disdrodb 0.1.0__py3-none-any.whl → 0.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- disdrodb/__init__.py +1 -1
- disdrodb/_version.py +2 -2
- disdrodb/api/io.py +12 -2
- disdrodb/data_transfer/download_data.py +145 -14
- disdrodb/l0/check_standards.py +15 -10
- disdrodb/l0/configs/LPM/bins_diameter.yml +3 -3
- disdrodb/l0/configs/LPM/l0a_encodings.yml +4 -4
- disdrodb/l0/configs/LPM/l0b_cf_attrs.yml +22 -6
- disdrodb/l0/configs/LPM/l0b_encodings.yml +41 -0
- disdrodb/l0/configs/LPM/raw_data_format.yml +40 -0
- disdrodb/l0/configs/PARSIVEL/l0b_cf_attrs.yml +1 -1
- disdrodb/l0/configs/PARSIVEL/raw_data_format.yml +1 -1
- disdrodb/l0/configs/PARSIVEL2/l0a_encodings.yml +4 -0
- disdrodb/l0/configs/PARSIVEL2/l0b_cf_attrs.yml +20 -4
- disdrodb/l0/configs/PARSIVEL2/l0b_encodings.yml +41 -0
- disdrodb/l0/configs/PARSIVEL2/raw_data_format.yml +50 -10
- disdrodb/l0/configs/PWS100/bins_diameter.yml +173 -0
- disdrodb/l0/configs/PWS100/bins_velocity.yml +173 -0
- disdrodb/l0/configs/PWS100/l0a_encodings.yml +19 -0
- disdrodb/l0/configs/PWS100/l0b_cf_attrs.yml +76 -0
- disdrodb/l0/configs/PWS100/l0b_encodings.yml +176 -0
- disdrodb/l0/configs/PWS100/raw_data_format.yml +182 -0
- disdrodb/l0/configs/RD80/raw_data_format.yml +2 -6
- disdrodb/l0/l0b_nc_processing.py +1 -1
- disdrodb/l0/l0b_processing.py +12 -10
- disdrodb/l0/manuals/SWS250.pdf +0 -0
- disdrodb/l0/manuals/VPF730.pdf +0 -0
- disdrodb/l0/manuals/VPF750.pdf +0 -0
- disdrodb/l0/readers/LPM/AUSTRALIA/MELBOURNE_2007_LPM.py +23 -13
- disdrodb/l0/readers/LPM/BRAZIL/CHUVA_LPM.py +3 -3
- disdrodb/l0/readers/LPM/BRAZIL/GOAMAZON_LPM.py +5 -3
- disdrodb/l0/readers/LPM/ITALY/GID_LPM.py +36 -20
- disdrodb/l0/readers/LPM/ITALY/GID_LPM_W.py +210 -0
- disdrodb/l0/readers/LPM/KIT/CHWALA.py +225 -0
- disdrodb/l0/readers/LPM/SLOVENIA/ARSO.py +197 -0
- disdrodb/l0/readers/LPM/SLOVENIA/CRNI_VRH.py +197 -0
- disdrodb/l0/readers/PARSIVEL/GPM/PIERS.py +107 -0
- disdrodb/l0/readers/PARSIVEL/JAPAN/JMA.py +125 -0
- disdrodb/l0/readers/PARSIVEL/NCAR/PECAN_MOBILE.py +1 -1
- disdrodb/l0/readers/PARSIVEL/NCAR/VORTEX2_2009.py +1 -1
- disdrodb/l0/readers/PARSIVEL/SLOVENIA/UL_FGG.py +121 -0
- disdrodb/l0/readers/PARSIVEL2/FRANCE/ENPC_PARSIVEL2.py +189 -0
- disdrodb/l0/readers/PARSIVEL2/KIT/BURKINA_FASO.py +133 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/FARM_PARSIVEL2.py +138 -0
- disdrodb/l0/readers/PARSIVEL2/NCAR/PECAN_FP3.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_P2.py +1 -1
- disdrodb/l0/readers/PARSIVEL2/NCAR/VORTEX_SE_2016_PIPS.py +9 -0
- disdrodb/l0/readers/PARSIVEL2/NETHERLANDS/DELFT_NC.py +67 -0
- disdrodb/l0/readers/PWS100/FRANCE/ENPC_PWS100.py +150 -0
- disdrodb/l0/readers/RD80/NOAA/PSL_RD80.py +291 -0
- disdrodb/l0/readers/template_reader_raw_netcdf_data.py +1 -1
- disdrodb/l0/standards.py +7 -4
- disdrodb/l0/template_tools.py +2 -2
- disdrodb/l1/encoding_attrs.py +30 -8
- disdrodb/l1/processing.py +6 -4
- disdrodb/l1/resampling.py +1 -1
- disdrodb/l1/routines.py +9 -7
- disdrodb/l2/empirical_dsd.py +100 -2
- disdrodb/l2/event.py +3 -3
- disdrodb/l2/processing.py +21 -12
- disdrodb/l2/processing_options.py +7 -7
- disdrodb/l2/routines.py +3 -3
- disdrodb/metadata/checks.py +15 -6
- disdrodb/metadata/manipulation.py +2 -2
- disdrodb/metadata/standards.py +83 -79
- disdrodb/metadata/writer.py +2 -2
- disdrodb/routines.py +246 -10
- disdrodb/scattering/routines.py +1 -1
- disdrodb/utils/dataframe.py +342 -0
- disdrodb/utils/directories.py +14 -2
- disdrodb/utils/xarray.py +83 -0
- {disdrodb-0.1.0.dist-info → disdrodb-0.1.2.dist-info}/METADATA +34 -61
- {disdrodb-0.1.0.dist-info → disdrodb-0.1.2.dist-info}/RECORD +77 -54
- {disdrodb-0.1.0.dist-info → disdrodb-0.1.2.dist-info}/WHEEL +1 -1
- {disdrodb-0.1.0.dist-info → disdrodb-0.1.2.dist-info}/entry_points.txt +3 -3
- {disdrodb-0.1.0.dist-info → disdrodb-0.1.2.dist-info}/licenses/LICENSE +0 -0
- {disdrodb-0.1.0.dist-info → disdrodb-0.1.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,210 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
