direl-ts-tool-kit 0.4.9__py3-none-any.whl → 0.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,5 +1,8 @@
1
+ import seaborn as sns
1
2
  import matplotlib.pyplot as plt
2
3
  import matplotlib.dates as mdates
4
+ from matplotlib.lines import Line2D
5
+
3
6
 
4
7
  plt.style.use("fast")
5
8
 
@@ -1,8 +1,17 @@
1
+ import numpy as np
2
+ import pandas as pd
1
3
  from .plot_style import *
4
+ from scipy.stats import pearsonr
2
5
 
3
6
 
4
7
  def plot_time_series(
5
- df_ts, variable, units="", color="BLUE_LINES", time_unit="Year", rot=90, auto_format_label=True
8
+ df_ts,
9
+ variable,
10
+ units="",
11
+ color="BLUE_LINES",
12
+ time_unit="Year",
13
+ rot=90,
14
+ auto_format_label=True,
6
15
  ):
7
16
  """
8
17
  Plots a time series with custom styling and dual-level grid visibility.
@@ -100,7 +109,7 @@ def plot_time_series(
100
109
  if time_unit == "Day":
101
110
  ax.xaxis.set_major_locator(mdates.DayLocator())
102
111
  ax.xaxis.set_minor_locator(mdates.HourLocator())
103
-
112
+
104
113
  if time_unit == "Hour":
105
114
  ax.xaxis.set_major_locator(mdates.HourLocator())
106
115
  ax.xaxis.set_minor_locator(mdates.MinuteLocator())
@@ -113,6 +122,159 @@ def plot_time_series(
113
122
  return fig
114
123
 
