diffusers 0.30.2__py3-none-any.whl → 0.30.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,812 @@
1
+ # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import inspect
17
+ import math
18
+ from typing import Callable, Dict, List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ from PIL import Image
22
+ from transformers import T5EncoderModel, T5Tokenizer
23
+
24
+ from ...callbacks import MultiPipelineCallbacks, PipelineCallback
25
+ from ...models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
26
+ from ...models.embeddings import get_3d_rotary_pos_embed
27
+ from ...pipelines.pipeline_utils import DiffusionPipeline
28
+ from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
29
+ from ...utils import (
30
+ logging,
31
+ replace_example_docstring,
32
+ )
33
+ from ...utils.torch_utils import randn_tensor
34
+ from ...video_processor import VideoProcessor
35
+ from .pipeline_output import CogVideoXPipelineOutput
36
+
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+
41
+ EXAMPLE_DOC_STRING = """
42
+ Examples:
43
+ ```python
44
+ >>> import torch
45
+ >>> from diffusers import CogVideoXDPMScheduler, CogVideoXVideoToVideoPipeline
46
+ >>> from diffusers.utils import export_to_video, load_video
47
+
48
+ >>> # Models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b"
49
+ >>> pipe = CogVideoXVideoToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16)
50
+ >>> pipe.to("cuda")
51
+ >>> pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config)
52
+
53
+ >>> input_video = load_video(
54
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/hiker.mp4"
55
+ ... )
56
+ >>> prompt = (
57
+ ... "An astronaut stands triumphantly at the peak of a towering mountain. Panorama of rugged peaks and "
58
+ ... "valleys. Very futuristic vibe and animated aesthetic. Highlights of purple and golden colors in "
59
+ ... "the scene. The sky is looks like an animated/cartoonish dream of galaxies, nebulae, stars, planets, "
60
+ ... "moons, but the remainder of the scene is mostly realistic."
61
+ ... )
62
+
63
+ >>> video = pipe(
64
+ ... video=input_video, prompt=prompt, strength=0.8, guidance_scale=6, num_inference_steps=50
65
+ ... ).frames[0]
66
+ >>> export_to_video(video, "output.mp4", fps=8)
67
+ ```
68
+ """
69
+
70
+
71
+ # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
72
+ def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
73
+ tw = tgt_width
74
+ th = tgt_height
75
+ h, w = src
76
+ r = h / w
77
+ if r > (th / tw):
78
+ resize_height = th
79
+ resize_width = int(round(th / h * w))
80
+ else:
81
+ resize_width = tw
82
+ resize_height = int(round(tw / w * h))
83
+
84
+ crop_top = int(round((th - resize_height) / 2.0))
85
+ crop_left = int(round((tw - resize_width) / 2.0))
86
+
87
+ return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
88
+
89
+
90
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
91
+ def retrieve_timesteps(
92
+ scheduler,
93
+ num_inference_steps: Optional[int] = None,
94
+ device: Optional[Union[str, torch.device]] = None,
95
+ timesteps: Optional[List[int]] = None,
96
+ sigmas: Optional[List[float]] = None,
97
+ **kwargs,
98
+ ):
99
+ """
100
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
101
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
102
+
103
+ Args:
104
+ scheduler (`SchedulerMixin`):
105
+ The scheduler to get timesteps from.
106
+ num_inference_steps (`int`):
107
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
108
+ must be `None`.
109
+ device (`str` or `torch.device`, *optional*):
110
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
111
+ timesteps (`List[int]`, *optional*):
112
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
113
+ `num_inference_steps` and `sigmas` must be `None`.
114
+ sigmas (`List[float]`, *optional*):
115
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
116
+ `num_inference_steps` and `timesteps` must be `None`.
117
+
118
+ Returns:
119
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
120
+ second element is the number of inference steps.
121
+ """
122
+ if timesteps is not None and sigmas is not None:
123
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
124
+ if timesteps is not None:
125
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
126
+ if not accepts_timesteps:
127
+ raise ValueError(
128
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
129
+ f" timestep schedules. Please check whether you are using the correct scheduler."