# -----------------------------------------------------------------------------.
|
|
4
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
5
|
+
#
|
|
6
|
+
# This program is free software: you can redistribute it and/or modify
|
|
7
|
+
# it under the terms of the GNU General Public License as published by
|
|
8
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
9
|
+
# (at your option) any later version.
|
|
10
|
+
#
|
|
11
|
+
# This program is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
14
|
+
# GNU General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# You should have received a copy of the GNU General Public License
|
|
17
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
|
+
# -----------------------------------------------------------------------------.
|
|
19
|
+
"""DISDRODB reader for GID LPM sensors measuring also wind."""
|
|
20
|
+
import pandas as pd
|
|
21
|
+
|
|
22
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
23
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@is_documented_by(reader_generic_docstring)
|
|
27
|
+
def reader(
|
|
28
|
+
filepath,
|
|
29
|
+
logger=None,
|
|
30
|
+
):
|
|
31
|
+
"""Reader."""
|
|
32
|
+
##------------------------------------------------------------------------.
|
|
33
|
+
#### - Define raw data headers
|
|
34
|
+
column_names = ["TO_BE_SPLITTED"]
|
|
35
|
+
|
|
36
|
+
##------------------------------------------------------------------------.
|
|
37
|
+
#### Define reader options
|
|
38
|
+
# - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
|
|
39
|
+
reader_kwargs = {}
|
|
40
|
+
|
|
41
|
+
# - Define delimiter
|
|
42
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
43
|
+
|
|
44
|
+
# - Avoid first column to become df index !!!
|
|
45
|
+
reader_kwargs["index_col"] = False
|
|
46
|
+
|
|
47
|
+
# Since column names are expected to be passed explicitly, header is set to None
|
|
48
|
+
reader_kwargs["header"] = None
|
|
49
|
+
|
|
50
|
+
# - Number of rows to be skipped at the beginning of the file
|
|
51
|
+
reader_kwargs["skiprows"] = None
|
|
52
|
+
|
|
53
|
+
# - Define behaviour when encountering bad lines
|
|
54
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
55
|
+
|
|
56
|
+
# - Define reader engine
|
|
57
|
+
# - C engine is faster
|
|
58
|
+
# - Python engine is more feature-complete
|
|
59
|
+
reader_kwargs["engine"] = "python"
|
|
60
|
+
|
|
61
|
+
# - Define on-the-fly decompression of on-disk data
|
|
62
|
+
# - Available: gzip, bz2, zip
|
|
63
|
+
reader_kwargs["compression"] = "infer"
|
|
64
|
+
|
|
65
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
66
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
67
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
68
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
69
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
70
|
+
|
|
71
|
+
##------------------------------------------------------------------------.
|
|
72
|
+
#### Read the data
|
|
73
|
+
df = read_raw_text_file(
|
|
74
|
+
filepath=filepath,
|
|
75
|
+
column_names=column_names,
|
|
76
|
+
reader_kwargs=reader_kwargs,
|
|
77
|
+
logger=logger,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
##------------------------------------------------------------------------.
