diffusers 0.28.2__py3-none-any.whl → 0.29.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (122) hide show
  1. diffusers/__init__.py +15 -1
  2. diffusers/commands/env.py +1 -5
  3. diffusers/dependency_versions_table.py +1 -1
  4. diffusers/image_processor.py +2 -1
  5. diffusers/loaders/__init__.py +2 -2
  6. diffusers/loaders/lora.py +406 -140
  7. diffusers/loaders/lora_conversion_utils.py +7 -1
  8. diffusers/loaders/single_file.py +13 -1
  9. diffusers/loaders/single_file_model.py +15 -8
  10. diffusers/loaders/single_file_utils.py +267 -17
  11. diffusers/loaders/unet.py +307 -272
  12. diffusers/models/__init__.py +7 -3
  13. diffusers/models/attention.py +125 -1
  14. diffusers/models/attention_processor.py +169 -1
  15. diffusers/models/autoencoders/__init__.py +1 -0
  16. diffusers/models/autoencoders/autoencoder_asym_kl.py +1 -1
  17. diffusers/models/autoencoders/autoencoder_kl.py +17 -6
  18. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +4 -2
  19. diffusers/models/autoencoders/consistency_decoder_vae.py +9 -9
  20. diffusers/models/autoencoders/vq_model.py +182 -0
  21. diffusers/models/controlnet_sd3.py +418 -0
  22. diffusers/models/controlnet_xs.py +6 -6
  23. diffusers/models/embeddings.py +112 -84
  24. diffusers/models/model_loading_utils.py +55 -0
  25. diffusers/models/modeling_utils.py +138 -20
  26. diffusers/models/normalization.py +11 -6
  27. diffusers/models/transformers/__init__.py +1 -0
  28. diffusers/models/transformers/dual_transformer_2d.py +5 -4
  29. diffusers/models/transformers/hunyuan_transformer_2d.py +149 -2
  30. diffusers/models/transformers/prior_transformer.py +5 -5
  31. diffusers/models/transformers/transformer_2d.py +2 -2
  32. diffusers/models/transformers/transformer_sd3.py +353 -0
  33. diffusers/models/transformers/transformer_temporal.py +12 -10
  34. diffusers/models/unets/unet_1d.py +3 -3
  35. diffusers/models/unets/unet_2d.py +3 -3
  36. diffusers/models/unets/unet_2d_condition.py +4 -15
  37. diffusers/models/unets/unet_3d_condition.py +5 -17
  38. diffusers/models/unets/unet_i2vgen_xl.py +4 -4
  39. diffusers/models/unets/unet_motion_model.py +4 -4
  40. diffusers/models/unets/unet_spatio_temporal_condition.py +3 -3
  41. diffusers/models/vq_model.py +8 -165
  42. diffusers/pipelines/__init__.py +11 -0
  43. diffusers/pipelines/animatediff/pipeline_animatediff.py +4 -3
  44. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +4 -3
  45. diffusers/pipelines/auto_pipeline.py +8 -0
  46. diffusers/pipelines/controlnet/pipeline_controlnet.py +4 -3
  47. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +4 -3
  48. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +4 -3
  49. diffusers/pipelines/controlnet_sd3/__init__.py +53 -0
  50. diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py +1062 -0
  51. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +4 -3
  52. diffusers/pipelines/deepfloyd_if/watermark.py +1 -1
  53. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +4 -3
  54. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +4 -3
  55. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +4 -3
  56. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +4 -3
  57. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +4 -3
  58. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +24 -5
  59. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +4 -3
  60. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +4 -3
  61. diffusers/pipelines/marigold/marigold_image_processing.py +35 -20
  62. diffusers/pipelines/pia/pipeline_pia.py +4 -3
  63. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +1 -1
  64. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +1 -1
  65. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +17 -17
  66. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +4 -3
  67. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +5 -4
  68. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +4 -3
  69. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +4 -3
  70. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +4 -3
  71. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +4 -3
  72. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +7 -6
  73. diffusers/pipelines/stable_diffusion_3/__init__.py +52 -0
  74. diffusers/pipelines/stable_diffusion_3/pipeline_output.py +21 -0
  75. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py +904 -0
  76. diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3_img2img.py +941 -0
  77. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +4 -3
  78. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +10 -11
  79. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +4 -3
  80. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +4 -3
  81. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +4 -3
  82. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +4 -3
  83. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +4 -3
  84. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +4 -3
  85. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +4 -3
  86. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +4 -3