130
+ )
131
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
132
+ timesteps = scheduler.timesteps
133
+ num_inference_steps = len(timesteps)
134
+ elif sigmas is not None:
135
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
136
+ if not accept_sigmas:
137
+ raise ValueError(
138
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
139
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
140
+ )
141
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
142
+ timesteps = scheduler.timesteps
143
+ num_inference_steps = len(timesteps)
144
+ else:
145
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
146
+ timesteps = scheduler.timesteps
147
+ return timesteps, num_inference_steps
148
+
149
+
150
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
151
+ def retrieve_latents(
152
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
153
+ ):
154
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
155
+ return encoder_output.latent_dist.sample(generator)
156
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
157
+ return encoder_output.latent_dist.mode()
158
+ elif hasattr(encoder_output, "latents"):
159
+ return encoder_output.latents
160
+ else:
161
+ raise AttributeError("Could not access latents of provided encoder_output")
162
+
163
+
164
+ class CogVideoXVideoToVideoPipeline(DiffusionPipeline):
165
+ r"""
166
+ Pipeline for video-to-video generation using CogVideoX.
167
+
168
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
169
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
170
+
171
+ Args:
172
+ vae ([`AutoencoderKL`]):
173
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
174
+ text_encoder ([`T5EncoderModel`]):
175
+ Frozen text-encoder. CogVideoX uses
176
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the
177
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
178
+ tokenizer (`T5Tokenizer`):
179
+ Tokenizer of class
180
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
181
+ transformer ([`CogVideoXTransformer3DModel`]):
182
+ A text conditioned `CogVideoXTransformer3DModel` to denoise the encoded video latents.
183
+ scheduler ([`SchedulerMixin`]):
184
+ A scheduler to be used in combination with `transformer` to denoise the encoded video latents.
185
+ """
186
+
187
+ _optional_components = []
188
+ model_cpu_offload_seq = "text_encoder->transformer->vae"
189
+
190
+ _callback_tensor_inputs = [
191
+ "latents",
192
+ "prompt_embeds",
193
+ "negative_prompt_embeds",
194
+ ]
195
+
196
+ def __init__(
197
+ self,
198
+ tokenizer: T5Tokenizer,
199
+ text_encoder: T5EncoderModel,
200
+ vae: AutoencoderKLCogVideoX,
201
+ transformer: CogVideoXTransformer3DModel,
202
+ scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
203
+ ):
204
+ super().__init__()
205
+
206
+ self.register_modules(
207
+ tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
208
+ )
209
+ self.vae_scale_factor_spatial = (
210
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
211
+ )
212
+ self.vae_scale_factor_temporal = (
213
+ self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4
214
+ )
215
+
216
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
217
+
218
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds
219
+ def _get_t5_prompt_embeds(
220
+ self,
221
+ prompt: Union[str, List[str]] = None,
222
+ num_videos_per_prompt: int = 1,
223
+ max_sequence_length: int = 226,
224
+ device: Optional[torch.device] = None,
225
+ dtype: Optional[torch.dtype] = None,
226
+ ):
227
+ device = device or self._execution_device
228
+ dtype = dtype or self.text_encoder.dtype
229
+
230
+ prompt = [prompt] if isinstance(prompt, str) else prompt
231
+ batch_size = len(prompt)
232
+
233
+ text_inputs = self.tokenizer(
234
+ prompt,
235
+ padding="max_length",
236
+ max_length=max_sequence_length,
237
+ truncation=True,
238
+ add_special_tokens=True,
239
+ return_tensors="pt",
240
+ )
241
+ text_input_ids = text_inputs.input_ids
242
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
243
+
244
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
245
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
246
+ logger.warning(
247
+ "The following part of your input was truncated because `max_sequence_length` is set to "
248
+ f" {max_sequence_length} tokens: {removed_text}"
249
+ )
250
+
251
+ prompt_embeds = self.text_encoder(text_input_ids.to(device))[0]
252
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
253
+
254
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
255
+ _, seq_len, _ = prompt_embeds.shape
256
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
257
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
258
+
259
+ return prompt_embeds
260
+
261
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
262
+ def encode_prompt(
263
+ self,
264
+ prompt: Union[str, List[str]],
265
+ negative_prompt: Optional[Union[str, List[str]]] = None,
266
+ do_classifier_free_guidance: bool = True,
267
+ num_videos_per_prompt: int = 1,
268
+ prompt_embeds: Optional[torch.Tensor] = None,
269
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
270
+ max_sequence_length: int = 226,
271
+ device: Optional[torch.device] = None,
272
+ dtype: Optional[torch.dtype] = None,
273
+ ):
274
+ r"""
275
+ Encodes the prompt into text encoder hidden states.
