diffusers 0.27.2__py3-none-any.whl → 0.28.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (278) hide show
  1. diffusers/__init__.py +26 -1
  2. diffusers/callbacks.py +156 -0
  3. diffusers/commands/env.py +110 -6
  4. diffusers/configuration_utils.py +33 -11
  5. diffusers/dependency_versions_table.py +2 -1
  6. diffusers/image_processor.py +158 -45
  7. diffusers/loaders/__init__.py +2 -5
  8. diffusers/loaders/autoencoder.py +4 -4
  9. diffusers/loaders/controlnet.py +4 -4
  10. diffusers/loaders/ip_adapter.py +80 -22
  11. diffusers/loaders/lora.py +134 -20
  12. diffusers/loaders/lora_conversion_utils.py +46 -43
  13. diffusers/loaders/peft.py +4 -3
  14. diffusers/loaders/single_file.py +401 -170
  15. diffusers/loaders/single_file_model.py +290 -0
  16. diffusers/loaders/single_file_utils.py +616 -672
  17. diffusers/loaders/textual_inversion.py +41 -20
  18. diffusers/loaders/unet.py +168 -115
  19. diffusers/loaders/unet_loader_utils.py +163 -0
  20. diffusers/models/__init__.py +8 -0
  21. diffusers/models/activations.py +23 -3
  22. diffusers/models/attention.py +10 -11
  23. diffusers/models/attention_processor.py +475 -148
  24. diffusers/models/autoencoders/autoencoder_asym_kl.py +14 -16
  25. diffusers/models/autoencoders/autoencoder_kl.py +18 -19
  26. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -11
  27. diffusers/models/autoencoders/autoencoder_tiny.py +16 -16
  28. diffusers/models/autoencoders/consistency_decoder_vae.py +36 -11
  29. diffusers/models/autoencoders/vae.py +23 -24
  30. diffusers/models/controlnet.py +12 -9
  31. diffusers/models/controlnet_flax.py +4 -4
  32. diffusers/models/controlnet_xs.py +1915 -0
  33. diffusers/models/downsampling.py +17 -18
  34. diffusers/models/embeddings.py +363 -32
  35. diffusers/models/model_loading_utils.py +177 -0
  36. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  37. diffusers/models/modeling_flax_utils.py +4 -4
  38. diffusers/models/modeling_outputs.py +14 -0
  39. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  40. diffusers/models/modeling_utils.py +175 -99
  41. diffusers/models/normalization.py +2 -1
  42. diffusers/models/resnet.py +18 -23
  43. diffusers/models/transformer_temporal.py +3 -3
  44. diffusers/models/transformers/__init__.py +3 -0
  45. diffusers/models/transformers/dit_transformer_2d.py +240 -0
  46. diffusers/models/transformers/dual_transformer_2d.py +4 -4
  47. diffusers/models/transformers/hunyuan_transformer_2d.py +427 -0
  48. diffusers/models/transformers/pixart_transformer_2d.py +336 -0
  49. diffusers/models/transformers/prior_transformer.py +7 -7
  50. diffusers/models/transformers/t5_film_transformer.py +17 -19
  51. diffusers/models/transformers/transformer_2d.py +292 -184
  52. diffusers/models/transformers/transformer_temporal.py +10 -10
  53. diffusers/models/unets/unet_1d.py +5 -5
  54. diffusers/models/unets/unet_1d_blocks.py +29 -29
  55. diffusers/models/unets/unet_2d.py +6 -6
  56. diffusers/models/unets/unet_2d_blocks.py +137 -128
  57. diffusers/models/unets/unet_2d_condition.py +19 -15
  58. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  59. diffusers/models/unets/unet_3d_blocks.py +79 -77
  60. diffusers/models/unets/unet_3d_condition.py +13 -9
  61. diffusers/models/unets/unet_i2vgen_xl.py +14 -13
  62. diffusers/models/unets/unet_kandinsky3.py +1 -1
  63. diffusers/models/unets/unet_motion_model.py +114 -14
  64. diffusers/models/unets/unet_spatio_temporal_condition.py +15 -14
  65. diffusers/models/unets/unet_stable_cascade.py +16 -13
  66. diffusers/models/upsampling.py +17 -20
  67. diffusers/models/vq_model.py +16 -15
  68. diffusers/pipelines/__init__.py +27 -3
  69. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  70. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  71. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  72. diffusers/pipelines/animatediff/__init__.py +2 -0
  73. diffusers/pipelines/animatediff/pipeline_animatediff.py +24 -46
  74. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1284 -0
  75. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +82 -72
  76. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  77. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  78. diffusers/pipelines/audioldm2/modeling_audioldm2.py +54 -35
  79. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +120 -36
  80. diffusers/pipelines/auto_pipeline.py +21 -17
  81. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  82. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -5
  83. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  84. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  85. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +5 -5
  86. diffusers/pipelines/controlnet/multicontrolnet.py +4 -8
  87. diffusers/pipelines/controlnet/pipeline_controlnet.py +87 -52
  88. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  89. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +50 -43
  90. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +52 -40
  91. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +80 -47
  92. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +147 -49
  93. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +89 -55
  94. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  95. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +911 -0
  96. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1115 -0
  97. diffusers/pipelines/deepfloyd_if/pipeline_if.py +14 -28
  98. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +18 -33