  87. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +4 -3
  88. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +4 -3
  89. diffusers/pipelines/unidiffuser/modeling_uvit.py +1 -1
  90. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +4 -3
  91. diffusers/schedulers/__init__.py +2 -0
  92. diffusers/schedulers/scheduling_dpmsolver_sde.py +2 -2
  93. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +2 -3
  94. diffusers/schedulers/scheduling_edm_euler.py +2 -4
  95. diffusers/schedulers/scheduling_flow_match_euler_discrete.py +287 -0
  96. diffusers/schedulers/scheduling_lms_discrete.py +2 -2
  97. diffusers/training_utils.py +4 -4
  98. diffusers/utils/__init__.py +3 -0
  99. diffusers/utils/constants.py +2 -0
  100. diffusers/utils/dummy_pt_objects.py +60 -0
  101. diffusers/utils/dummy_torch_and_transformers_objects.py +45 -0
  102. diffusers/utils/dynamic_modules_utils.py +15 -13
  103. diffusers/utils/hub_utils.py +106 -0
  104. diffusers/utils/import_utils.py +0 -1
  105. diffusers/utils/logging.py +3 -1
  106. diffusers/utils/state_dict_utils.py +2 -0
  107. {diffusers-0.28.2.dist-info → diffusers-0.29.1.dist-info}/METADATA +3 -3
  108. {diffusers-0.28.2.dist-info → diffusers-0.29.1.dist-info}/RECORD +112 -112
  109. {diffusers-0.28.2.dist-info → diffusers-0.29.1.dist-info}/WHEEL +1 -1
  110. diffusers/models/dual_transformer_2d.py +0 -20
  111. diffusers/models/prior_transformer.py +0 -12
  112. diffusers/models/t5_film_transformer.py +0 -70
  113. diffusers/models/transformer_2d.py +0 -25
  114. diffusers/models/transformer_temporal.py +0 -34
  115. diffusers/models/unet_1d.py +0 -26
  116. diffusers/models/unet_1d_blocks.py +0 -203
  117. diffusers/models/unet_2d.py +0 -27
  118. diffusers/models/unet_2d_blocks.py +0 -375
  119. diffusers/models/unet_2d_condition.py +0 -25
  120. {diffusers-0.28.2.dist-info → diffusers-0.29.1.dist-info}/LICENSE +0 -0
  121. {diffusers-0.28.2.dist-info → diffusers-0.29.1.dist-info}/entry_points.txt +0 -0
  122. {diffusers-0.28.2.dist-info → diffusers-0.29.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1062 @@
1
+ # Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ CLIPTextModelWithProjection,
21
+ CLIPTokenizer,
22
+ T5EncoderModel,
23
+ T5TokenizerFast,
24
+ )
25
+
26
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
27
+ from ...loaders import FromSingleFileMixin, SD3LoraLoaderMixin
28
+ from ...models.autoencoders import AutoencoderKL
29
+ from ...models.controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
30
+ from ...models.transformers import SD3Transformer2DModel
31
+ from ...schedulers import FlowMatchEulerDiscreteScheduler
32
+ from ...utils import (
33
+ is_torch_xla_available,
34
+ logging,
35
+ replace_example_docstring,
36
+ )
37
+ from ...utils.torch_utils import randn_tensor
38
+ from ..pipeline_utils import DiffusionPipeline
39
+ from ..stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
40
+
41
+
42
+ if is_torch_xla_available():
43
+ import torch_xla.core.xla_model as xm
44
+
45
+ XLA_AVAILABLE = True
46
+ else:
47
+ XLA_AVAILABLE = False
48
+
49
+
50
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
51
+
52
+ EXAMPLE_DOC_STRING = """
53
+ Examples:
54
+ ```py
55
+ >>> import torch
56
+ >>> from diffusers import StableDiffusion3ControlNetPipeline
57
+ >>> from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
58
+ >>> from diffusers.utils import load_image
59
+
60
+ >>> controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
61
+
62
+ >>> pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
63
+ ... "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
64
+ ... )
65
+ >>> pipe.to("cuda")
66
+ >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
67
+ >>> prompt = "A girl holding a sign that says InstantX"
68
+ >>> image = pipe(prompt, control_image=control_image, controlnet_conditioning_scale=0.7).images[0]
69
+ >>> image.save("sd3.png")
70
+ ```
71
+ """
72
+
73
+
74
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
75
+ def retrieve_timesteps(
76
+ scheduler,
77
+ num_inference_steps: Optional[int] = None,
78
+ device: Optional[Union[str, torch.device]] = None,
79
+ timesteps: Optional[List[int]] = None,
80
+ sigmas: Optional[List[float]] = None,
81
+ **kwargs,
82
+ ):
83
+ """
84
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
85
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
86
+
87
+ Args:
88
+ scheduler (`SchedulerMixin`):
89
+ The scheduler to get timesteps from.
90
+ num_inference_steps (`int`):
91
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
92
+ must be `None`.
93
+ device (`str` or `torch.device`, *optional*):
94
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
95
+ timesteps (`List[int]`, *optional*):
96
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
97
+ `num_inference_steps` and `sigmas` must be `None`.
98
+ sigmas (`List[float]`, *optional*):
99
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
100
+ `num_inference_steps` and `timesteps` must be `None`.
101
+
102
+ Returns:
103
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
104
+ second element is the number of inference steps.