276
+
277
+ Args:
278
+ prompt (`str` or `List[str]`, *optional*):
279
+ prompt to be encoded
280
+ negative_prompt (`str` or `List[str]`, *optional*):
281
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
282
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
283
+ less than `1`).
284
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
285
+ Whether to use classifier free guidance or not.
286
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
287
+ Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
288
+ prompt_embeds (`torch.Tensor`, *optional*):
289
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
290
+ provided, text embeddings will be generated from `prompt` input argument.
291
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
292
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
293
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
294
+ argument.
295
+ device: (`torch.device`, *optional*):
296
+ torch device
297
+ dtype: (`torch.dtype`, *optional*):
298
+ torch dtype
299
+ """
300
+ device = device or self._execution_device
301
+
302
+ prompt = [prompt] if isinstance(prompt, str) else prompt
303
+ if prompt is not None:
304
+ batch_size = len(prompt)
305
+ else:
306
+ batch_size = prompt_embeds.shape[0]
307
+
308
+ if prompt_embeds is None:
309
+ prompt_embeds = self._get_t5_prompt_embeds(
310
+ prompt=prompt,
311
+ num_videos_per_prompt=num_videos_per_prompt,
312
+ max_sequence_length=max_sequence_length,
313
+ device=device,
314
+ dtype=dtype,
315
+ )
316
+
317
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
318
+ negative_prompt = negative_prompt or ""
319
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
320
+
321
+ if prompt is not None and type(prompt) is not type(negative_prompt):
322
+ raise TypeError(
323
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
324
+ f" {type(prompt)}."
325
+ )
326
+ elif batch_size != len(negative_prompt):
327
+ raise ValueError(
328
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
329
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
330
+ " the batch size of `prompt`."
331
+ )
332
+
333
+ negative_prompt_embeds = self._get_t5_prompt_embeds(
334
+ prompt=negative_prompt,
335
+ num_videos_per_prompt=num_videos_per_prompt,
336
+ max_sequence_length=max_sequence_length,
337
+ device=device,
338
+ dtype=dtype,
339
+ )
340
+
341
+ return prompt_embeds, negative_prompt_embeds
342
+
343
+ def prepare_latents(
344
+ self,
345
+ video: Optional[torch.Tensor] = None,
346
+ batch_size: int = 1,
347
+ num_channels_latents: int = 16,
348
+ height: int = 60,
349
+ width: int = 90,
350
+ dtype: Optional[torch.dtype] = None,
351
+ device: Optional[torch.device] = None,
352
+ generator: Optional[torch.Generator] = None,
353
+ latents: Optional[torch.Tensor] = None,
354
+ timestep: Optional[torch.Tensor] = None,
355
+ ):
356
+ num_frames = (video.size(2) - 1) // self.vae_scale_factor_temporal + 1 if latents is None else latents.size(1)
357
+
358
+ shape = (
359
+ batch_size,
360
+ num_frames,
361
+ num_channels_latents,
362
+ height // self.vae_scale_factor_spatial,
363
+ width // self.vae_scale_factor_spatial,
364
+ )
365
+
366
+ if isinstance(generator, list) and len(generator) != batch_size:
367
+ raise ValueError(
368
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
369
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
370
+ )
371
+
372
+ if latents is None:
373
+ if isinstance(generator, list):
374
+ if len(generator) != batch_size:
375
+ raise ValueError(
376
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
377
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
378
+ )
379
+
380
+ init_latents = [
381
+ retrieve_latents(self.vae.encode(video[i].unsqueeze(0)), generator[i]) for i in range(batch_size)
382
+ ]
383
+ else:
384
+ init_latents = [retrieve_latents(self.vae.encode(vid.unsqueeze(0)), generator) for vid in video]
385
+
386
+ init_latents = torch.cat(init_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W]
387
+ init_latents = self.vae.config.scaling_factor * init_latents
388
+
389
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
390
+ latents = self.scheduler.add_noise(init_latents, noise, timestep)
391
+ else:
392
+ latents = latents.to(device)
393
+
