdrodb/utils/encoding.py +33 -19
- disdrodb/utils/logger.py +13 -6
- disdrodb/utils/manipulations.py +71 -0
- disdrodb/utils/subsetting.py +214 -0
- disdrodb/utils/time.py +165 -19
- disdrodb/utils/writer.py +20 -7
- disdrodb/utils/xarray.py +85 -4
- disdrodb/viz/__init__.py +13 -0
- disdrodb/viz/plots.py +327 -0
- {disdrodb-0.1.1.dist-info → disdrodb-0.1.3.dist-info}/METADATA +3 -2
- {disdrodb-0.1.1.dist-info → disdrodb-0.1.3.dist-info}/RECORD +127 -87
- {disdrodb-0.1.1.dist-info → disdrodb-0.1.3.dist-info}/entry_points.txt +1 -0
- disdrodb/l1/encoding_attrs.py +0 -635
- disdrodb/l2/processing_options.py +0 -213
- /disdrodb/l0/readers/PARSIVEL/SLOVENIA/{UL_FGG.py → UL.py} +0 -0
- {disdrodb-0.1.1.dist-info → disdrodb-0.1.3.dist-info}/WHEEL +0 -0
- {disdrodb-0.1.1.dist-info → disdrodb-0.1.3.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.1.1.dist-info → disdrodb-0.1.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,195 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
# -----------------------------------------------------------------------------.
|
|
4
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
5
|
+
#
|
|
6
|
+
# This program is free software: you can redistribute it and/or modify
|
|
7
|
+
# it under the terms of the GNU General Public License as published by
|
|
8
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
9
|
+
# (at your option) any later version.
|
|
10
|
+
#
|
|
11
|
+
# This program is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
14
|
+
# GNU General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# You should have received a copy of the GNU General Public License
|
|
17
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
|
+
# -----------------------------------------------------------------------------.
|
|
19
|
+
"""DISDRODB reader for GID LPM sensors not measuring wind."""
|
|
20
|
+
import pandas as pd
|
|
21
|
+
|
|
22
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
23
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@is_documented_by(reader_generic_docstring)
|
|
27
|
+
def reader(
|
|
28
|
+
filepath,
|
|
29
|
+
logger=None,
|
|
30
|
+
):
|
|
31
|
+
"""Reader."""
|
|
32
|
+
##------------------------------------------------------------------------.
|
|
33
|
+
#### - Define raw data headers
|
|
34
|
+
column_names = ["TO_BE_SPLITTED"]
|
|
35
|
+
|
|
36
|
+
##------------------------------------------------------------------------.
|
|
37
|
+
#### Define reader options
|
|
38
|
+
# - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
|
|
39
|
+
reader_kwargs = {}
|
|
40
|
+
|
|
41
|
+
# - Define delimiter
|
|
42
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
43
|
+
|
|
44
|
+
# - Avoid first column to become df index !!!
|
|
45
|
+
reader_kwargs["index_col"] = False
|
|
46
|
+
|
|
47
|
+
# Since column names are expected to be passed explicitly, header is set to None
|
|
48
|
+
reader_kwargs["header"] = None
|
|
49
|
+
|
|
50
|
+
# - Number of rows to be skipped at the beginning of the file
|
|
51
|
+
reader_kwargs["skiprows"] = None
|
|
52
|
+
|
|
53
|
+
# - Define behaviour when encountering bad lines
|
|
54
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
55
|
+
|
|
56
|
+
# - Define reader engine
|
|
57
|
+
# - C engine is faster
|
|
58
|
+
# - Python engine is more feature-complete
|
|
59
|
+
reader_kwargs["engine"] = "python"
|
|
60
|
+
|
|
61
|
+
# - Define on-the-fly decompression of on-disk data
|
|
62
|
+
# - Available: gzip, bz2, zip
|
|
63
|
+
reader_kwargs["compression"] = "infer"
|
|
64
|
+
|
|
65
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
66
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
67
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
68
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
69
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
70
|
+
|
|
71
|
+
##------------------------------------------------------------------------.
|
|
72
|
+
#### Read the data
|
|
73
|
+
df = read_raw_text_file(
|
|
74
|
+
filepath=filepath,
|
|
75
|
+
column_names=column_names,
|
|
76
|
+
reader_kwargs=reader_kwargs,
|
|
77
|
+
logger=logger,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
##------------------------------------------------------------------------.