|
|
81
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
82
|
+
# Count number of delimiters to identify valid rows
|
|
83
|
+
df = df[df["TO_BE_SPLITTED"].str.count(";") == 523]
|
|
84
|
+
|
|
85
|
+
# Split by ; delimiter (before raw drop number)
|
|
86
|
+
df = df["TO_BE_SPLITTED"].str.split(";", expand=True, n=79)
|
|
87
|
+
|
|
88
|
+
# Assign column names
|
|
89
|
+
column_names = [
|
|
90
|
+
"start_identifier",
|
|
91
|
+
"device_address",
|
|
92
|
+
"sensor_serial_number",
|
|
93
|
+
"sensor_date",
|
|
94
|
+
"sensor_time",
|
|
95
|
+
"weather_code_synop_4677_5min",
|
|
96
|
+
"weather_code_synop_4680_5min",
|
|
97
|
+
"weather_code_metar_4678_5min",
|
|
98
|
+
"precipitation_rate_5min",
|
|
99
|
+
"weather_code_synop_4677",
|
|
100
|
+
"weather_code_synop_4680",
|
|
101
|
+
"weather_code_metar_4678",
|
|
102
|
+
"precipitation_rate",
|
|
103
|
+
"rainfall_rate",
|
|
104
|
+
"snowfall_rate",
|
|
105
|
+
"precipitation_accumulated",
|
|
106
|
+
"mor_visibility",
|
|
107
|
+
"reflectivity",
|
|
108
|
+
"quality_index",
|
|
109
|
+
"max_hail_diameter",
|
|
110
|
+
"laser_status",
|
|
111
|
+
"static_signal",
|
|
112
|
+
"laser_temperature_analog_status",
|
|
113
|
+
"laser_temperature_digital_status",
|
|
114
|
+
"laser_current_analog_status",
|
|
115
|
+
"laser_current_digital_status",
|
|
116
|
+
"sensor_voltage_supply_status",
|
|
117
|
+
"current_heating_pane_transmitter_head_status",
|
|
118
|
+
"current_heating_pane_receiver_head_status",
|
|
119
|
+
"temperature_sensor_status",
|
|
120
|
+
"current_heating_voltage_supply_status",
|
|
121
|
+
"current_heating_house_status",
|
|
122
|
+
"current_heating_heads_status",
|
|
123
|
+
"current_heating_carriers_status",
|
|
124
|
+
"control_output_laser_power_status",
|
|
125
|
+
"reserve_status",
|
|
126
|
+
"temperature_interior",
|
|
127
|
+
"laser_temperature",
|
|
128
|
+
"laser_current_average",
|
|
129
|
+
"control_voltage",
|
|
130
|
+
"optical_control_voltage_output",
|
|
131
|
+
"sensor_voltage_supply",
|
|
132
|
+
"current_heating_pane_transmitter_head",
|
|
133
|
+
"current_heating_pane_receiver_head",
|
|
134
|
+
"temperature_ambient",
|
|
135
|
+
"current_heating_voltage_supply",
|
|
136
|
+
"current_heating_house",
|
|
137
|
+
"current_heating_heads",
|
|
138
|
+
"current_heating_carriers",
|
|
139
|
+
"number_particles",
|
|
140
|
+
"number_particles_internal_data",
|
|
141
|
+
"number_particles_min_speed",
|
|
142
|
+
"number_particles_min_speed_internal_data",
|
|
143
|
+
"number_particles_max_speed",
|
|
144
|
+
"number_particles_max_speed_internal_data",
|
|
145
|
+
"number_particles_min_diameter",
|
|
146
|
+
"number_particles_min_diameter_internal_data",
|
|
147
|
+
"number_particles_no_hydrometeor",
|
|
148
|
+
"number_particles_no_hydrometeor_internal_data",
|
|
149
|
+
"number_particles_unknown_classification",
|
|
150
|
+
"number_particles_unknown_classification_internal_data",
|
|
151
|
+
"number_particles_class_1",
|
|
152
|
+
"number_particles_class_1_internal_data",
|
|
153
|
+
"number_particles_class_2",
|
|
154
|
+
"number_particles_class_2_internal_data",
|
|
155
|
+
"number_particles_class_3",
|
|
156
|
+
"number_particles_class_3_internal_data",
|
|
157
|
+
"number_particles_class_4",
|
|
158
|
+
"number_particles_class_4_internal_data",
|
|
159
|
+
"number_particles_class_5",
|
|
160
|
+
"number_particles_class_5_internal_data",
|
|
161
|
+
"number_particles_class_6",
|
|
162
|
+
"number_particles_class_6_internal_data",
|
|
163
|
+
"number_particles_class_7",
|
|
164
|
+
"number_particles_class_7_internal_data",
|
|
165
|
+
"number_particles_class_8",
|
|
166
|
+
"number_particles_class_8_internal_data",
|
|
167
|
+
"number_particles_class_9",
|
|
168
|
+
"number_particles_class_9_internal_data",
|
|
169
|
+
"TO_BE_FURTHER_PROCESSED",
|
|
170
|
+
]
|
|
171
|
+
df.columns = column_names
|
|
172
|
+
|
|
173
|
+
# Extract the last variables remained in raw_drop_number
|
|
174
|
+
df_parsed = df["TO_BE_FURTHER_PROCESSED"].str.rsplit(";", n=5, expand=True)
|
|
175
|
+
df_parsed.columns = [
|
|
176
|
+
"raw_drop_number",
|
|
177
|
+
"air_temperature",
|
|
178
|
+
"relative_humidity",
|
|
179
|
+
"wind_speed",
|
|
180
|
+
"wind_direction",
|
|
181
|
+