105
+ """
106
+ if timesteps is not None and sigmas is not None:
107
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
108
+ if timesteps is not None:
109
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
110
+ if not accepts_timesteps:
111
+ raise ValueError(
112
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
113
+ f" timestep schedules. Please check whether you are using the correct scheduler."
114
+ )
115
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
116
+ timesteps = scheduler.timesteps
117
+ num_inference_steps = len(timesteps)
118
+ elif sigmas is not None:
119
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
120
+ if not accept_sigmas:
121
+ raise ValueError(
122
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
123
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
124
+ )
125
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
126
+ timesteps = scheduler.timesteps
127
+ num_inference_steps = len(timesteps)
128
+ else:
129
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
130
+ timesteps = scheduler.timesteps
131
+ return timesteps, num_inference_steps
132
+
133
+
134
+ class StableDiffusion3ControlNetPipeline(DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin):
135
+ r"""
136
+ Args:
137
+ transformer ([`SD3Transformer2DModel`]):
138
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
139
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
140
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
141
+ vae ([`AutoencoderKL`]):
142
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
143
+ text_encoder ([`CLIPTextModelWithProjection`]):
144
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
145
+ specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
146
+ with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
147
+ as its dimension.
148
+ text_encoder_2 ([`CLIPTextModelWithProjection`]):
149
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
150
+ specifically the
151
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
152
+ variant.
153
+ text_encoder_3 ([`T5EncoderModel`]):
154
+ Frozen text-encoder. Stable Diffusion 3 uses
155
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
156
+ [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
157
+ tokenizer (`CLIPTokenizer`):
158
+ Tokenizer of class
159
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
160
+ tokenizer_2 (`CLIPTokenizer`):
161
+ Second Tokenizer of class
162
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
163
+ tokenizer_3 (`T5TokenizerFast`):
164
+ Tokenizer of class
165
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
166
+ controlnet ([`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]):
167
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
168
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
169
+ additional conditioning.
170
+ """
171
+
172
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
173
+ _optional_components = []
174
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
175
+
176
+ def __init__(
177
+ self,
178
+ transformer: SD3Transformer2DModel,
179
+ scheduler: FlowMatchEulerDiscreteScheduler,
180
+ vae: AutoencoderKL,
181
+ text_encoder: CLIPTextModelWithProjection,
182
+ tokenizer: CLIPTokenizer,
183
+ text_encoder_2: CLIPTextModelWithProjection,
184
+ tokenizer_2: CLIPTokenizer,
185
+ text_encoder_3: T5EncoderModel,
186
+ tokenizer_3: T5TokenizerFast,
187
+ controlnet: Union[
188
+ SD3ControlNetModel, List[SD3ControlNetModel], Tuple[SD3ControlNetModel], SD3MultiControlNetModel
189
+ ],
190
+ ):
191
+ super().__init__()
192
+
193
+ self.register_modules(
194
+ vae=vae,
195
+ text_encoder=text_encoder,
196
+ text_encoder_2=text_encoder_2,
197
+ text_encoder_3=text_encoder_3,
198
+ tokenizer=tokenizer,
199
+ tokenizer_2=tokenizer_2,
200
+ tokenizer_3=tokenizer_3,
201
+ transformer=transformer,
202
+ scheduler=scheduler,
203
+ controlnet=controlnet,
204
+ )
205
+ self.vae_scale_factor = (
206
+ 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
207
+ )
208
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
209
+ self.tokenizer_max_length = (
210
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
211
+ )
212
+ self.default_sample_size = (
213
+ self.transformer.config.sample_size
214
+ if hasattr(self, "transformer") and self.transformer is not None
215
+ else 128
216
+ )
217
+
218
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
219
+ def _get_t5_prompt_embeds(
220
+ self,
221
+ prompt: Union[str, List[str]] = None,
222
+ num_images_per_prompt: int = 1,
223
+ max_sequence_length: int = 256,
224
+ device: Optional[torch.device] = None,
225
+ dtype: Optional[torch.dtype] = None,
226
+ ):
227
+ device = device or self._execution_device
228
+ dtype = dtype or self.text_encoder.dtype
229
+
230
+ prompt = [prompt] if isinstance(prompt, str) else prompt
231
+ batch_size = len(prompt)
232
+
233
+ if self.text_encoder_3 is None:
234
+ return torch.zeros(
235
+ (
236
+ batch_size * num_images_per_prompt,
237
+ self.tokenizer_max_length,
238
+ self.transformer.config.joint_attention_dim,
239
+ ),
240
+ device=device,
241
+ dtype=dtype,
242
+ )
243
+
244
+ text_inputs = self.tokenizer_3(
245
+ prompt,
246
+ padding="max_length",
247
+ max_length=max_sequence_length,
248
+ truncation=True,
249
+ add_special_tokens=True,
250
+ return_tensors="pt",
251
+ )
252
+ text_input_ids = text_inputs.input_ids
253
+ untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
254
+
255
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
256
+ removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