115
124
 
125
+ def plot_interpolation_analysis(
126
+ df_original,
127
+ variable,
128
+ units="",
129
+ method="polynomial",
130
+ order=2,
131
+ imputation_se=None,
132
+ time_unit="Year",
133
+ rot=90,
134
+ ):
135
+ """
136
+ Performs interpolation on missing data (NaNs) in a specified column and
137
+ plots the result, highlighting the imputed points with confidence intervals
138
+ if the Imputation Standard Error (SE) is provided.
139
+
140
+ Parameters
141
+ ----------
142
+ df_original : pd.DataFrame
143
+ The DataFrame containing the original time series data.
144
+ variable : str
145
+ The name of the column to interpolate and plot (e.g., 'LPUE').
146
+ units : str, optional
147
+ Units to display next to the variable name on the y-axis. Defaults to "".
148
+ method : str, optional
149
+ The interpolation method (e.g., 'linear', 'polynomial', 'spline').
150
+ Defaults to 'polynomial'.
151
+ order : int, optional
152
+ The order of the interpolation (required for 'polynomial' or 'spline').
153
+ Defaults to 2.
154
+ imputation_se : pd.Series, float, or None, optional
155
+ The Standard Error (SE) of the imputation. This must be a single value
156
+ or a Series aligned with the DataFrame's index. If None, confidence
157
+ intervals will NOT be plotted. Defaults to None.
158
+ time_unit : str, optional
159
+ The time granularity for x-axis tick locators. Defaults to "Year".
160
+ rot : int, optional
161
+ Rotation angle (in degrees) for the x-axis tick labels. Defaults to 90.
162
+
163
+ Returns
164
+ -------
165
+ matplotlib.figure.Figure
166
+ The generated Matplotlib figure object with the plot.
167
+ """
168
+
169
+ imputed_mask = df_original[variable].isnull()
170
+ df_interpolated = df_original.copy()
171
+ df_interpolated[variable] = df_interpolated[variable].interpolate(
172
+ method=method, order=order
173
+ )
174
+
175
+ color1 = paper_colors["RED_LINES"]
176
+ color2 = paper_colors["GREEN_LINES"]
177
+
178
+ col = np.where(imputed_mask, color1, color2)
179
+
180
+ fig, ax = plt.subplots()
181
+
182
+ if imputation_se is not None:
183
+ df_imputed_only = df_interpolated.copy()
184
+ df_imputed_only.loc[~imputed_mask, variable] = np.nan
185
+
186
+ Z_80 = 1.282
187
+ Z_95 = 1.96
188
+
189
+ error_80 = Z_80 * imputation_se
190
+ error_95 = Z_95 * imputation_se
191
+
192
+ ax.fill_between(
193
+ df_imputed_only.index,
194
+ df_imputed_only[variable] - error_95,
195
+ df_imputed_only[variable] + error_95,
196
+ color=paper_colors["GRAY_BARS"],
197
+ alpha=0.2,
198
+ edgecolor="none",
199
+ label="95% confidence interval",
200
+ )
201
+
202
+ ax.fill_between(
203
+ df_imputed_only.index,
204
+ df_imputed_only[variable] - error_80,
205
+ df_imputed_only[variable] + error_80,
206
+ color=paper_colors["GRAY_BARS"],
207
+ alpha=0.4,
208
+ edgecolor="none",
209
+ label="80% confidence interval",
210
+ )
211
+
212
+ ax.plot(
213
+ df_interpolated[variable],
214
+ linestyle="-.",
215
+ linewidth=1,
216
+ color=paper_colors["BLUE_LINES"],
217
+ )
218
+
219
+ ax.scatter(
220
+ df_interpolated.index,
221
+ df_interpolated[variable],
222
+ color=col,
223
+ s=10,
224
+ linewidth=4,
225
+ )
226
+
227
+ ax.set(xlabel=f"{time_unit}", ylabel=f"{variable} {units}")
228
+ ax.ticklabel_format(style="sci", axis="y", scilimits=(0, 0))
229
+
230
+ if time_unit == "Year":
231
+ ax.xaxis.set_major_locator(mdates.YearLocator())
232
+ ax.xaxis.set_minor_locator(mdates.MonthLocator())
233
+
234
+ if time_unit == "Month":
235
+ ax.xaxis.set_major_locator(mdates.MonthLocator())
236
+ ax.xaxis.set_minor_locator(mdates.WeekdayLocator())
237
+
238
+ if time_unit == "Weekday":
239
+ ax.xaxis.set_major_locator(mdates.WeekdayLocator())
240
+ ax.xaxis.set_minor_locator(mdates.DayLocator())
241
+
242
+ if time_unit == "Day":
243
+ ax.xaxis.set_major_locator(mdates.DayLocator())
244
+ ax.xaxis.set_minor_locator(mdates.HourLocator())
245
+
246
+ if time_unit == "Hour":
247
+ ax.xaxis.set_major_locator(mdates.HourLocator())
248
+ ax.xaxis.set_minor_locator(mdates.MinuteLocator())
249
+
250
+ ax.tick_params(axis="x", rotation=rot)
251
+ ax.grid(which="both")
252
+ ax.grid(which="minor", alpha=0.6, linestyle=":")
253
+ ax.grid(which="major", alpha=0.8, linestyle="--")
254
+
255
+ legend_elements = [
256
+ Line2D(
257
+ [0],
258
+ [0],
259
+ marker="o",
260
+ color=color2,
261
+ label="Current data",
262
+ linestyle="none",
263
+ ),
264
+ Line2D(
265
+ [0],
266
+ [0],
267
+ marker="o",
268
+ color=color1,
269
+ label="Imputed data",
270
+ linestyle="none",
271
+ ),
272
+ ]