  99. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +21 -39
  100. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +20 -36
  101. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +23 -39
  102. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +17 -32
  103. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  104. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +43 -20
  105. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +36 -18
  106. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  107. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  108. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +12 -12
  109. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +18 -18
  110. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +20 -15
  111. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +20 -15
  112. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +30 -25
  113. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +69 -59
  114. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  115. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  116. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  117. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  118. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  119. diffusers/pipelines/dit/pipeline_dit.py +7 -4
  120. diffusers/pipelines/free_init_utils.py +39 -38
  121. diffusers/pipelines/hunyuandit/__init__.py +48 -0
  122. diffusers/pipelines/hunyuandit/pipeline_hunyuandit.py +881 -0
  123. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  124. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  125. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +23 -20
  126. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  127. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  128. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  129. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  130. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +32 -29
  131. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  132. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  133. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  134. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  135. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  136. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  137. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  138. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +20 -33
  139. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +24 -35
  140. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +48 -30
  141. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +50 -28
  142. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +11 -11
  143. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +61 -67
  144. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +70 -69
  145. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  146. diffusers/pipelines/marigold/__init__.py +50 -0
  147. diffusers/pipelines/marigold/marigold_image_processing.py +561 -0
  148. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  149. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  150. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  151. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  152. diffusers/pipelines/pia/pipeline_pia.py +39 -125
  153. diffusers/pipelines/pipeline_flax_utils.py +4 -4
  154. diffusers/pipelines/pipeline_loading_utils.py +269 -23
  155. diffusers/pipelines/pipeline_utils.py +266 -37
  156. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  157. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +69 -79
  158. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +880 -0
  159. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +10 -5
  160. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  161. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  162. diffusers/pipelines/shap_e/renderer.py +1 -1
  163. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +18 -18
  164. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  165. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +33 -32
  166. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  167. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +18 -11
  168. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  169. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  170. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +73 -39
  171. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +24 -17
  172. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  173. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +66 -36
  174. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +82 -46
  175. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +123 -28
  176. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +6 -6
  177. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +16 -16
  178. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +24 -19
  179. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +37 -31
  180. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  181. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +23 -15
  182. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +44 -39
  183. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +23 -18
  184. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +19 -14
  185. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +20 -15
  186. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -19
  187. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +65 -32
