direl-ts-tool-kit 0.5.0__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,8 @@
1
1
  import seaborn as sns
2
2
  import matplotlib.pyplot as plt
3
3
  import matplotlib.dates as mdates
4
+ from matplotlib.lines import Line2D
5
+
4
6
 
5
7
  plt.style.use("fast")
6
8
 
@@ -1,3 +1,4 @@
1
+ import numpy as np
1
2
  import pandas as pd
2
3
  from .plot_style import *
3
4
  from scipy.stats import pearsonr
@@ -121,6 +122,159 @@ def plot_time_series(
121
122
  return fig
122
123
 
123
124
 
125
+ def plot_interpolation_analysis(
126
+ df_original,
127
+ variable,
128
+ units="",
129
+ method="polynomial",
130
+ order=2,
131
+ imputation_se=None,
132
+ time_unit="Year",
133
+ rot=90,
134
+ ):
135
+ """
136
+ Performs interpolation on missing data (NaNs) in a specified column and
137
+ plots the result, highlighting the imputed points with confidence intervals
138
+ if the Imputation Standard Error (SE) is provided.
139
+
140
+ Parameters
141
+ ----------
142
+ df_original : pd.DataFrame
143
+ The DataFrame containing the original time series data.
144
+ variable : str
145
+ The name of the column to interpolate and plot (e.g., 'LPUE').
146
+ units : str, optional
147
+ Units to display next to the variable name on the y-axis. Defaults to "".
148
+ method : str, optional
149
+ The interpolation method (e.g., 'linear', 'polynomial', 'spline').
150
+ Defaults to 'polynomial'.
151
+ order : int, optional
152
+ The order of the interpolation (required for 'polynomial' or 'spline').
153
+ Defaults to 2.
154
+ imputation_se : pd.Series, float, or None, optional
155
+ The Standard Error (SE) of the imputation. This must be a single value
156
+ or a Series aligned with the DataFrame's index. If None, confidence
157
+ intervals will NOT be plotted. Defaults to None.
158
+ time_unit : str, optional
159
+ The time granularity for x-axis tick locators. Defaults to "Year".
160
+ rot : int, optional
161
+ Rotation angle (in degrees) for the x-axis tick labels. Defaults to 90.
162
+
163
+ Returns
164
+ -------
165
+ matplotlib.figure.Figure
166
+ The generated Matplotlib figure object with the plot.
167
+ """
168
+
169
+ imputed_mask = df_original[variable].isnull()
170
+ df_interpolated = df_original.copy()
171
+ df_interpolated[variable] = df_interpolated[variable].interpolate(
172
+ method=method, order=order
173
+ )
174
+
175
+ color1 = paper_colors["RED_LINES"]
176
+ color2 = paper_colors["GREEN_LINES"]
177
+
178
+ col = np.where(imputed_mask, color1, color2)
179
+
180
+ fig, ax = plt.subplots()
181
+
182
+ if imputation_se is not None:
183
+ df_imputed_only = df_interpolated.copy()
184
+ df_imputed_only.loc[~imputed_mask, variable] = np.nan
185
+
186
+ Z_80 = 1.282
187
+ Z_95 = 1.96
188
+
189
+ error_80 = Z_80 * imputation_se
190
+ error_95 = Z_95 * imputation_se
191
+
192
+ ax.fill_between(
193
+ df_imputed_only.index,
194
+ df_imputed_only[variable] - error_95,
195
+ df_imputed_only[variable] + error_95,
196
+ color=paper_colors["GRAY_BARS"],
197
+ alpha=0.2,
198
+ edgecolor="none",
199
+ label="95% confidence interval",
200
+ )
201
+
202
+ ax.fill_between(
203
+ df_imputed_only.index,
204
+ df_imputed_only[variable] - error_80,
205
+ df_imputed_only[variable] + error_80,
206
+ color=paper_colors["GRAY_BARS"],
207
+ alpha=0.4,
208
+ edgecolor="none",
209
+ label="80% confidence interval",
210
+ )
211
+
212
+ ax.plot(
213
+ df_interpolated[variable],
214
+ linestyle="-.",
215
+ linewidth=1,
216
+ color=paper_colors["BLUE_LINES"],
217
+ )
218
+
219
+ ax.scatter(
220
+ df_interpolated.index,
221
+ df_interpolated[variable],
222
+ color=col,
223
+ s=10,
224
+ linewidth=4,
225
+ )
226
+
227
+ ax.set(xlabel=f"{time_unit}", ylabel=f"{variable} {units}")
228
+ ax.ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
229
+
230
+ if time_unit == "Year":
231
+ ax.xaxis.set_major_locator(mdates.YearLocator())
232
+ ax.xaxis.set_minor_locator(mdates.MonthLocator())
233
+
234
+ if time_unit == "Month":
235
+ ax.xaxis.set_major_locator(mdates.MonthLocator())
236
+ ax.xaxis.set_minor_locator(mdates.WeekdayLocator())
237
+
238
+ if time_unit == "Weekday":
239
+ ax.xaxis.set_major_locator(mdates.WeekdayLocator())
240
+ ax.xaxis.set_minor_locator(mdates.DayLocator())
241
+
242
+ if time_unit == "Day":
243
+ ax.xaxis.set_major_locator(mdates.DayLocator())
244
+ ax.xaxis.set_minor_locator(mdates.HourLocator())
245
+
246
+ if time_unit == "Hour":
247
+ ax.xaxis.set_major_locator(mdates.HourLocator())
248
+ ax.xaxis.set_minor_locator(mdates.MinuteLocator())
249
+
250
+ ax.tick_params(axis="x", rotation=rot)
251
+ ax.grid(which="both")
252
+ ax.grid(which="minor", alpha=0.6, linestyle=":")
253
+ ax.grid(which="major", alpha=0.8, linestyle="--")
254
+
255
+ legend_elements = [
256
+ Line2D(
257
+ [0],
258
+ [0],
259
+ marker="o",
260
+ color=color2,
261
+ label="Current data",
262
+ linestyle="none",
263
+ ),
264
+ Line2D(
265
+ [0],
266
+ [0],
267
+ marker="o",
268
+ color=color1,
269
+ label="Imputed data",
270
+ linestyle="none",
271
+ ),
272
+ ]
273
+ ax.legend(handles=legend_elements, loc="upper right")
274
+
275
+ return fig
276
+
277
+
124
278
  def save_figure(
125
279
  fig,
126
280
  file_name,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: direl-ts-tool-kit
3
- Version: 0.5.0
3
+ Version: 0.6.0
4
4
  Summary: A toolbox for time series analysis and visualization.
5
5
  Home-page: https://gitlab.com/direl/direl_tool_kit
6
6
  Author: Diego Restrepo-Leal
@@ -89,6 +89,14 @@ This function automatically sets major and minor time-based locators
89
89
  on the x-axis based on the specified time unit, and formats the y-axis
90
90
  to use scientific notation.
91
91
 