|
|
81
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
82
|
+
# Count number of delimiters to identify valid rows
|
|
83
|
+
df = df[df["TO_BE_SPLITTED"].str.count(";") == 520]
|
|
84
|
+
|
|
85
|
+
# Split by ; delimiter (before raw drop number)
|
|
86
|
+
df = df["TO_BE_SPLITTED"].str.split(";", expand=True, n=79)
|
|
87
|
+
|
|
88
|
+
# Assign column names
|
|
89
|
+
column_names = [
|
|
90
|
+
"start_identifier",
|
|
91
|
+
"device_address",
|
|
92
|
+
"sensor_serial_number",
|
|
93
|
+
"sensor_date",
|
|
94
|
+
"sensor_time",
|
|
95
|
+
"weather_code_synop_4677_5min",
|
|
96
|
+
"weather_code_synop_4680_5min",
|
|
97
|
+
"weather_code_metar_4678_5min",
|
|
98
|
+
"precipitation_rate_5min",
|
|
99
|
+
"weather_code_synop_4677",
|
|
100
|
+
"weather_code_synop_4680",
|
|
101
|
+
"weather_code_metar_4678",
|
|
102
|
+
"precipitation_rate",
|
|
103
|
+
"rainfall_rate",
|
|
104
|
+
"snowfall_rate",
|
|
105
|
+
"precipitation_accumulated",
|
|
106
|
+
"mor_visibility",
|
|
107
|
+
"reflectivity",
|
|
108
|
+
"quality_index",
|
|
109
|
+
"max_hail_diameter",
|
|
110
|
+
"laser_status",
|
|
111
|
+
"static_signal",
|
|
112
|
+
"laser_temperature_analog_status",
|
|
113
|
+
"laser_temperature_digital_status",
|
|
114
|
+
"laser_current_analog_status",
|
|
115
|
+
"laser_current_digital_status",
|
|
116
|
+
"sensor_voltage_supply_status",
|
|
117
|
+
"current_heating_pane_transmitter_head_status",
|
|
118
|
+
"current_heating_pane_receiver_head_status",
|
|
119
|
+
"temperature_sensor_status",
|
|
120
|
+
"current_heating_voltage_supply_status",
|
|
121
|
+
"current_heating_house_status",
|
|
122
|
+
"current_heating_heads_status",
|
|
123
|
+
"current_heating_carriers_status",
|
|
124
|
+
"control_output_laser_power_status",
|
|
125
|
+
"reserve_status",
|
|
126
|
+
"temperature_interior",
|
|
127
|
+
"laser_temperature",
|
|
128
|
+
"laser_current_average",
|
|
129
|
+
"control_voltage",
|
|
130
|
+
"optical_control_voltage_output",
|
|
131
|
+
"sensor_voltage_supply",
|
|
132
|
+
"current_heating_pane_transmitter_head",
|
|
133
|
+
"current_heating_pane_receiver_head",
|
|
134
|
+
"temperature_ambient",
|
|
135
|
+
"current_heating_voltage_supply",
|
|
136
|
+
"current_heating_house",
|
|
137
|
+
"current_heating_heads",
|
|
138
|
+
"current_heating_carriers",
|
|
139
|
+
"number_particles",
|
|
140
|
+
"number_particles_internal_data",
|
|
141
|
+
"number_particles_min_speed",
|
|
142
|
+
"number_particles_min_speed_internal_data",
|
|
143
|
+
"number_particles_max_speed",
|
|
144
|
+
"number_particles_max_speed_internal_data",
|
|
145
|
+
"number_particles_min_diameter",
|
|
146
|
+
"number_particles_min_diameter_internal_data",
|
|
147
|
+
"number_particles_no_hydrometeor",
|
|
148
|
+
"number_particles_no_hydrometeor_internal_data",
|
|
149
|
+
"number_particles_unknown_classification",
|
|
150
|
+
"number_particles_unknown_classification_internal_data",
|
|
151
|
+
"number_particles_class_1",
|
|
152
|
+
"number_particles_class_1_internal_data",
|
|
153
|
+
"number_particles_class_2",
|
|
154
|
+
"number_particles_class_2_internal_data",
|
|
155
|
+
"number_particles_class_3",
|
|
156
|
+
"number_particles_class_3_internal_data",
|
|
157
|
+
"number_particles_class_4",
|
|
158
|
+
"number_particles_class_4_internal_data",
|
|
159
|
+
"number_particles_class_5",
|
|
160
|
+
"number_particles_class_5_internal_data",
|
|
161
|
+
"number_particles_class_6",
|
|
162
|
+
"number_particles_class_6_internal_data",
|
|
163
|
+
"number_particles_class_7",
|
|
164
|
+
"number_particles_class_7_internal_data",