257
+ logger.warning(
258
+ "The following part of your input was truncated because `max_sequence_length` is set to "
259
+ f" {max_sequence_length} tokens: {removed_text}"
260
+ )
261
+
262
+ prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
263
+
264
+ dtype = self.text_encoder_3.dtype
265
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
266
+
267
+ _, seq_len, _ = prompt_embeds.shape
268
+
269
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
270
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
271
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
272
+
273
+ return prompt_embeds
274
+
275
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
276
+ def _get_clip_prompt_embeds(
277
+ self,
278
+ prompt: Union[str, List[str]],
279
+ num_images_per_prompt: int = 1,
280
+ device: Optional[torch.device] = None,
281
+ clip_skip: Optional[int] = None,
282
+ clip_model_index: int = 0,
283
+ ):
284
+ device = device or self._execution_device
285
+
286
+ clip_tokenizers = [self.tokenizer, self.tokenizer_2]
287
+ clip_text_encoders = [self.text_encoder, self.text_encoder_2]
288
+
289
+ tokenizer = clip_tokenizers[clip_model_index]
290
+ text_encoder = clip_text_encoders[clip_model_index]
291
+
292
+ prompt = [prompt] if isinstance(prompt, str) else prompt
293
+ batch_size = len(prompt)
294
+
295
+ text_inputs = tokenizer(
296
+ prompt,
297
+ padding="max_length",
298
+ max_length=self.tokenizer_max_length,
299
+ truncation=True,
300
+ return_tensors="pt",
301
+ )
302
+
303
+ text_input_ids = text_inputs.input_ids
304
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
305
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
306
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
307
+ logger.warning(
308
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
309
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
310
+ )
311
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
312
+ pooled_prompt_embeds = prompt_embeds[0]
313
+
314
+ if clip_skip is None:
315
+ prompt_embeds = prompt_embeds.hidden_states[-2]
316
+ else:
317
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
318
+
319
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
320
+
321
+ _, seq_len, _ = prompt_embeds.shape
322
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
323
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
324
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
325
+
326
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
327
+ pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
328
+
329
+ return prompt_embeds, pooled_prompt_embeds
330
+
331
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
332
+ def encode_prompt(
333
+ self,
334
+ prompt: Union[str, List[str]],
335
+ prompt_2: Union[str, List[str]],
336
+ prompt_3: Union[str, List[str]],
337
+ device: Optional[torch.device] = None,
338
+ num_images_per_prompt: int = 1,
339
+ do_classifier_free_guidance: bool = True,
340
+ negative_prompt: Optional[Union[str, List[str]]] = None,
341
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
342
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
343
+ prompt_embeds: Optional[torch.FloatTensor] = None,
344
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
345
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
346
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
347
+ clip_skip: Optional[int] = None,
348
+ max_sequence_length: int = 256,
349
+ ):
350
+ r"""
351
+
352
+ Args:
353
+ prompt (`str` or `List[str]`, *optional*):
354
+ prompt to be encoded
355
+ prompt_2 (`str` or `List[str]`, *optional*):
356
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
357
+ used in all text-encoders
358
+ prompt_3 (`str` or `List[str]`, *optional*):
359
+ The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
360
+ used in all text-encoders
361
+ device: (`torch.device`):
362
+ torch device
363
+ num_images_per_prompt (`int`):
364
+ number of images that should be generated per prompt
365
+ do_classifier_free_guidance (`bool`):
366
+ whether to use classifier free guidance or not
367
+ negative_prompt (`str` or `List[str]`, *optional*):
368
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
369
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
370
+ less than `1`).
371
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
372
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
373
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
374
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
375
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
376
+ `text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
377
+ prompt_embeds (`torch.FloatTensor`, *optional*):
378
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
379
+ provided, text embeddings will be generated from `prompt` input argument.
380
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
381
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
382
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
383
+ argument.
384
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
385
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
386
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
387
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
388
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
389
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
390
+ input argument.
391
+ clip_skip (`int`, *optional*):
392
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
393
+ the output of the pre-final layer will be used for computing the prompt embeddings.