"checksum",
|
|
182
|
+
]
|
|
183
|
+
|
|
184
|
+
# Assign columns to the original dataframe
|
|
185
|
+
df[df_parsed.columns] = df_parsed
|
|
186
|
+
|
|
187
|
+
# Define datetime "time" column
|
|
188
|
+
df["time"] = df["sensor_date"] + "-" + df["sensor_time"]
|
|
189
|
+
df["time"] = pd.to_datetime(df["time"], format="%d.%m.%y-%H:%M:%S", errors="coerce")
|
|
190
|
+
|
|
191
|
+
# Drop row if start_identifier different than 00
|
|
192
|
+
df = df[df["start_identifier"].astype(str) == "00"]
|
|
193
|
+
|
|
194
|
+
# Drop rows with invalid raw_drop_number
|
|
195
|
+
df = df[df["raw_drop_number"].astype(str).str.len() == 1759]
|
|
196
|
+
|
|
197
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
198
|
+
columns_to_drop = [
|
|
199
|
+
"start_identifier",
|
|
200
|
+
"device_address",
|
|
201
|
+
"sensor_serial_number",
|
|
202
|
+
"sensor_date",
|
|
203
|
+
"sensor_time",
|
|
204
|
+
"checksum",
|
|
205
|
+
"relative_humidity", # TO DROP? ALWAYS NOT AVAILABLE?
|
|
206
|
+
"TO_BE_FURTHER_PROCESSED",
|
|
207
|
+
]
|
|
208
|
+
df = df.drop(columns=columns_to_drop)
|
|
209
|
+
|
|
210
|
+
return df
|
|
@@ -0,0 +1,225 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
# -----------------------------------------------------------------------------.
|
|
4
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
5
|
+
#
|
|
6
|
+
# This program is free software: you can redistribute it and/or modify
|
|
7
|
+
# it under the terms of the GNU General Public License as published by
|
|
8
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
9
|
+
# (at your option) any later version.
|
|
10
|
+
#
|
|
11
|
+
# This program is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
14
|
+
# GNU General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# You should have received a copy of the GNU General Public License
|
|
17
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
|
+
# -----------------------------------------------------------------------------.
|
|
19
|
+
"""DISDRODB reader for GID LPM sensors not measuring wind."""
|
|
20
|
+
import os
|
|
21
|
+
|
|
22
|
+
import pandas as pd
|
|
23
|
+
|
|
24
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
25
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@is_documented_by(reader_generic_docstring)
|
|
29
|
+
def reader(
|
|
30
|
+
filepath,
|
|
31
|
+
logger=None,
|
|
32
|
+
):
|
|
33
|
+
"""Reader."""
|
|
34
|
+
|
|
35
|
+
def read_txt_file(file, filename):
|
|
36
|
+
##------------------------------------------------------------------------.
|
|
37
|
+
#### - Define raw data headers
|
|
38
|
+
column_names = ["TO_BE_SPLITTED"]
|
|
39
|
+
|
|
40
|
+
##------------------------------------------------------------------------.
|
|
41
|
+
#### Define reader options
|
|
42
|
+
# - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
|
|
43
|
+
reader_kwargs = {}
|
|
44
|
+
|
|
45
|
+
# - Define delimiter
|
|
46
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
47
|
+
|
|
48
|
+
# - Avoid first column to become df index !!!
|
|
49
|
+
reader_kwargs["index_col"] = False
|
|
50
|
+
|
|
51
|
+
# Since column names are expected to be passed explicitly, header is set to None
|
|
52
|
+
reader_kwargs["header"] = None
|
|
53
|
+
|
|
54
|
+
# - Number of rows to be skipped at the beginning of the file
|
|
55
|
+
reader_kwargs["skiprows"] = None
|
|
56
|
+
|
|
57
|
+
# - Define behaviour when encountering bad lines
|
|
58
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
59
|
+
|
|
60
|
+
# - Define reader engine
|
|
61
|
+
# - C engine is faster
|
|
62
|
+
# - Python engine is more feature-complete
|
|
63
|
+
reader_kwargs["engine"] = "python"
|
|
64
|
+
|
|
65
|
+
# - Define on-the-fly decompression of on-disk data
|
|
66
|
+
# - Available: gzip, bz2, zip
|
|
67
|
+
reader_kwargs["compression"] = "infer"
|
|
68
|
+
|
|
69
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
70
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
71
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
72
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
73
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
74
|
+
|
|
75
|
+
##------------------------------------------------------------------------.