  188. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +274 -38
  189. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  190. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  191. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +92 -25
  192. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +88 -44
  193. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +108 -56
  194. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +96 -51
  195. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -25
  196. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  197. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  198. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +59 -30
  199. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +71 -42
  200. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  201. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +18 -41
  202. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +21 -85
  203. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -19
  204. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +39 -33
  205. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  206. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  207. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  208. diffusers/pipelines/unidiffuser/modeling_uvit.py +9 -9
  209. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +23 -23
  210. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  211. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  212. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -6
  213. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  214. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  215. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +10 -10
  216. diffusers/schedulers/__init__.py +2 -2
  217. diffusers/schedulers/deprecated/__init__.py +1 -1
  218. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  219. diffusers/schedulers/scheduling_amused.py +5 -5
  220. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  221. diffusers/schedulers/scheduling_consistency_models.py +20 -26
  222. diffusers/schedulers/scheduling_ddim.py +22 -24
  223. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  224. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  225. diffusers/schedulers/scheduling_ddim_parallel.py +28 -30
  226. diffusers/schedulers/scheduling_ddpm.py +20 -22
  227. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  228. diffusers/schedulers/scheduling_ddpm_parallel.py +26 -28
  229. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  230. diffusers/schedulers/scheduling_deis_multistep.py +42 -42
  231. diffusers/schedulers/scheduling_dpmsolver_multistep.py +103 -77
  232. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  233. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +46 -46
  234. diffusers/schedulers/scheduling_dpmsolver_sde.py +23 -23
  235. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +86 -65
  236. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +75 -54
  237. diffusers/schedulers/scheduling_edm_euler.py +50 -31
  238. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +23 -29
  239. diffusers/schedulers/scheduling_euler_discrete.py +160 -68
  240. diffusers/schedulers/scheduling_heun_discrete.py +57 -39
  241. diffusers/schedulers/scheduling_ipndm.py +8 -8
  242. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +19 -19
  243. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +19 -19
  244. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  245. diffusers/schedulers/scheduling_lcm.py +21 -23
  246. diffusers/schedulers/scheduling_lms_discrete.py +24 -26
  247. diffusers/schedulers/scheduling_pndm.py +20 -20
  248. diffusers/schedulers/scheduling_repaint.py +20 -20
  249. diffusers/schedulers/scheduling_sasolver.py +55 -54
  250. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  251. diffusers/schedulers/scheduling_tcd.py +39 -30
  252. diffusers/schedulers/scheduling_unclip.py +15 -15
  253. diffusers/schedulers/scheduling_unipc_multistep.py +111 -41
  254. diffusers/schedulers/scheduling_utils.py +14 -5
  255. diffusers/schedulers/scheduling_utils_flax.py +3 -3
  256. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  257. diffusers/training_utils.py +56 -1
  258. diffusers/utils/__init__.py +7 -0
  259. diffusers/utils/doc_utils.py +1 -0
  260. diffusers/utils/dummy_pt_objects.py +75 -0
  261. diffusers/utils/dummy_torch_and_transformers_objects.py +105 -0
  262. diffusers/utils/dynamic_modules_utils.py +24 -11
  263. diffusers/utils/hub_utils.py +3 -2
  264. diffusers/utils/import_utils.py +91 -0
  265. diffusers/utils/loading_utils.py +2 -2
  266. diffusers/utils/logging.py +1 -1
  267. diffusers/utils/peft_utils.py +32 -5
  268. diffusers/utils/state_dict_utils.py +11 -2
  269. diffusers/utils/testing_utils.py +71 -6
  270. diffusers/utils/torch_utils.py +1 -0
  271. diffusers/video_processor.py +113 -0
  272. {diffusers-0.27.2.dist-info → diffusers-0.28.1.dist-info}/METADATA +7 -7
  273. diffusers-0.28.1.dist-info/RECORD +419 -0
  274. diffusers-0.27.2.dist-info/RECORD +0 -399
  275. {diffusers-0.27.2.dist-info → diffusers-0.28.1.dist-info}/LICENSE +0 -0
  276. {diffusers-0.27.2.dist-info → diffusers-0.28.1.dist-info}/WHEEL +0 -0
  277. {diffusers-0.27.2.dist-info → diffusers-0.28.1.dist-info}/entry_points.txt +0 -0
  278. {diffusers-0.27.2.dist-info → diffusers-0.28.1.dist-info}/top_level.txt +0 -0
@@ -11,144 +11,243 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
+ import importlib
15
+ import inspect
16
+ import os
14
17
 