394
+ """
395
+ device = device or self._execution_device
396
+
397
+ prompt = [prompt] if isinstance(prompt, str) else prompt
398
+ if prompt is not None:
399
+ batch_size = len(prompt)
400
+ else:
401
+ batch_size = prompt_embeds.shape[0]
402
+
403
+ if prompt_embeds is None:
404
+ prompt_2 = prompt_2 or prompt
405
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
406
+
407
+ prompt_3 = prompt_3 or prompt
408
+ prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
409
+
410
+ prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
411
+ prompt=prompt,
412
+ device=device,
413
+ num_images_per_prompt=num_images_per_prompt,
414
+ clip_skip=clip_skip,
415
+ clip_model_index=0,
416
+ )
417
+ prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
418
+ prompt=prompt_2,
419
+ device=device,
420
+ num_images_per_prompt=num_images_per_prompt,
421
+ clip_skip=clip_skip,
422
+ clip_model_index=1,
423
+ )
424
+ clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
425
+
426
+ t5_prompt_embed = self._get_t5_prompt_embeds(
427
+ prompt=prompt_3,
428
+ num_images_per_prompt=num_images_per_prompt,
429
+ max_sequence_length=max_sequence_length,
430
+ device=device,
431
+ )
432
+
433
+ clip_prompt_embeds = torch.nn.functional.pad(
434
+ clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
435
+ )
436
+
437
+ prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
438
+ pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
439
+
440
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
441
+ negative_prompt = negative_prompt or ""
442
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
443
+ negative_prompt_3 = negative_prompt_3 or negative_prompt
444
+
445
+ # normalize str to list
446
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
447
+ negative_prompt_2 = (
448
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
449
+ )
450
+ negative_prompt_3 = (
451
+ batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
452
+ )
453
+
454
+ if prompt is not None and type(prompt) is not type(negative_prompt):
455
+ raise TypeError(
456
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
457
+ f" {type(prompt)}."
458
+ )
459
+ elif batch_size != len(negative_prompt):
460
+ raise ValueError(
461
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
462
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
463
+ " the batch size of `prompt`."
464
+ )
465
+
466
+ negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds(
467
+ negative_prompt,
468
+ device=device,
469
+ num_images_per_prompt=num_images_per_prompt,
470
+ clip_skip=None,
471
+ clip_model_index=0,
472
+ )
473
+ negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds(
474
+ negative_prompt_2,
475
+ device=device,
476
+ num_images_per_prompt=num_images_per_prompt,
477
+ clip_skip=None,
478
+ clip_model_index=1,
479
+ )
480
+ negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1)
481
+
482
+ t5_negative_prompt_embed = self._get_t5_prompt_embeds(
483
+ prompt=negative_prompt_3,
484
+ num_images_per_prompt=num_images_per_prompt,
485
+ max_sequence_length=max_sequence_length,
486
+ device=device,
487
+ )
488
+
489
+ negative_clip_prompt_embeds = torch.nn.functional.pad(
490
+ negative_clip_prompt_embeds,
491
+ (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]),
492
+ )
493
+
494
+ negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2)
495
+ negative_pooled_prompt_embeds = torch.cat(
496
+ [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
497
+ )
498
+
499
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
500
+
501
+ def check_inputs(
502
+ self,
503
+ prompt,
504
+ prompt_2,
505
+ prompt_3,
506
+ height,
507
+ width,
508
+ negative_prompt=None,
509
+ negative_prompt_2=None,
510
+ negative_prompt_3=None,
511
+ prompt_embeds=None,
512
+ negative_prompt_embeds=None,
513
+ pooled_prompt_embeds=None,
514
+ negative_pooled_prompt_embeds=None,
515
+ callback_on_step_end_tensor_inputs=None,
516
+ ):
517
+ if height % 8 != 0 or width % 8 != 0:
518
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
519
+
520
+ if callback_on_step_end_tensor_inputs is not None and not all(
521
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
522
+ ):
523
+ raise ValueError(
524
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
525
+ )
526
+
527
+ if prompt is not None and prompt_embeds is not None:
528
+ raise ValueError(
529
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
530
+ " only forward one of the two."
531
+ )
532
+ elif prompt_2 is not None and prompt_embeds is not None:
533
+ raise ValueError(
534
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
535
+ " only forward one of the two."
536
+ )
537
+ elif prompt_3 is not None and prompt_embeds is not None:
538
+ raise ValueError(
539
+ f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
540
+ " only forward one of the two."
541
+ )
542
+ elif prompt is None and prompt_embeds is None:
543
+ raise ValueError(
544
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
545
+ )
546
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
547
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
548
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
549
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
550
+ elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)):
551
+ raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
552
+
553
+ if negative_prompt is not None and negative_prompt_embeds is not None:
554
+ raise ValueError(
555
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
556
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
557
+ )
558
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
559
+ raise ValueError(
560
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
561
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
562
+ )
563
+ elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
564
+ raise ValueError(
565
+ f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
566
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
567
+ )
568
+
569
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
570
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
571
+ raise ValueError(
572
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
573
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
574
+ f" {negative_prompt_embeds.shape}."