|
|
165
|
+
"number_particles_class_8",
|
|
166
|
+
"number_particles_class_8_internal_data",
|
|
167
|
+
"number_particles_class_9",
|
|
168
|
+
"number_particles_class_9_internal_data",
|
|
169
|
+
"raw_drop_number",
|
|
170
|
+
]
|
|
171
|
+
df.columns = column_names
|
|
172
|
+
|
|
173
|
+
# Remove checksum from raw_drop_number
|
|
174
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.rsplit(";", n=2, expand=True)[0]
|
|
175
|
+
|
|
176
|
+
# Define datetime "time" column
|
|
177
|
+
df["time"] = df["sensor_date"] + "-" + df["sensor_time"]
|
|
178
|
+
df["time"] = pd.to_datetime(df["time"], format="%d.%m.%y-%H:%M:%S", errors="coerce")
|
|
179
|
+
|
|
180
|
+
# Drop row if start_identifier different than 00
|
|
181
|
+
df = df[df["start_identifier"].astype(str) == "00"]
|
|
182
|
+
|
|
183
|
+
# Drop rows with invalid raw_drop_number
|
|
184
|
+
df = df[df["raw_drop_number"].astype(str).str.len() == 1759]
|
|
185
|
+
|
|
186
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
187
|
+
columns_to_drop = [
|
|
188
|
+
"start_identifier",
|
|
189
|
+
"device_address",
|
|
190
|
+
"sensor_serial_number",
|
|
191
|
+
"sensor_date",
|
|
192
|
+
"sensor_time",
|
|
193
|
+
]
|
|
194
|
+
df = df.drop(columns=columns_to_drop)
|
|
195
|
+
return df
|
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
import pandas as pd
|
|
19
|
+
|
|
20
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
21
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@is_documented_by(reader_generic_docstring)
|
|
25
|
+
def reader(
|
|
26
|
+
filepath,
|
|
27
|
+
logger=None,
|
|
28
|
+
):
|
|
29
|
+
"""Reader."""
|
|
30
|
+
##------------------------------------------------------------------------.
|
|
31
|
+
#### Define column names
|
|
32
|
+
column_names = ["time", "TO_BE_SPLITTED"]
|
|
33
|
+
|
|
34
|
+
##------------------------------------------------------------------------.
|
|
35
|
+
#### Define reader options
|
|
36
|
+
reader_kwargs = {}
|
|
37
|
+
# - Define delimiter
|
|
38
|
+
reader_kwargs["delimiter"] = ";"
|
|
39
|
+
# - Skip first row as columns names
|
|
40
|
+
reader_kwargs["header"] = None
|
|
41
|
+
reader_kwargs["skiprows"] = 0
|
|
42
|
+
# - Skip file with encoding errors
|
|
43
|
+
reader_kwargs["encoding_errors"] = "ignore"
|
|
44
|
+
# - Avoid first column to become df index !!!
|
|
45
|
+
reader_kwargs["index_col"] = False
|
|
46
|
+
# - Define behaviour when encountering bad lines
|
|
47
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
48
|
+
# - Define reader engine
|
|
49
|
+
# - C engine is faster
|
|
50
|
+
# - Python engine is more feature-complete
|
|
51
|
+
reader_kwargs["engine"] = "python"
|
|
52
|
+
# - Define on-the-fly decompression of on-disk data
|
|
53
|
+
# - Available: gzip, bz2, zip
|
|
54
|
+
reader_kwargs["compression"] = "infer"
|
|
55
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
56
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
57
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
58
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
59
|
+
reader_kwargs["na_values"] = ["na", "", "error", "NA", "-.-"]
|
|
60
|
+
|
|
61
|
+
##------------------------------------------------------------------------.
|
|
62
|
+
#### Read the data
|
|
63
|
+
df = read_raw_text_file(
|
|
64
|
+
filepath=filepath,
|
|
65
|
+
column_names=column_names,
|
|
66
|
+
reader_kwargs=reader_kwargs,
|
|
67
|
+
logger=logger,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
##------------------------------------------------------------------------.