394
+ # scale the initial noise by the standard deviation required by the scheduler
395
+ latents = latents * self.scheduler.init_noise_sigma
396
+ return latents
397
+
398
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents
399
+ def decode_latents(self, latents: torch.Tensor) -> torch.Tensor:
400
+ latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
401
+ latents = 1 / self.vae.config.scaling_factor * latents
402
+
403
+ frames = self.vae.decode(latents).sample
404
+ return frames
405
+
406
+ # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps
407
+ def get_timesteps(self, num_inference_steps, timesteps, strength, device):
408
+ # get the original timestep using init_timestep
409
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
410
+
411
+ t_start = max(num_inference_steps - init_timestep, 0)
412
+ timesteps = timesteps[t_start * self.scheduler.order :]
413
+
414
+ return timesteps, num_inference_steps - t_start
415
+
416
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
417
+ def prepare_extra_step_kwargs(self, generator, eta):
418
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
419
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
420
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
421
+ # and should be between [0, 1]
422
+
423
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
424
+ extra_step_kwargs = {}
425
+ if accepts_eta:
426
+ extra_step_kwargs["eta"] = eta
427
+
428
+ # check if the scheduler accepts generator
429
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
430
+ if accepts_generator:
431
+ extra_step_kwargs["generator"] = generator
432
+ return extra_step_kwargs
433
+
434
+ def check_inputs(
435
+ self,
436
+ prompt,
437
+ height,
438
+ width,
439
+ strength,
440
+ negative_prompt,
441
+ callback_on_step_end_tensor_inputs,
442
+ video=None,
443
+ latents=None,
444
+ prompt_embeds=None,
445
+ negative_prompt_embeds=None,
446
+ ):
447
+ if height % 8 != 0 or width % 8 != 0:
448
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
449
+
450
+ if strength < 0 or strength > 1:
451
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
452
+
453
+ if callback_on_step_end_tensor_inputs is not None and not all(
454
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
455
+ ):
456
+ raise ValueError(
457
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
458
+ )
459
+ if prompt is not None and prompt_embeds is not None:
460
+ raise ValueError(
461
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
462
+ " only forward one of the two."
463
+ )
464
+ elif prompt is None and prompt_embeds is None:
465
+ raise ValueError(
466
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
467
+ )
468
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
469
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
470
+
471
+ if prompt is not None and negative_prompt_embeds is not None:
472
+ raise ValueError(
473
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
474
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
475
+ )
476
+
477
+ if negative_prompt is not None and negative_prompt_embeds is not None:
478
+ raise ValueError(
479
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
480
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
481
+ )
482
+
483
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
484
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
485
+ raise ValueError(
486
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
487
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
488
+ f" {negative_prompt_embeds.shape}."
489
+ )
490
+
491
+ if video is not None and latents is not None:
492
+ raise ValueError("Only one of `video` or `latents` should be provided")
493
+
494
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections
495
+ def fuse_qkv_projections(self) -> None:
496
+ r"""Enables fused QKV projections."""
497
+ self.fusing_transformer = True
498
+ self.transformer.fuse_qkv_projections()
499
+
500
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.unfuse_qkv_projections
501
+ def unfuse_qkv_projections(self) -> None:
502
+ r"""Disable QKV projection fusion if enabled."""
503
+ if not self.fusing_transformer:
504
+ logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.")