575
+ )
576
+
577
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
578
+ raise ValueError(
579
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
580
+ )
581
+
582
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
583
+ raise ValueError(
584
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
585
+ )
586
+
587
+ # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents
588
+ def prepare_latents(
589
+ self,
590
+ batch_size,
591
+ num_channels_latents,
592
+ height,
593
+ width,
594
+ dtype,
595
+ device,
596
+ generator,
597
+ latents=None,
598
+ ):
599
+ if latents is not None:
600
+ return latents.to(device=device, dtype=dtype)
601
+
602
+ shape = (
603
+ batch_size,
604
+ num_channels_latents,
605
+ int(height) // self.vae_scale_factor,
606
+ int(width) // self.vae_scale_factor,
607
+ )
608
+
609
+ if isinstance(generator, list) and len(generator) != batch_size:
610
+ raise ValueError(
611
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
612
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
613
+ )
614
+
615
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
616
+
617
+ return latents
618
+
619
+ def prepare_image(
620
+ self,
621
+ image,
622
+ width,
623
+ height,
624
+ batch_size,
625
+ num_images_per_prompt,
626
+ device,
627
+ dtype,
628
+ do_classifier_free_guidance=False,
629
+ guess_mode=False,
630
+ ):
631
+ if isinstance(image, torch.Tensor):
632
+ pass
633
+ else:
634
+ image = self.image_processor.preprocess(image, height=height, width=width)
635
+
636
+ image_batch_size = image.shape[0]
637
+
638
+ if image_batch_size == 1:
639
+ repeat_by = batch_size
640
+ else:
641
+ # image batch size is the same as prompt batch size
642
+ repeat_by = num_images_per_prompt
643
+
644
+ image = image.repeat_interleave(repeat_by, dim=0)
645
+
646
+ image = image.to(device=device, dtype=dtype)
647
+
648
+ if do_classifier_free_guidance and not guess_mode:
649
+ image = torch.cat([image] * 2)
650
+
651
+ return image
652
+
653
+ @property
654
+ def guidance_scale(self):
655
+ return self._guidance_scale
656
+
657
+ @property
658
+ def clip_skip(self):
659
+ return self._clip_skip
660
+
661
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
662
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
663
+ # corresponds to doing no classifier free guidance.
664
+ @property
665
+ def do_classifier_free_guidance(self):
666
+ return self._guidance_scale > 1
667
+
668
+ @property
669
+ def joint_attention_kwargs(self):
670
+ return self._joint_attention_kwargs
671
+
672
+ @property
673
+ def num_timesteps(self):
674
+ return self._num_timesteps
675
+
676
+ @property
677
+ def interrupt(self):
678
+ return self._interrupt
679
+
680
+ @torch.no_grad()
681
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
682
+ def __call__(
683
+ self,
684
+ prompt: Union[str, List[str]] = None,
685
+ prompt_2: Optional[Union[str, List[str]]] = None,
686
+ prompt_3: Optional[Union[str, List[str]]] = None,
687
+ height: Optional[int] = None,
688
+ width: Optional[int] = None,
689
+ num_inference_steps: int = 28,
690
+ timesteps: List[int] = None,
691
+ guidance_scale: float = 7.0,
692
+ control_guidance_start: Union[float, List[float]] = 0.0,
693
+ control_guidance_end: Union[float, List[float]] = 1.0,
694
+ control_image: PipelineImageInput = None,
695
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
696
+ controlnet_pooled_projections: Optional[torch.FloatTensor] = None,
697
+ negative_prompt: Optional[Union[str, List[str]]] = None,
698
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
699
+ negative_prompt_3: Optional[Union[str, List[str]]] = None,
700
+ num_images_per_prompt: Optional[int] = 1,
701
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
702
+ latents: Optional[torch.FloatTensor] = None,
703
+ prompt_embeds: Optional[torch.FloatTensor] = None,
704
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
705
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
706
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
707
+ output_type: Optional[str] = "pil",
708
+ return_dict: bool = True,
709
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
710
+ clip_skip: Optional[int] = None,
711
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
712
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
713
+ ):
714
+ r"""
715
+ Function invoked when calling the pipeline for generation.
716
+
717
+ Args:
718
+ prompt (`str` or `List[str]`, *optional*):
719
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
720
+ instead.
721
+ prompt_2 (`str` or `List[str]`, *optional*):
722
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
723
+ will be used instead
724
+ prompt_3 (`str` or `List[str]`, *optional*):
725
+ The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
726
+ will be used instead
727
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
728
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
729
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
730
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
731
+ num_inference_steps (`int`, *optional*, defaults to 50):
732
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
733
+ expense of slower inference.
734
+ timesteps (`List[int]`, *optional*):
735
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
736
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
737
+ passed will be used. Must be in descending order.
738
+ guidance_scale (`float`, *optional*, defaults to 5.0):
739
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
740
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
741
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
742
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
743
+ usually at the expense of lower image quality.
744
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
745
+ The percentage of total steps at which the ControlNet starts applying.
746
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
747
+ The percentage of total steps at which the ControlNet stops applying.
748
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
749
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
750
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
751
+ specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
752
+ as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
753
+ width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
754
+ images must be passed as a list such that each element of the list can be correctly batched for input
755
+ to a single ControlNet.
756
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
757
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
758
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
759
+ the corresponding scale as a list.
760
+ controlnet_pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
761
+ Embeddings projected from the embeddings of controlnet input conditions.
762
+ negative_prompt (`str` or `List[str]`, *optional*):
763
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
764
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
765
+ less than `1`).