273
+ ax.legend(handles=legend_elements, loc="upper right")
274
+
275
+ return fig
276
+
277
+
116
278
  def save_figure(
117
279
  fig,
118
280
  file_name,
@@ -151,3 +313,102 @@ def save_figure(
151
313
  fig.savefig(f"{base_name}.png")
152
314
  fig.savefig(f"{base_name}.pdf")
153
315
  fig.savefig(f"{base_name}.svg")
316
+
317
+
318
+ def heat_map(X, y, colors="Blues"):
319
+ """
320
+ Generates a correlation heatmap plot for a set of features and a target variable.
321
+
322
+ This function concatenates the feature DataFrame (X) and the target Series (y)
323
+ to compute and visualize the full pairwise correlation matrix using Seaborn.
324
+
325
+ Parameters
326
+ ----------
327
+ X : pd.DataFrame
328
+ The DataFrame containing the feature variables.
329
+ y : pd.Series or pd.DataFrame
330
+ The target variable (must be concatenable with X).
331
+ colors : str or matplotlib.colors.Colormap, optional
332
+ The colormap to use for the heatmap, passed to the 'cmap' argument
333
+ in seaborn.heatmap. Defaults to "Blues".
334
+
335
+ Note: For standard correlation matrices (which include negative values),
336
+ a diverging colormap (e.g., "coolwarm", "vlag") is usually recommended.
337
+
338
+ Returns
339
+ -------
340
+ matplotlib.figure.Figure
341
+ The generated Matplotlib figure object containing the heatmap.
342
+
343
+ Notes
344
+ -----
345
+ The heatmap displays the Pearson correlation coefficient rounded to two
346
+ decimal places and includes annotations for improved readability.
347
+ """
348
+ fig, ax = plt.subplots()
349
+ Z = pd.concat([X, y], axis=1)
350
+
351
+ ax = sns.heatmap(
352
+ Z.corr(),
353
+ cmap=colors,
354
+ annot=True,
355
+ linewidths=0.5,
356
+ fmt=".2f",
357
+ annot_kws={"size": 10},
358
+ )
359
+
360
+ return fig
361
+
362
+
363
+ def corrfunc(x, y, ax=None, **kws):
364
+ """Plot the correlation coefficient in the top left hand corner of a plot."""
365
+ r, _ = pearsonr(x, y)
366
+ ax = ax or plt.gca()
367
+ ax.annotate(f"R = {r:.2f}", xy=(0.1, 0.9), fontsize=25, xycoords=ax.transAxes)
368
+
369
+
370
+ def pair_plot(X, y):
371
+ """
372
+ Generates a cornered pair plot (scatterplot matrix) to visualize relationships
373
+ between features and the target variable.
374
+
375
+ The function combines the feature DataFrame (X) and the target Series (y)
376
+ and uses seaborn.pairplot to create a matrix of scatter plots and histograms.
377
+ It focuses on the lower triangular part (corner=True) and includes a
378
+ regression line for trend visualization.
379
+
380
+ Parameters
381
+ ----------
382
+ X : pd.DataFrame
383
+ The DataFrame containing the feature variables.
384
+ y : pd.Series or pd.DataFrame
385
+ The target variable (must be concatenable with X).
386
+
387
+ Returns
388
+ -------
389
+ matplotlib.figure.Figure
390
+ The generated Matplotlib Figure object containing the cornered pair plot.
391
+
392
+ Notes
393
+ -----
394
+ 1. **Dependency:** This function requires a previously defined custom function
395
+ `corrfunc` to be available in the local namespace, as it is used via
396
+ `svm.map_lower()`. This custom function is typically used to display
397
+ correlation coefficients (e.g., Pearson's r) in the lower panel.
398
+ 2. **Aesthetics:** Uses a regression line (`kind="reg"`) with custom color
399
+ (RED_LINES) to highlight linear relationships.
400
+ 3. **Output:** The returned Figure object can be manipulated further
401
+ or saved using methods like `fig.savefig()`.
402
+ """
403
+ Z = pd.concat([X, y], axis=1)
404
+ svm = sns.pairplot(
405
+ Z,
406
+ corner=True,
407
+ kind="reg",
408
+ plot_kws={"line_kws": {"color": paper_colors["RED_LINES"]}},
409
+ )
410
+ svm.map_lower(corrfunc)
411
+
412
+ fig = svm.fig
413
+
414
+ return fig
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: direl-ts-tool-kit
3
- Version: 0.4.9
3
+ Version: 0.6.0
4
4
  Summary: A toolbox for time series analysis and visualization.
5
5
  Home-page: https://gitlab.com/direl/direl_tool_kit
6
6
  Author: Diego Restrepo-Leal
@@ -18,6 +18,8 @@ Requires-Dist: pandas>=1.0.0
18
18
  Requires-Dist: numpy>=1.18.0
19
19
  Requires-Dist: matplotlib>=3.0.0
20
20
  Requires-Dist: openpyxl
21
+ Requires-Dist: seaborn
22
+ Requires-Dist: scipy
21
23
  Dynamic: author
22
24
  Dynamic: author-email
23
25
  Dynamic: classifier
@@ -87,6 +89,14 @@ This function automatically sets major and minor time-based locators
87
89
  on the x-axis based on the specified time unit, and formats the y-axis
88
90
  to use scientific notation.
89
91
 