|
|
71
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
72
|
+
# Convert time column to datetime
|
|
73
|
+
df_time = pd.to_datetime(df["time"], format="%Y%m%d%H%M%S", errors="coerce")
|
|
74
|
+
|
|
75
|
+
# Split the 'TO_BE_SPLITTED' column
|
|
76
|
+
df = df["TO_BE_SPLITTED"].str.split(",", expand=True, n=9)
|
|
77
|
+
|
|
78
|
+
# Assign column names
|
|
79
|
+
columns_names = [
|
|
80
|
+
"station_name",
|
|
81
|
+
"sensor_status",
|
|
82
|
+
"sensor_temperature",
|
|
83
|
+
"number_particles",
|
|
84
|
+
"rainfall_rate_32bit",
|
|
85
|
+
"reflectivity_16bit",
|
|
86
|
+
"mor_visibility",
|
|
87
|
+
"weather_code_synop_4680",
|
|
88
|
+
"weather_code_synop_4677",
|
|
89
|
+
"raw_drop_number",
|
|
90
|
+
]
|
|
91
|
+
df.columns = columns_names
|
|
92
|
+
|
|
93
|
+
# Add the time column
|
|
94
|
+
df["time"] = df_time
|
|
95
|
+
|
|
96
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
97
|
+
df = df.drop(columns=["station_name"])
|
|
98
|
+
|
|
99
|
+
# Drop rows with invalid values
|
|
100
|
+
# --> Ensure that weather_code_synop_4677 has length 2
|
|
101
|
+
# --> If a previous column is missing it will have 000
|
|
102
|
+
df = df[df["weather_code_synop_4677"].str.len() == 2]
|
|
103
|
+
|
|
104
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
105
|
+
return df
|
|
@@ -0,0 +1,128 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
# -----------------------------------------------------------------------------.
|
|
3
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
4
|
+
#
|
|
5
|
+
# This program is free software: you can redistribute it and/or modify
|
|
6
|
+
# it under the terms of the GNU General Public License as published by
|
|
7
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
8
|
+
# (at your option) any later version.
|
|
9
|
+
#
|
|
10
|
+
# This program is distributed in the hope that it will be useful,
|
|
11
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
12
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
13
|
+
# GNU General Public License for more details.
|
|
14
|
+
#
|
|
15
|
+
# You should have received a copy of the GNU General Public License
|
|
16
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
17
|
+
# -----------------------------------------------------------------------------.
|
|
18
|
+
import pandas as pd
|
|
19
|
+
|
|
20
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
21
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@is_documented_by(reader_generic_docstring)
|
|
25
|
+
def reader(
|
|
26
|
+
filepath,
|
|
27
|
+
logger=None,
|
|
28
|
+
):
|
|
29
|
+
"""Reader."""
|
|
30
|
+
##------------------------------------------------------------------------.
|
|
31
|
+
#### Define column names
|
|
32
|
+
column_names = ["TO_SPLIT"]
|
|
33
|
+
|
|
34
|
+
##------------------------------------------------------------------------.
|
|
35
|
+
#### Define reader options
|
|
36
|
+
reader_kwargs = {}
|
|
37
|
+
|
|
38
|
+
# - Define delimiter
|
|
39
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
40
|
+
|
|
41
|
+
# - Skip first row as columns names
|
|
42
|
+
reader_kwargs["header"] = None
|
|
43
|
+
|
|
44
|
+
# - Skip header
|
|
45
|
+
reader_kwargs["skiprows"] = 0
|
|
46
|
+
|
|
47
|
+
# - Define encoding
|
|
48
|
+
reader_kwargs["encoding"] = "ISO-8859-1"
|
|
49
|
+
|
|
50
|
+
# - Avoid first column to become df index !!!
|
|
51
|
+
reader_kwargs["index_col"] = False
|
|
52
|
+
|
|
53
|
+
# - Define behaviour when encountering bad lines
|
|
54
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
55
|
+
|
|
56
|
+
# - Define reader engine
|
|
57
|
+
# - C engine is faster
|
|
58
|
+
# - Python engine is more feature-complete
|
|
59
|
+
reader_kwargs["engine"] = "python"
|
|
60
|
+
|
|
61
|
+
# - Define on-the-fly decompression of on-disk data
|
|
62
|
+
# - Available: gzip, bz2, zip
|
|
63
|
+
# reader_kwargs['compression'] = 'xz'
|
|
64
|
+
|
|
65
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
66
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
67
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
68
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
69
|
+
reader_kwargs["na_values"] = ["na", "error", "-.-", " NA"]
|
|
70
|
+
|
|
71
|
+
##------------------------------------------------------------------------.