92
+ #### plot_interpolation_analysis
93
+ `plot_interpolation_analysis(df_original, variable, units="", method="polynomial", order=2, imputation_se=None, time_unit="Year", rot=90)`
94
+
95
+ Performs interpolation on missing data (NaNs) in a specified column and
96
+ plots the result, highlighting the imputed points with confidence intervals
97
+ if the Imputation Standard Error (SE) is provided.
98
+
99
+
92
100
  #### save_figure
93
101
  `save_figure(fig, file_name, variable_name="", path="./")`
94
102
 
@@ -0,0 +1,11 @@
1
+ direl_ts_tool_kit/__init__.py,sha256=W99Wd3BeEFKOxT51TApURElbDJvqIjD8u_-qDoCYSJ0,94
2
+ direl_ts_tool_kit/plot/__init__.py,sha256=CMwyv-kiE74nwr3MJPL7gWIJmcfZ8UQCRu7mBGGQ4rI,49
3
+ direl_ts_tool_kit/plot/plot_style.py,sha256=5YxoLXlYvzleTnBEGPwCmHQIJ0S96KPJspq_n-qMvpw,1069
4
+ direl_ts_tool_kit/plot/plot_ts.py,sha256=D1doDV24eKOFD7vxZUE6QRx-kTRPPjmbxcGOnvdVjKQ,12982
5
+ direl_ts_tool_kit/utilities/__init__.py,sha256=jMtxYZUtwlhgI99sxe_8MMzsDnxtbTP7Ivh9tUOeIwQ,25
6
+ direl_ts_tool_kit/utilities/data_prep.py,sha256=k3eOwQEEd5mxy2DtT_Gdo7BhkzEmSQqvMJ89y8mH5CQ,6024
7
+ direl_ts_tool_kit-0.6.0.dist-info/licenses/LICENCE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ direl_ts_tool_kit-0.6.0.dist-info/METADATA,sha256=4G6DKqzMbNny1JE26bGSUuX5zpDqf-4VDuvjwgMZjLI,4883
9
+ direl_ts_tool_kit-0.6.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
10
+ direl_ts_tool_kit-0.6.0.dist-info/top_level.txt,sha256=vMCRudnGnsdRg_6fUftnG8PF2Y1m0bjBDMf3pCAp6bc,18
11
+ direl_ts_tool_kit-0.6.0.dist-info/RECORD,,
@@ -1,11 +0,0 @@
1
- direl_ts_tool_kit/__init__.py,sha256=W99Wd3BeEFKOxT51TApURElbDJvqIjD8u_-qDoCYSJ0,94
2
- direl_ts_tool_kit/plot/__init__.py,sha256=CMwyv-kiE74nwr3MJPL7gWIJmcfZ8UQCRu7mBGGQ4rI,49
3
- direl_ts_tool_kit/plot/plot_style.py,sha256=WVcxr5LK0ht8RmFscUri7HcCB5Vd50UItocYNnlj3sA,1032
4
- direl_ts_tool_kit/plot/plot_ts.py,sha256=PbqclUAVTbYa7YTf59Q75XW1qqaW_I7qPuuTXMQmmxI,8340
5
- direl_ts_tool_kit/utilities/__init__.py,sha256=jMtxYZUtwlhgI99sxe_8MMzsDnxtbTP7Ivh9tUOeIwQ,25
6
- direl_ts_tool_kit/utilities/data_prep.py,sha256=k3eOwQEEd5mxy2DtT_Gdo7BhkzEmSQqvMJ89y8mH5CQ,6024
7
- direl_ts_tool_kit-0.5.0.dist-info/licenses/LICENCE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- direl_ts_tool_kit-0.5.0.dist-info/METADATA,sha256=ctS91dCUFsS4i4HI80XFjhHVEaySpNVQw79wyvh_ipM,4509
9
- direl_ts_tool_kit-0.5.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
10
- direl_ts_tool_kit-0.5.0.dist-info/top_level.txt,sha256=vMCRudnGnsdRg_6fUftnG8PF2Y1m0bjBDMf3pCAp6bc,18
11
- direl_ts_tool_kit-0.5.0.dist-info/RECORD,,