505
+ else:
506
+ self.transformer.unfuse_qkv_projections()
507
+ self.fusing_transformer = False
508
+
509
+ # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._prepare_rotary_positional_embeddings
510
+ def _prepare_rotary_positional_embeddings(
511
+ self,
512
+ height: int,
513
+ width: int,
514
+ num_frames: int,
515
+ device: torch.device,
516
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
517
+ grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
518
+ grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
519
+ base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
520
+ base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size)
521
+
522
+ grid_crops_coords = get_resize_crop_region_for_grid(
523
+ (grid_height, grid_width), base_size_width, base_size_height
524
+ )
525
+ freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
526
+ embed_dim=self.transformer.config.attention_head_dim,
527
+ crops_coords=grid_crops_coords,
528
+ grid_size=(grid_height, grid_width),
529
+ temporal_size=num_frames,
530
+ )
531
+
532
+ freqs_cos = freqs_cos.to(device=device)
533
+ freqs_sin = freqs_sin.to(device=device)
534
+ return freqs_cos, freqs_sin
535
+
536
+ @property
537
+ def guidance_scale(self):
538
+ return self._guidance_scale
539
+
540
+ @property
541
+ def num_timesteps(self):
542
+ return self._num_timesteps
543
+
544
+ @property
545
+ def interrupt(self):
546
+ return self._interrupt
547
+
548
+ @torch.no_grad()
549
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
550
+ def __call__(
551
+ self,
552
+ video: List[Image.Image] = None,
553
+ prompt: Optional[Union[str, List[str]]] = None,
554
+ negative_prompt: Optional[Union[str, List[str]]] = None,
555
+ height: int = 480,
556
+ width: int = 720,
557
+ num_inference_steps: int = 50,
558
+ timesteps: Optional[List[int]] = None,
559
+ strength: float = 0.8,
560
+ guidance_scale: float = 6,
561
+ use_dynamic_cfg: bool = False,
562
+ num_videos_per_prompt: int = 1,
563
+ eta: float = 0.0,
564
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
565
+ latents: Optional[torch.FloatTensor] = None,
566
+ prompt_embeds: Optional[torch.FloatTensor] = None,
567
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
568
+ output_type: str = "pil",
569
+ return_dict: bool = True,
570
+ callback_on_step_end: Optional[
571
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
572
+ ] = None,
573
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
574
+ max_sequence_length: int = 226,
575
+ ) -> Union[CogVideoXPipelineOutput, Tuple]:
576
+ """
577
+ Function invoked when calling the pipeline for generation.
578
+
579
+ Args:
580
+ video (`List[PIL.Image.Image]`):
581
+ The input video to condition the generation on. Must be a list of images/frames of the video.
582
+ prompt (`str` or `List[str]`, *optional*):
583
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
584
+ instead.
585
+ negative_prompt (`str` or `List[str]`, *optional*):
586
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
587
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
588
+ less than `1`).
589
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
590
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
591
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
592
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
593
+ num_inference_steps (`int`, *optional*, defaults to 50):
594
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
595
+ expense of slower inference.
596
+ timesteps (`List[int]`, *optional*):
597
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
598
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
599
+ passed will be used. Must be in descending order.
600
+ strength (`float`, *optional*, defaults to 0.8):
601
+ Higher strength leads to more differences between original video and generated video.
602
+ guidance_scale (`float`, *optional*, defaults to 7.0):
603
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
604
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
605
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
606
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
607
+ usually at the expense of lower image quality.
608
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
609
+ The number of videos to generate per prompt.
610
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
611
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
612
+ to make generation deterministic.
613
+ latents (`torch.FloatTensor`, *optional*):
614
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
615
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
616
+ tensor will ge generated by sampling using the supplied random `generator`.
617
+ prompt_embeds (`torch.FloatTensor`, *optional*):
618
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
619
+ provided, text embeddings will be generated from `prompt` input argument.
620
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
621
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
622
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
623
+ argument.
624
+ output_type (`str`, *optional*, defaults to `"pil"`):
625
+ The output format of the generate image. Choose between
626
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
627
+ return_dict (`bool`, *optional*, defaults to `True`):
628
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
629
+ of a plain tuple.
630
+ callback_on_step_end (`Callable`, *optional*):
631
+ A function that calls at the end of each denoising steps during the inference. The function is called
632
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
633
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
634
+ `callback_on_step_end_tensor_inputs`.
635
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
636
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
637
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
638
+ `._callback_tensor_inputs` attribute of your pipeline class.
639
+ max_sequence_length (`int`, defaults to `226`):
640
+ Maximum sequence length in encoded prompt. Must be consistent with
641
+ `self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
642
+
643
+ Examples:
644
+
645
+ Returns:
646
+ [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`:
647
+ [`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
648
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
649
+ """
650
+
651
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
652
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
653
+
654
+ height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial
655
+ width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial
656
+ num_videos_per_prompt = 1
657
+
658
+ # 1. Check inputs. Raise error if not correct
659
+ self.check_inputs(
660
+ prompt,
661
+ height,
662
+ width,
663
+ strength,
664
+ negative_prompt,
665
+ callback_on_step_end_tensor_inputs,
666
+ prompt_embeds,
667
+ negative_prompt_embeds,
668
+ )
669
+ self._guidance_scale = guidance_scale
670
+ self._interrupt = False
671
+
672
+ # 2. Default call parameters
673
+ if prompt is not None and isinstance(prompt, str):
674
+ batch_size = 1
675
+ elif prompt is not None and isinstance(prompt, list):
676
+ batch_size = len(prompt)
677
+ else:
678
+ batch_size = prompt_embeds.shape[0]
679
+
680
+ device = self._execution_device
681
+
682
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
683
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
684
+ # corresponds to doing no classifier free guidance.