|
|
72
|
+
#### Read the data
|
|
73
|
+
df = read_raw_text_file(
|
|
74
|
+
filepath=filepath,
|
|
75
|
+
column_names=column_names,
|
|
76
|
+
reader_kwargs=reader_kwargs,
|
|
77
|
+
logger=logger,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
##------------------------------------------------------------------------.
|
|
81
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
82
|
+
# Remove rows with less than 97 characters (empty spectrum --> 97 characters)
|
|
83
|
+
df = df[df["TO_SPLIT"].str.len() >= 97]
|
|
84
|
+
|
|
85
|
+
# Split into columns and assign name
|
|
86
|
+
df = df["TO_SPLIT"].str.split(";", expand=True, n=14)
|
|
87
|
+
columns = [
|
|
88
|
+
"date",
|
|
89
|
+
"time",
|
|
90
|
+
"rainfall_rate_32bit",
|
|
91
|
+
"rainfall_accumulated_32bit",
|
|
92
|
+
"weather_code_synop_4680",
|
|
93
|
+
"weather_code_metar_4678",
|
|
94
|
+
"weather_code_nws",
|
|
95
|
+
"reflectivity_32bit",
|
|
96
|
+
"mor_visibility",
|
|
97
|
+
"laser_amplitude",
|
|
98
|
+
"number_particles",
|
|
99
|
+
"sensor_temperature",
|
|
100
|
+
"sensor_heating_current",
|
|
101
|
+
"sensor_battery_voltage",
|
|
102
|
+
"raw_drop_number",
|
|
103
|
+
]
|
|
104
|
+
df.columns = columns
|
|
105
|
+
|
|
106
|
+
# Add datetime time column
|
|
107
|
+
df["time"] = df["date"] + "-" + df["time"]
|
|
108
|
+
df["time"] = pd.to_datetime(df["time"], format="%Y/%m/%d-%H:%M:%S", errors="coerce")
|
|
109
|
+
df = df.drop(columns=["date"])
|
|
110
|
+
|
|
111
|
+
# Convert timezone from JST to UTC
|
|
112
|
+
df = df.set_index("time").tz_localize("Asia/Tokyo").tz_convert(None).reset_index()
|
|
113
|
+
|
|
114
|
+
# Preprocess the raw spectrum
|
|
115
|
+
# - The '<SPECTRUM>ZERO</SPECTRUM>' indicates no drops detected
|
|
116
|
+
# --> "" generates an array of zeros in L0B processing
|
|
117
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>ZERO</SPECTRUM>", "")
|
|
118
|
+
|
|
119
|
+
# Remove <SPECTRUM> and </SPECTRUM> prefix and suffix from the raw_drop_number field
|
|
120
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>", "")
|
|
121
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace("</SPECTRUM>", "")
|
|
122
|
+
|
|
123
|
+
# Add 0 before every , if , not preceded by a digit
|
|
124
|
+
# Example: ',,1,,' --> '0,0,1,0,'
|
|
125
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.replace(r"(?<!\d);", "0;", regex=True)
|
|
126
|
+
|
|
127
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
128
|
+
return df
|
|
@@ -113,7 +113,7 @@ def reader(
|
|
|
113
113
|
# --> "" generates an array of zeros in L0B processing
|
|
114
114
|
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>ZERO</SPECTRUM>", "")
|
|
115
115
|
|
|
116
|
-
# Remove <SPECTRUM> and </SPECTRUM>
|
|
116
|
+
# Remove <SPECTRUM> and </SPECTRUM> prefix and suffix from the raw_drop_number field
|
|
117
117
|
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>", "")
|
|
118
118
|
df["raw_drop_number"] = df["raw_drop_number"].str.replace("</SPECTRUM>", "")
|
|
119
119
|
|
|
@@ -102,7 +102,7 @@ def reader(
|
|
|
102
102
|
# --> "" generates an array of zeros in L0B processing
|
|
103
103
|
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>ZERO</SPECTRUM>", "")
|
|
104
104
|
|
|
105
|
-
# Remove <SPECTRUM> and </SPECTRUM>
|
|
105
|
+
# Remove <SPECTRUM> and </SPECTRUM> prefix and suffix from the raw_drop_number field
|
|
106
106
|
df["raw_drop_number"] = df["raw_drop_number"].str.replace("<SPECTRUM>", "")
|
|
107
107
|
df["raw_drop_number"] = df["raw_drop_number"].str.replace("</SPECTRUM>", "")