766
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
767
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
768
+ `text_encoder_2`. If not defined, `negative_prompt` is used instead
769
+ negative_prompt_3 (`str` or `List[str]`, *optional*):
770
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
771
+ `text_encoder_3`. If not defined, `negative_prompt` is used instead
772
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
773
+ The number of images to generate per prompt.
774
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
775
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
776
+ to make generation deterministic.
777
+ latents (`torch.FloatTensor`, *optional*):
778
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
779
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
780
+ tensor will ge generated by sampling using the supplied random `generator`.
781
+ prompt_embeds (`torch.FloatTensor`, *optional*):
782
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
783
+ provided, text embeddings will be generated from `prompt` input argument.
784
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
785
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
786
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
787
+ argument.
788
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
789
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
790
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
791
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
792
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
793
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
794
+ input argument.
795
+ output_type (`str`, *optional*, defaults to `"pil"`):
796
+ The output format of the generate image. Choose between
797
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
798
+ return_dict (`bool`, *optional*, defaults to `True`):
799
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
800
+ of a plain tuple.
801
+ joint_attention_kwargs (`dict`, *optional*):
802
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
803
+ `self.processor` in
804
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
805
+ callback_on_step_end (`Callable`, *optional*):
806
+ A function that calls at the end of each denoising steps during the inference. The function is called
807
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
808
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
809
+ `callback_on_step_end_tensor_inputs`.
810
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
811
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
812
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
813
+ `._callback_tensor_inputs` attribute of your pipeline class.
814
+
815
+ Examples:
816
+
817
+ Returns:
818
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
819
+ [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
820
+ `tuple`. When returning a tuple, the first element is a list with the generated images.
821
+ """
822
+
823
+ height = height or self.default_sample_size * self.vae_scale_factor
824
+ width = width or self.default_sample_size * self.vae_scale_factor
825
+
826
+ # align format for control guidance
827
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
828
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
829
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
830
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
831
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
832
+ mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1
833
+ control_guidance_start, control_guidance_end = (
834
+ mult * [control_guidance_start],
835
+ mult * [control_guidance_end],
836
+ )
837
+
838
+ # 1. Check inputs. Raise error if not correct
839
+ self.check_inputs(
840
+ prompt,
841
+ prompt_2,
842
+ prompt_3,
843
+ height,
844
+ width,
845
+ negative_prompt=negative_prompt,
846
+ negative_prompt_2=negative_prompt_2,
847
+ negative_prompt_3=negative_prompt_3,
848
+ prompt_embeds=prompt_embeds,
849
+ negative_prompt_embeds=negative_prompt_embeds,
850
+ pooled_prompt_embeds=pooled_prompt_embeds,
851
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
852
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
853
+ )
854
+
855
+ self._guidance_scale = guidance_scale
856
+ self._clip_skip = clip_skip
857
+ self._joint_attention_kwargs = joint_attention_kwargs
858
+ self._interrupt = False
859
+
860
+ # 2. Define call parameters
861
+ if prompt is not None and isinstance(prompt, str):
862
+ batch_size = 1
863
+ elif prompt is not None and isinstance(prompt, list):
864
+ batch_size = len(prompt)
865
+ else:
866
+ batch_size = prompt_embeds.shape[0]
867
+
868
+ device = self._execution_device
869
+ dtype = self.transformer.dtype
870
+
871
+ (
872
+ prompt_embeds,
873
+ negative_prompt_embeds,
874
+ pooled_prompt_embeds,
875
+ negative_pooled_prompt_embeds,
876
+ ) = self.encode_prompt(
877
+ prompt=prompt,
878
+ prompt_2=prompt_2,
879
+ prompt_3=prompt_3,
880
+ negative_prompt=negative_prompt,
881
+ negative_prompt_2=negative_prompt_2,
882
+ negative_prompt_3=negative_prompt_3,
883
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
884
+ prompt_embeds=prompt_embeds,
885
+ negative_prompt_embeds=negative_prompt_embeds,
886
+ pooled_prompt_embeds=pooled_prompt_embeds,
887
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
888
+ device=device,
889
+ clip_skip=self.clip_skip,
890
+ num_images_per_prompt=num_images_per_prompt,
891
+ )
892
+
893
+ if self.do_classifier_free_guidance:
894
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
895
+ pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
896
+
897
+ # 3. Prepare control image
898
+ if isinstance(self.controlnet, SD3ControlNetModel):