|
|
76
|
+
#### Read the data
|
|
77
|
+
df = read_raw_text_file(
|
|
78
|
+
filepath=file,
|
|
79
|
+
column_names=column_names,
|
|
80
|
+
reader_kwargs=reader_kwargs,
|
|
81
|
+
logger=logger,
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
##------------------------------------------------------------------------.
|
|
85
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
86
|
+
# Count number of delimiters to identify valid rows
|
|
87
|
+
df = df[df["TO_BE_SPLITTED"].str.count(";") == 520]
|
|
88
|
+
|
|
89
|
+
# Split by ; delimiter (before raw drop number)
|
|
90
|
+
df = df["TO_BE_SPLITTED"].str.split(";", expand=True, n=79)
|
|
91
|
+
|
|
92
|
+
# Assign column names
|
|
93
|
+
column_names = [
|
|
94
|
+
"start_identifier",
|
|
95
|
+
"device_address",
|
|
96
|
+
"sensor_serial_number",
|
|
97
|
+
"sensor_date",
|
|
98
|
+
"sensor_time",
|
|
99
|
+
"weather_code_synop_4677_5min",
|
|
100
|
+
"weather_code_synop_4680_5min",
|
|
101
|
+
"weather_code_metar_4678_5min",
|
|
102
|
+
"precipitation_rate_5min",
|
|
103
|
+
"weather_code_synop_4677",
|
|
104
|
+
"weather_code_synop_4680",
|
|
105
|
+
"weather_code_metar_4678",
|
|
106
|
+
"precipitation_rate",
|
|
107
|
+
"rainfall_rate",
|
|
108
|
+
"snowfall_rate",
|
|
109
|
+
"precipitation_accumulated",
|
|
110
|
+
"mor_visibility",
|
|
111
|
+
"reflectivity",
|
|
112
|
+
"quality_index",
|
|
113
|
+
"max_hail_diameter",
|
|
114
|
+
"laser_status",
|
|
115
|
+
"static_signal",
|
|
116
|
+
"laser_temperature_analog_status",
|
|
117
|
+
"laser_temperature_digital_status",
|
|
118
|
+
"laser_current_analog_status",
|
|
119
|
+
"laser_current_digital_status",
|
|
120
|
+
"sensor_voltage_supply_status",
|
|
121
|
+
"current_heating_pane_transmitter_head_status",
|
|
122
|
+
"current_heating_pane_receiver_head_status",
|
|
123
|
+
"temperature_sensor_status",
|
|
124
|
+
"current_heating_voltage_supply_status",
|
|
125
|
+
"current_heating_house_status",
|
|
126
|
+
"current_heating_heads_status",
|
|
127
|
+
"current_heating_carriers_status",
|
|
128
|
+
"control_output_laser_power_status",
|
|
129
|
+
"reserve_status",
|
|
130
|
+
"temperature_interior",
|
|
131
|
+
"laser_temperature",
|
|
132
|
+
"laser_current_average",
|
|
133
|
+
"control_voltage",
|
|
134
|
+
"optical_control_voltage_output",
|
|
135
|
+
"sensor_voltage_supply",
|
|
136
|
+
"current_heating_pane_transmitter_head",
|
|
137
|
+
"current_heating_pane_receiver_head",
|
|
138
|
+
"temperature_ambient",
|
|
139
|
+
"current_heating_voltage_supply",
|
|
140
|
+
"current_heating_house",
|
|
141
|
+
"current_heating_heads",
|
|
142
|
+
"current_heating_carriers",
|
|
143
|
+
"number_particles",
|
|
144
|
+
"number_particles_internal_data",
|
|
145
|
+
"number_particles_min_speed",
|
|
146
|
+
"number_particles_min_speed_internal_data",
|
|
147
|
+
"number_particles_max_speed",
|
|
148
|
+
"number_particles_max_speed_internal_data",
|
|
149
|
+
"number_particles_min_diameter",
|
|
150
|
+
"number_particles_min_diameter_internal_data",
|
|
151
|
+
"number_particles_no_hydrometeor",
|
|
152
|
+
"number_particles_no_hydrometeor_internal_data",
|
|
153
|
+
"number_particles_unknown_classification",
|
|
154
|
+
"number_particles_unknown_classification_internal_data",
|
|
155
|
+
"number_particles_class_1",
|
|
156
|
+
"number_particles_class_1_internal_data",
|
|
157
|
+
"number_particles_class_2",
|
|
158
|
+
"number_particles_class_2_internal_data",
|
|
159
|
+
"number_particles_class_3",
|
|
160
|
+
"number_particles_class_3_internal_data",
|
|
161
|
+
"number_particles_class_4",
|
|
162
|
+
"number_particles_class_4_internal_data",
|
|
163
|
+
"number_particles_class_5",
|
|
164
|
+
"number_particles_class_5_internal_data",
|
|
165
|
+
"number_particles_class_6",
|
|
166
|
+
"number_particles_class_6_internal_data",
|
|
167
|
+
"number_particles_class_7",
|
|
168
|
+
"number_particles_class_7_internal_data",
|
|
169
|
+
"number_particles_class_8",