|
|
108
108
|
|
|
@@ -0,0 +1,168 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
# -----------------------------------------------------------------------------.
|
|
4
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
5
|
+
#
|
|
6
|
+
# This program is free software: you can redistribute it and/or modify
|
|
7
|
+
# it under the terms of the GNU General Public License as published by
|
|
8
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
9
|
+
# (at your option) any later version.
|
|
10
|
+
#
|
|
11
|
+
# This program is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
14
|
+
# GNU General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# You should have received a copy of the GNU General Public License
|
|
17
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
|
+
# -----------------------------------------------------------------------------.
|
|
19
|
+
"""DISDRODB reader for UGENT ILVO Parsivel2 raw text data."""
|
|
20
|
+
import tarfile
|
|
21
|
+
|
|
22
|
+
import numpy as np
|
|
23
|
+
import pandas as pd
|
|
24
|
+
|
|
25
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
26
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
27
|
+
from disdrodb.utils.logger import log_error
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@is_documented_by(reader_generic_docstring)
|
|
31
|
+
def reader(
|
|
32
|
+
filepath,
|
|
33
|
+
logger=None,
|
|
34
|
+
):
|
|
35
|
+
"""Reader."""
|
|
36
|
+
|
|
37
|
+
##------------------------------------------------------------------------.
|
|
38
|
+
#### Define function to read each txt file inside each daily zip file
|
|
39
|
+
def read_txt_file(file, filename):
|
|
40
|
+
"""Parse a single txt file within the daily zip file."""
|
|
41
|
+
##------------------------------------------------------------------------.
|
|
42
|
+
#### Define column names
|
|
43
|
+
column_names = ["TO_PARSE"]
|
|
44
|
+
|
|
45
|
+
##------------------------------------------------------------------------.
|
|
46
|
+
#### Define reader options
|
|
47
|
+
reader_kwargs = {}
|
|
48
|
+
# - Define delimiter
|
|
49
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
50
|
+
# - Skip first row as columns names
|
|
51
|
+
# - Define encoding
|
|
52
|
+
reader_kwargs["encoding"] = "latin" # "ISO-8859-1"
|
|
53
|
+
# - Avoid first column to become df index !!!
|
|
54
|
+
reader_kwargs["index_col"] = False
|
|
55
|
+
# - Define behaviour when encountering bad lines
|
|
56
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
57
|
+
# - Define reader engine
|
|
58
|
+
# - C engine is faster
|
|
59
|
+
# - Python engine is more feature-complete
|
|
60
|
+
reader_kwargs["engine"] = "python"
|
|
61
|
+
# - Define on-the-fly decompression of on-disk data
|
|
62
|
+
# - Available: gzip, bz2, zip
|
|
63
|
+
reader_kwargs["compression"] = "infer"
|
|
64
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
65
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
66
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
67
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
68
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
69
|
+
|
|
70
|
+
##------------------------------------------------------------------------.
|
|
71
|
+
#### Read the data
|
|
72
|
+
df = read_raw_text_file(
|
|
73
|
+
filepath=file,
|
|
74
|
+
column_names=column_names,
|
|
75
|
+
reader_kwargs=reader_kwargs,
|
|
76
|
+
logger=logger,
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
##------------------------------------------------------------------------.