92
+ #### plot_interpolation_analysis
93
+ `plot_interpolation_analysis(df_original, variable, units="", method="polynomial", order=2, imputation_se=None, time_unit="Year", rot=90)`
94
+
95
+ Performs interpolation on missing data (NaNs) in a specified column and
96
+ plots the result, highlighting the imputed points with confidence intervals
97
+ if the Imputation Standard Error (SE) is provided.
98
+
99
+
90
100
  #### save_figure
91
101
  `save_figure(fig, file_name, variable_name="", path="./")`
92
102
 
@@ -95,6 +105,26 @@ Saves a Matplotlib figure in three common high-quality formats (PNG, PDF, SVG).
95
105
  The function creates a consistent file name structure:
96
106
  {path}/{file_name}_{variable_name}.{extension}.
97
107
 
108
+ #### heat_map
109
+ `heat_map(X, y, colors="Blues")`
110
+
111
+ Generates a correlation heatmap plot for a set of features and a target variable.
112
+
113
+ This function concatenates the feature DataFrame (X) and the target Series (y)
114
+ to compute and visualize the full pairwise correlation matrix using Seaborn.
115
+
116
+ #### pair_plot
117
+ `pair_plot(X, y)`
118
+
119
+ Generates a cornered pair plot (scatterplot matrix) to visualize relationships
120
+ between features and the target variable.
121
+
122
+ The function combines the feature DataFrame (X) and the target Series (y)
123
+ and uses seaborn.pairplot to create a matrix of scatter plots and histograms.
124
+ It focuses on the lower triangular part (corner=True) and includes a
125
+ regression line for trend visualization.
126
+
127
+
98
128
  # Examples
99
129
  - [Example 1](https://gitlab.com/direl/direl_tool_kit/-/blob/main/example/example_01.md?ref_type=heads)
100
130
  - [Example 2](https://gitlab.com/direl/direl_tool_kit/-/blob/main/example/example_02.md?ref_type=heads)
@@ -0,0 +1,11 @@
1
+ direl_ts_tool_kit/__init__.py,sha256=W99Wd3BeEFKOxT51TApURElbDJvqIjD8u_-qDoCYSJ0,94
2
+ direl_ts_tool_kit/plot/__init__.py,sha256=CMwyv-kiE74nwr3MJPL7gWIJmcfZ8UQCRu7mBGGQ4rI,49
3
+ direl_ts_tool_kit/plot/plot_style.py,sha256=5YxoLXlYvzleTnBEGPwCmHQIJ0S96KPJspq_n-qMvpw,1069
4
+ direl_ts_tool_kit/plot/plot_ts.py,sha256=D1doDV24eKOFD7vxZUE6QRx-kTRPPjmbxcGOnvdVjKQ,12982
5
+ direl_ts_tool_kit/utilities/__init__.py,sha256=jMtxYZUtwlhgI99sxe_8MMzsDnxtbTP7Ivh9tUOeIwQ,25
6
+ direl_ts_tool_kit/utilities/data_prep.py,sha256=k3eOwQEEd5mxy2DtT_Gdo7BhkzEmSQqvMJ89y8mH5CQ,6024
7
+ direl_ts_tool_kit-0.6.0.dist-info/licenses/LICENCE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ direl_ts_tool_kit-0.6.0.dist-info/METADATA,sha256=4G6DKqzMbNny1JE26bGSUuX5zpDqf-4VDuvjwgMZjLI,4883
9
+ direl_ts_tool_kit-0.6.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
10
+ direl_ts_tool_kit-0.6.0.dist-info/top_level.txt,sha256=vMCRudnGnsdRg_6fUftnG8PF2Y1m0bjBDMf3pCAp6bc,18
11
+ direl_ts_tool_kit-0.6.0.dist-info/RECORD,,
@@ -1,11 +0,0 @@
1
- direl_ts_tool_kit/__init__.py,sha256=W99Wd3BeEFKOxT51TApURElbDJvqIjD8u_-qDoCYSJ0,94
2
- direl_ts_tool_kit/plot/__init__.py,sha256=CMwyv-kiE74nwr3MJPL7gWIJmcfZ8UQCRu7mBGGQ4rI,49
3
- direl_ts_tool_kit/plot/plot_style.py,sha256=vhzcDa3LzgkHuy-GnliofGZ8TDntkm3_1C5kgl2Gx3E,1010
4
- direl_ts_tool_kit/plot/plot_ts.py,sha256=Fi_J-5qyDxcR-Z6sRHksn1e5QZcKqITGbpH3-bAX-Jw,5015
5
- direl_ts_tool_kit/utilities/__init__.py,sha256=jMtxYZUtwlhgI99sxe_8MMzsDnxtbTP7Ivh9tUOeIwQ,25
6
- direl_ts_tool_kit/utilities/data_prep.py,sha256=k3eOwQEEd5mxy2DtT_Gdo7BhkzEmSQqvMJ89y8mH5CQ,6024
7
- direl_ts_tool_kit-0.4.9.dist-info/licenses/LICENCE,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- direl_ts_tool_kit-0.4.9.dist-info/METADATA,sha256=CrRTdibENrgqBksrJVNTWR-Kt9C8uUAgpR5hwBK3bdI,3757
9
- direl_ts_tool_kit-0.4.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
10
- direl_ts_tool_kit-0.4.9.dist-info/top_level.txt,sha256=vMCRudnGnsdRg_6fUftnG8PF2Y1m0bjBDMf3pCAp6bc,18
11
- direl_ts_tool_kit-0.4.9.dist-info/RECORD,,