|
|
170
|
+
"number_particles_class_8_internal_data",
|
|
171
|
+
"number_particles_class_9",
|
|
172
|
+
"number_particles_class_9_internal_data",
|
|
173
|
+
"raw_drop_number",
|
|
174
|
+
]
|
|
175
|
+
df.columns = column_names
|
|
176
|
+
|
|
177
|
+
# Remove checksum from raw_drop_number
|
|
178
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.rsplit(";", n=2, expand=True)[0]
|
|
179
|
+
|
|
180
|
+
# Define datetime "time" column from file name
|
|
181
|
+
datetime_str = "".join(filename.split("_")[1:3])
|
|
182
|
+
df["time"] = pd.to_datetime(datetime_str, format="%Y%m%d%H%M", errors="coerce")
|
|
183
|
+
|
|
184
|
+
# Drop row if start_identifier different than 00
|
|
185
|
+
df = df[df["start_identifier"].astype(str) == "00"]
|
|
186
|
+
|
|
187
|
+
# Drop rows with invalid raw_drop_number
|
|
188
|
+
df = df[df["raw_drop_number"].astype(str).str.len() == 1759]
|
|
189
|
+
|
|
190
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
191
|
+
columns_to_drop = [
|
|
192
|
+
"start_identifier",
|
|
193
|
+
"device_address",
|
|
194
|
+
"sensor_serial_number",
|
|
195
|
+
"sensor_date",
|
|
196
|
+
"sensor_time",
|
|
197
|
+
]
|
|
198
|
+
df = df.drop(columns=columns_to_drop)
|
|
199
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
200
|
+
return df
|
|
201
|
+
|
|
202
|
+
#### TEMPORARY: to read just a single 1-min timestep
|
|
203
|
+
df = read_txt_file(file=filepath, filename=os.path.basename(filepath))
|
|
204
|
+
|
|
205
|
+
#### FUTURE: Iterate over all files (aka 1-min timesteps) in the daily zip archive
|
|
206
|
+
# - Each file contain a single timestep !
|
|
207
|
+
# list_df = []
|
|
208
|
+
# with zipfile.ZipFile(filepath, "r") as zip_ref:
|
|
209
|
+
# filenames = sorted(zip_ref.namelist())
|
|
210
|
+
# for filename in filenames:
|
|
211
|
+
# if filename.endswith(".dat"):
|
|
212
|
+
# # Open file
|
|
213
|
+
# with zip_ref.open(filename) as file:
|
|
214
|
+
# try:
|
|
215
|
+
# df = read_txt_file(file=file, filename=filename)
|
|
216
|
+
# list_df.append(df)
|
|
217
|
+
# except Exception as e:
|
|
218
|
+
# msg = f"An error occurred while reading {filename}. The error is: {e}."
|
|
219
|
+
# log_error(logger=logger, msg=msg, verbose=True)
|
|
220
|
+
|
|
221
|
+
# Concatenate all dataframes into a single one
|
|
222
|
+
# df = pd.concat(list_df)
|
|
223
|
+
|
|
224
|
+
# Return the dataframe adhering to DISDRODB L0 standards
|
|
225
|
+
return df
|
|
@@ -0,0 +1,197 @@
|
|
|
1
|
+
#!/usr/bin/env python3
|
|
2
|
+
|
|
3
|
+
# -----------------------------------------------------------------------------.
|
|
4
|
+
# Copyright (c) 2021-2023 DISDRODB developers
|
|
5
|
+
#
|
|
6
|
+
# This program is free software: you can redistribute it and/or modify
|
|
7
|
+
# it under the terms of the GNU General Public License as published by
|
|
8
|
+
# the Free Software Foundation, either version 3 of the License, or
|
|
9
|
+
# (at your option) any later version.
|
|
10
|
+
#
|
|
11
|
+
# This program is distributed in the hope that it will be useful,
|
|
12
|
+
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
13
|
+
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
14
|
+
# GNU General Public License for more details.
|
|
15
|
+
#
|
|
16
|
+
# You should have received a copy of the GNU General Public License
|
|
17
|
+
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
18
|
+
# -----------------------------------------------------------------------------.
|
|
19
|
+
"""DISDRODB reader for GID LPM sensors not measuring wind."""
|
|
20
|
+
import pandas as pd
|
|
21
|
+
|
|
22
|
+
from disdrodb.l0.l0_reader import is_documented_by, reader_generic_docstring
|
|
23
|
+
from disdrodb.l0.l0a_processing import read_raw_text_file
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@is_documented_by(reader_generic_docstring)
|
|
27
|
+
def reader(
|
|
28
|
+
filepath,
|
|
29
|
+
logger=None,
|
|
30
|
+
):
|
|
31
|
+
"""Reader."""