685
+ do_classifier_free_guidance = guidance_scale > 1.0
686
+
687
+ # 3. Encode input prompt
688
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
689
+ prompt,
690
+ negative_prompt,
691
+ do_classifier_free_guidance,
692
+ num_videos_per_prompt=num_videos_per_prompt,
693
+ prompt_embeds=prompt_embeds,
694
+ negative_prompt_embeds=negative_prompt_embeds,
695
+ max_sequence_length=max_sequence_length,
696
+ device=device,
697
+ )
698
+ if do_classifier_free_guidance:
699
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
700
+
701
+ # 4. Prepare timesteps
702
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
703
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device)
704
+ latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
705
+ self._num_timesteps = len(timesteps)
706
+
707
+ # 5. Prepare latents
708
+ if latents is None:
709
+ video = self.video_processor.preprocess_video(video, height=height, width=width)
710
+ video = video.to(device=device, dtype=prompt_embeds.dtype)
711
+
712
+ latent_channels = self.transformer.config.in_channels
713
+ latents = self.prepare_latents(
714
+ video,
715
+ batch_size * num_videos_per_prompt,
716
+ latent_channels,
717
+ height,
718
+ width,
719
+ prompt_embeds.dtype,
720
+ device,
721
+ generator,
722
+ latents,
723
+ latent_timestep,
724
+ )
725
+
726
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
727
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
728
+
729
+ # 7. Create rotary embeds if required
730
+ image_rotary_emb = (
731
+ self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
732
+ if self.transformer.config.use_rotary_positional_embeddings
733
+ else None
734
+ )
735
+
736
+ # 8. Denoising loop
737
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
738
+
739
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
740
+ # for DPM-solver++
741
+ old_pred_original_sample = None
742
+ for i, t in enumerate(timesteps):
743
+ if self.interrupt:
744
+ continue
745
+
746
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
747
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
748
+
749
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
750
+ timestep = t.expand(latent_model_input.shape[0])
751
+
752
+ # predict noise model_output
753
+ noise_pred = self.transformer(
754
+ hidden_states=latent_model_input,
755
+ encoder_hidden_states=prompt_embeds,
756
+ timestep=timestep,
757
+ image_rotary_emb=image_rotary_emb,
758
+ return_dict=False,
759
+ )[0]
760
+ noise_pred = noise_pred.float()
761
+
762
+ # perform guidance
763
+ if use_dynamic_cfg:
764
+ self._guidance_scale = 1 + guidance_scale * (
765
+ (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
766
+ )
767
+ if do_classifier_free_guidance:
768
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
769
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
770
+
771
+ # compute the previous noisy sample x_t -> x_t-1
772
+ if not isinstance(self.scheduler, CogVideoXDPMScheduler):
773
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
774
+ else:
775
+ latents, old_pred_original_sample = self.scheduler.step(
776
+ noise_pred,
777
+ old_pred_original_sample,
778
+ t,
779
+ timesteps[i - 1] if i > 0 else None,
780
+ latents,
781
+ **extra_step_kwargs,
782
+ return_dict=False,
783
+ )
784
+ latents = latents.to(prompt_embeds.dtype)
785
+
786
+ # call the callback, if provided
787
+ if callback_on_step_end is not None:
788
+ callback_kwargs = {}
789
+ for k in callback_on_step_end_tensor_inputs:
790
+ callback_kwargs[k] = locals()[k]
791
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
792
+
793
+ latents = callback_outputs.pop("latents", latents)
794
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
795
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
796
+
797
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
798
+ progress_bar.update()
799
+
800
+ if not output_type == "latent":
801
+ video = self.decode_latents(latents)
802
+ video = self.video_processor.postprocess_video(video=video, output_type=output_type)
803
+ else:
804
+ video = latents
805
+
806
+ # Offload all models
807
+ self.maybe_free_model_hooks()
808
+
809
+ if not return_dict:
810
+ return (video,)
811
+
812
+ return CogVideoXPipelineOutput(frames=video)