|
|
80
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
81
|
+
# Create ID and Value columns
|
|
82
|
+
df = df["TO_PARSE"].str.split(":", expand=True, n=1)
|
|
83
|
+
df.columns = ["ID", "Value"]
|
|
84
|
+
|
|
85
|
+
# Select only rows with values
|
|
86
|
+
df = df[df["Value"].apply(lambda x: x is not None)]
|
|
87
|
+
|
|
88
|
+
# Drop rows with invalid IDs
|
|
89
|
+
valid_id_str = np.char.rjust(np.arange(0, 94).astype(str), width=2, fillchar="0")
|
|
90
|
+
df = df[df["ID"].astype(str).isin(valid_id_str)]
|
|
91
|
+
|
|
92
|
+
# Reshape dataframe
|
|
93
|
+
df = df.set_index("ID").T
|
|
94
|
+
|
|
95
|
+
# Assign column names
|
|
96
|
+
column_dict = {
|
|
97
|
+
"01": "rainfall_rate_32bit",
|
|
98
|
+
"02": "rainfall_accumulated_32bit",
|
|
99
|
+
"03": "weather_code_synop_4680",
|
|
100
|
+
"04": "weather_code_synop_4677",
|
|
101
|
+
"05": "weather_code_metar_4678",
|
|
102
|
+
"06": "weather_code_nws",
|
|
103
|
+
"07": "reflectivity_32bit",
|
|
104
|
+
"08": "mor_visibility",
|
|
105
|
+
"09": "sample_interval",
|
|
106
|
+
"10": "laser_amplitude",
|
|
107
|
+
"11": "number_particles",
|
|
108
|
+
"12": "sensor_temperature",
|
|
109
|
+
# "13": "sensor_serial_number",
|
|
110
|
+
# "14": "firmware_iop",
|
|
111
|
+
# "15": "firmware_dsp",
|
|
112
|
+
"16": "sensor_heating_current",
|
|
113
|
+
"17": "sensor_battery_voltage",
|
|
114
|
+
"18": "sensor_status",
|
|
115
|
+
# "19": "start_time",
|
|
116
|
+
# "20": "sensor_time",
|
|
117
|
+
# "21": "sensor_date",
|
|
118
|
+
# "22": "station_name",
|
|
119
|
+
# "23": "station_number",
|
|
120
|
+
"24": "rainfall_amount_absolute_32bit",
|
|
121
|
+
"25": "error_code",
|
|
122
|
+
"26": "sensor_temperature_pcb",
|
|
123
|
+
"27": "sensor_temperature_receiver",
|
|
124
|
+
"28": "sensor_temperature_trasmitter",
|
|
125
|
+
"30": "rainfall_rate_16_bit_30",
|
|
126
|
+
"31": "rainfall_rate_16_bit_1200",
|
|
127
|
+
"32": "rainfall_accumulated_16bit",
|
|
128
|
+
"34": "rain_kinetic_energy",
|
|
129
|
+
"35": "snowfall_rate",
|
|
130
|
+
"90": "raw_drop_concentration",
|
|
131
|
+
"91": "raw_drop_average_velocity",
|
|
132
|
+
"93": "raw_drop_number",
|
|
133
|
+
}
|
|
134
|
+
|
|
135
|
+
df = df.rename(column_dict, axis=1)
|
|
136
|
+
|
|
137
|
+
# Keep only columns defined in the dictionary
|
|
138
|
+
df = df[list(column_dict.values())]
|
|
139
|
+
|
|
140
|
+
# Define datetime "time" column from filename
|
|
141
|
+
datetime_str = filename.replace(".txt", "").split("_")[1]
|
|
142
|
+
df["time"] = pd.to_datetime(datetime_str, format="%Y%m%d%H%M%S")
|
|
143
|
+
|
|
144
|
+
return df
|
|
145
|
+
|
|
146
|
+
# ---------------------------------------------------------------------.
|
|
147
|
+
#### Iterate over all files (aka timesteps) in the daily zip archive
|
|
148
|
+
# - Each file contain a single timestep !
|
|
149
|
+
list_df = []
|
|
150
|
+
with tarfile.open(filepath, "r:gz") as tar:
|
|
151
|
+
members = sorted(tar.getmembers(), key=lambda m: m.name)
|
|
152
|
+
for member in members:
|
|
153
|
+
filename = member.name
|
|
154
|
+
if member.isfile() and filename.endswith(".txt"):
|
|
155
|
+
# Open file
|
|
156
|
+
with tar.extractfile(member) as file:
|
|
157
|
+
try:
|
|
158
|
+
df = read_txt_file(file=file, filename=filename)
|
|
159
|
+
list_df.append(df)
|
|
160
|
+
except Exception as e:
|
|
161
|
+
msg = f"An error occurred while reading {filename}. The error is: {e}."
|
|
162
|
+
log_error(logger=logger, msg=msg, verbose=True)
|
|
163
|
+
|
|
164
|
+
# Concatenate all dataframes into a single one
|
|
165
|
+
df = pd.concat(list_df)
|
|
166
|
+
|
|
167
|
+
# ---------------------------------------------------------------------.
|
|
168
|
+
return df
|