|
|
32
|
+
##------------------------------------------------------------------------.
|
|
33
|
+
#### - Define raw data headers
|
|
34
|
+
column_names = ["TO_PARSE"]
|
|
35
|
+
|
|
36
|
+
##------------------------------------------------------------------------.
|
|
37
|
+
#### Define reader options
|
|
38
|
+
# - For more info: https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
|
|
39
|
+
reader_kwargs = {}
|
|
40
|
+
|
|
41
|
+
# - Define delimiter
|
|
42
|
+
reader_kwargs["delimiter"] = "\\n"
|
|
43
|
+
|
|
44
|
+
# - Avoid first column to become df index !!!
|
|
45
|
+
reader_kwargs["index_col"] = False
|
|
46
|
+
|
|
47
|
+
# Since column names are expected to be passed explicitly, header is set to None
|
|
48
|
+
reader_kwargs["header"] = None
|
|
49
|
+
|
|
50
|
+
# - Number of rows to be skipped at the beginning of the file
|
|
51
|
+
reader_kwargs["skiprows"] = None
|
|
52
|
+
|
|
53
|
+
# - Define behaviour when encountering bad lines
|
|
54
|
+
reader_kwargs["on_bad_lines"] = "skip"
|
|
55
|
+
|
|
56
|
+
# - Define reader engine
|
|
57
|
+
# - C engine is faster
|
|
58
|
+
# - Python engine is more feature-complete
|
|
59
|
+
reader_kwargs["engine"] = "python"
|
|
60
|
+
|
|
61
|
+
# - Define on-the-fly decompression of on-disk data
|
|
62
|
+
# - Available: gzip, bz2, zip
|
|
63
|
+
reader_kwargs["compression"] = "infer"
|
|
64
|
+
|
|
65
|
+
# - Strings to recognize as NA/NaN and replace with standard NA flags
|
|
66
|
+
# - Already included: '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN',
|
|
67
|
+
# '-NaN', '-nan', '1.#IND', '1.#QNAN', '<NA>', 'N/A',
|
|
68
|
+
# 'NA', 'NULL', 'NaN', 'n/a', 'nan', 'null'
|
|
69
|
+
reader_kwargs["na_values"] = ["na", "", "error"]
|
|
70
|
+
|
|
71
|
+
##------------------------------------------------------------------------.
|
|
72
|
+
#### Read the data
|
|
73
|
+
df = read_raw_text_file(
|
|
74
|
+
filepath=filepath,
|
|
75
|
+
column_names=column_names,
|
|
76
|
+
reader_kwargs=reader_kwargs,
|
|
77
|
+
logger=logger,
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
##------------------------------------------------------------------------.
|
|
81
|
+
#### Adapt the dataframe to adhere to DISDRODB L0 standards
|
|
82
|
+
# Count number of delimiters to identify valid rows
|
|
83
|
+
df = df[df["TO_PARSE"].str.count(";") == 521]
|
|
84
|
+
|
|
85
|
+
# Split by ; delimiter (before raw drop number)
|
|
86
|
+
df = df["TO_PARSE"].str.split(";", expand=True, n=80)
|
|
87
|
+
|
|
88
|
+
# Assign column names
|
|
89
|
+
column_names = [
|
|
90
|
+
"time",
|
|
91
|
+
"start_identifier",
|
|
92
|
+
"device_address",
|
|
93
|
+
"sensor_serial_number",
|
|
94
|
+
"sensor_date",
|
|
95
|
+
"sensor_time",
|
|
96
|
+
"weather_code_synop_4677_5min",
|
|
97
|
+
"weather_code_synop_4680_5min",
|
|
98
|
+
"weather_code_metar_4678_5min",
|
|
99
|
+
"precipitation_rate_5min",
|
|
100
|
+
"weather_code_synop_4677",
|
|
101
|
+
"weather_code_synop_4680",
|
|
102
|
+
"weather_code_metar_4678",
|
|
103
|
+
"precipitation_rate",
|
|
104
|
+
"rainfall_rate",
|
|
105
|
+
"snowfall_rate",
|
|
106
|
+
"precipitation_accumulated",
|
|
107
|
+
"mor_visibility",
|
|
108
|
+
"reflectivity",
|
|
109
|
+
"quality_index",
|
|
110
|
+
"max_hail_diameter",
|
|
111
|
+
"laser_status",
|
|
112
|
+
"static_signal",
|
|
113
|
+
"laser_temperature_analog_status",
|
|
114
|
+
"laser_temperature_digital_status",
|
|
115
|
+
"laser_current_analog_status",
|
|
116
|
+
"laser_current_digital_status",
|
|
117
|
+
"sensor_voltage_supply_status",
|
|
118
|
+