899
+ control_image = self.prepare_image(
900
+ image=control_image,
901
+ width=width,
902
+ height=height,
903
+ batch_size=batch_size * num_images_per_prompt,
904
+ num_images_per_prompt=num_images_per_prompt,
905
+ device=device,
906
+ dtype=dtype,
907
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
908
+ guess_mode=False,
909
+ )
910
+ height, width = control_image.shape[-2:]
911
+
912
+ control_image = self.vae.encode(control_image).latent_dist.sample()
913
+ control_image = control_image * self.vae.config.scaling_factor
914
+
915
+ elif isinstance(self.controlnet, SD3MultiControlNetModel):
916
+ control_images = []
917
+
918
+ for control_image_ in control_image:
919
+ control_image_ = self.prepare_image(
920
+ image=control_image_,
921
+ width=width,
922
+ height=height,
923
+ batch_size=batch_size * num_images_per_prompt,
924
+ num_images_per_prompt=num_images_per_prompt,
925
+ device=device,
926
+ dtype=dtype,
927
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
928
+ guess_mode=False,
929
+ )
930
+
931
+ control_image_ = self.vae.encode(control_image_).latent_dist.sample()
932
+ control_image_ = control_image_ * self.vae.config.scaling_factor
933
+
934
+ control_images.append(control_image_)
935
+
936
+ control_image = control_images
937
+ else:
938
+ assert False
939
+
940
+ if controlnet_pooled_projections is None:
941
+ controlnet_pooled_projections = torch.zeros_like(pooled_prompt_embeds)
942
+ else:
943
+ controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds
944
+
945
+ # 4. Prepare timesteps
946
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
947
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
948
+ self._num_timesteps = len(timesteps)
949
+
950
+ # 5. Prepare latent variables
951
+ num_channels_latents = self.transformer.config.in_channels
952
+ latents = self.prepare_latents(
953
+ batch_size * num_images_per_prompt,
954
+ num_channels_latents,
955
+ height,
956
+ width,
957
+ prompt_embeds.dtype,
958
+ device,
959
+ generator,
960
+ latents,
961
+ )
962
+
963
+ # 6. Create tensor stating which controlnets to keep
964
+ controlnet_keep = []
965
+ for i in range(len(timesteps)):
966
+ keeps = [
967
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
968
+ for s, e in zip(control_guidance_start, control_guidance_end)
969
+ ]
970
+ controlnet_keep.append(keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps)
971
+
972
+ # 7. Denoising loop
973
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
974
+ for i, t in enumerate(timesteps):
975
+ if self.interrupt:
976
+ continue
977
+
978
+ # expand the latents if we are doing classifier free guidance
979
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
980
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
981
+ timestep = t.expand(latent_model_input.shape[0])
982
+
983
+ if isinstance(controlnet_keep[i], list):
984
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
985
+ else:
986
+ controlnet_cond_scale = controlnet_conditioning_scale
987
+ if isinstance(controlnet_cond_scale, list):
988
+ controlnet_cond_scale = controlnet_cond_scale[0]
989
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
990
+
991
+ # controlnet(s) inference
992
+ control_block_samples = self.controlnet(
993
+ hidden_states=latent_model_input,
994
+ timestep=timestep,
995
+ encoder_hidden_states=prompt_embeds,
996
+ pooled_projections=controlnet_pooled_projections,
997
+ joint_attention_kwargs=self.joint_attention_kwargs,
998
+ controlnet_cond=control_image,
999
+ conditioning_scale=cond_scale,
1000
+ return_dict=False,
1001
+ )[0]
1002
+
1003
+ noise_pred = self.transformer(
1004
+ hidden_states=latent_model_input,
1005
+ timestep=timestep,
1006
+ encoder_hidden_states=prompt_embeds,
1007
+ pooled_projections=pooled_prompt_embeds,
1008
+ block_controlnet_hidden_states=control_block_samples,
1009
+ joint_attention_kwargs=self.joint_attention_kwargs,
1010
+ return_dict=False,
1011
+ )[0]
1012
+
1013
+ # perform guidance
1014
+ if self.do_classifier_free_guidance:
1015
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1016
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1017
+
1018
+ # compute the previous noisy sample x_t -> x_t-1
1019
+ latents_dtype = latents.dtype
1020
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1021
+
1022
+ if latents.dtype != latents_dtype:
1023
+ if torch.backends.mps.is_available():
1024
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1025
+ latents = latents.to(latents_dtype)
1026
+
1027
+ if callback_on_step_end is not None:
1028
+ callback_kwargs = {}
1029
+ for k in callback_on_step_end_tensor_inputs:
1030
+ callback_kwargs[k] = locals()[k]
1031
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1032
+
1033
+ latents = callback_outputs.pop("latents", latents)
1034
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1035
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1036
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1037
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1038
+ )
1039
+
1040
+ # call the callback, if provided
1041
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1042
+ progress_bar.update()
1043
+
1044
+ if XLA_AVAILABLE:
1045
+ xm.mark_step()
1046
+
1047
+ if output_type == "latent":
1048
+ image = latents
1049
+
1050
+ else:
1051
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1052
+
1053
+ image = self.vae.decode(latents, return_dict=False)[0]
1054
+ image = self.image_processor.postprocess(image, output_type=output_type)
1055
+
1056
+ # Offload all models
1057
+ self.maybe_free_model_hooks()
1058
+
1059
+ if not return_dict:
1060
+ return (image,)
1061
+
1062
+ return StableDiffusion3PipelineOutput(images=image)