"current_heating_pane_transmitter_head_status",
|
|
119
|
+
"current_heating_pane_receiver_head_status",
|
|
120
|
+
"temperature_sensor_status",
|
|
121
|
+
"current_heating_voltage_supply_status",
|
|
122
|
+
"current_heating_house_status",
|
|
123
|
+
"current_heating_heads_status",
|
|
124
|
+
"current_heating_carriers_status",
|
|
125
|
+
"control_output_laser_power_status",
|
|
126
|
+
"reserve_status",
|
|
127
|
+
"temperature_interior",
|
|
128
|
+
"laser_temperature",
|
|
129
|
+
"laser_current_average",
|
|
130
|
+
"control_voltage",
|
|
131
|
+
"optical_control_voltage_output",
|
|
132
|
+
"sensor_voltage_supply",
|
|
133
|
+
"current_heating_pane_transmitter_head",
|
|
134
|
+
"current_heating_pane_receiver_head",
|
|
135
|
+
"temperature_ambient",
|
|
136
|
+
"current_heating_voltage_supply",
|
|
137
|
+
"current_heating_house",
|
|
138
|
+
"current_heating_heads",
|
|
139
|
+
"current_heating_carriers",
|
|
140
|
+
"number_particles",
|
|
141
|
+
"number_particles_internal_data",
|
|
142
|
+
"number_particles_min_speed",
|
|
143
|
+
"number_particles_min_speed_internal_data",
|
|
144
|
+
"number_particles_max_speed",
|
|
145
|
+
"number_particles_max_speed_internal_data",
|
|
146
|
+
"number_particles_min_diameter",
|
|
147
|
+
"number_particles_min_diameter_internal_data",
|
|
148
|
+
"number_particles_no_hydrometeor",
|
|
149
|
+
"number_particles_no_hydrometeor_internal_data",
|
|
150
|
+
"number_particles_unknown_classification",
|
|
151
|
+
"number_particles_unknown_classification_internal_data",
|
|
152
|
+
"number_particles_class_1",
|
|
153
|
+
"number_particles_class_1_internal_data",
|
|
154
|
+
"number_particles_class_2",
|
|
155
|
+
"number_particles_class_2_internal_data",
|
|
156
|
+
"number_particles_class_3",
|
|
157
|
+
"number_particles_class_3_internal_data",
|
|
158
|
+
"number_particles_class_4",
|
|
159
|
+
"number_particles_class_4_internal_data",
|
|
160
|
+
"number_particles_class_5",
|
|
161
|
+
"number_particles_class_5_internal_data",
|
|
162
|
+
"number_particles_class_6",
|
|
163
|
+
"number_particles_class_6_internal_data",
|
|
164
|
+
"number_particles_class_7",
|
|
165
|
+
"number_particles_class_7_internal_data",
|
|
166
|
+
"number_particles_class_8",
|
|
167
|
+
"number_particles_class_8_internal_data",
|
|
168
|
+
"number_particles_class_9",
|
|
169
|
+
"number_particles_class_9_internal_data",
|
|
170
|
+
"raw_drop_number",
|
|
171
|
+
]
|
|
172
|
+
df.columns = column_names
|
|
173
|
+
|
|
174
|
+
# Remove checksum from raw_drop_number
|
|
175
|
+
df["raw_drop_number"] = df["raw_drop_number"].str.rsplit(";", n=2, expand=True)[0]
|
|
176
|
+
|
|
177
|
+
# Define datetime "time" column
|
|
178
|
+
time = df["time"].str.extract(r"(\d{2}/\d{2}/\d{4} \d{2}:\d{2}:\d{2})")[0]
|
|
179
|
+
df["time"] = pd.to_datetime(time, format="%d/%m/%Y %H:%M:%S", errors="coerce")
|
|
180
|
+
|
|
181
|
+
# Drop row if start_identifier different than 00
|
|
182
|
+
df["start_identifier"] = df["start_identifier"].astype(str).str[-2:]
|
|
183
|
+
df = df[df["start_identifier"] == "00"]
|
|
184
|
+
|
|
185
|
+
# Drop rows with invalid raw_drop_number
|
|
186
|
+
df = df[df["raw_drop_number"].astype(str).str.len() == 1759]
|
|
187
|
+
|
|
188
|
+
# Drop columns not agreeing with DISDRODB L0 standards
|
|
189
|
+
columns_to_drop = [
|
|
190
|
+
"start_identifier",
|
|
191
|
+
"device_address",
|
|
192
|
+
"sensor_serial_number",
|
|
193
|
+
"sensor_date",
|
|
194
|
+
"sensor_time",
|
|
195
|
+
]
|
|
196
|
+
df = df.drop(columns=columns_to_drop)
|
|
197
|
+
return df
|