15
- from huggingface_hub.utils import validate_hf_hub_args
18
+ import torch
19
+ from huggingface_hub import snapshot_download
20
+ from huggingface_hub.utils import LocalEntryNotFoundError, validate_hf_hub_args
21
+ from packaging import version
16
22
 
17
- from ..utils import is_transformers_available, logging
23
+ from ..utils import deprecate, is_transformers_available, logging
18
24
  from .single_file_utils import (
19
- create_diffusers_unet_model_from_ldm,
20
- create_diffusers_vae_model_from_ldm,
21
- create_scheduler_from_ldm,
22
- create_text_encoders_and_tokenizers_from_ldm,
23
- fetch_ldm_config_and_checkpoint,
24
- infer_model_type,
25
+ SingleFileComponentError,
26
+ _is_model_weights_in_cached_folder,
27
+ _legacy_load_clip_tokenizer,
28
+ _legacy_load_safety_checker,
29
+ _legacy_load_scheduler,
30
+ create_diffusers_clip_model_from_ldm,
31
+ fetch_diffusers_config,
32
+ fetch_original_config,
33
+ is_clip_model_in_single_file,
34
+ load_single_file_checkpoint,
25
35
  )
26
36
 
27
37
 
28
38
  logger = logging.get_logger(__name__)
29
39
 
30
- # Pipelines that support the SDXL Refiner checkpoint
31
- REFINER_PIPELINES = [
32
- "StableDiffusionXLImg2ImgPipeline",
33
- "StableDiffusionXLInpaintPipeline",
34
- "StableDiffusionXLControlNetImg2ImgPipeline",
35
- ]
40
+ # Legacy behaviour. `from_single_file` does not load the safety checker unless explicitly provided
41
+ SINGLE_FILE_OPTIONAL_COMPONENTS = ["safety_checker"]
42
+
36
43
 
37
44
  if is_transformers_available():
38
- from transformers import AutoFeatureExtractor
45
+ import transformers
46
+ from transformers import PreTrainedModel, PreTrainedTokenizer
39
47
 
40
48
 
41
- def build_sub_model_components(
42
- pipeline_components,
43
- pipeline_class_name,
44
- component_name,
45
- original_config,
49
+ def load_single_file_sub_model(
50
+ library_name,
51
+ class_name,
52
+ name,
46
53
  checkpoint,
54
+ pipelines,
55
+ is_pipeline_module,
56
+ cached_model_config_path,
57
+ original_config=None,
47
58
  local_files_only=False,
48
- load_safety_checker=False,
49
- model_type=None,
50
- image_size=None,
51
59
  torch_dtype=None,
60
+ is_legacy_loading=False,
52
61
  **kwargs,
53
62
  ):
54
- if component_name in pipeline_components:
55
- return {}
56
-
57
- if component_name == "unet":
58
- num_in_channels = kwargs.pop("num_in_channels", None)
59
- upcast_attention = kwargs.pop("upcast_attention", None)
60
-
61
- unet_components = create_diffusers_unet_model_from_ldm(
62
- pipeline_class_name,
63
- original_config,
64
- checkpoint,
65
- num_in_channels=num_in_channels,
66
- image_size=image_size,
63
+ if is_pipeline_module:
64
+ pipeline_module = getattr(pipelines, library_name)
65
+ class_obj = getattr(pipeline_module, class_name)
66
+ else:
67
+ # else we just import it from the library.
68
+ library = importlib.import_module(library_name)
69
+ class_obj = getattr(library, class_name)
70
+
71
+ if is_transformers_available():
72
+ transformers_version = version.parse(version.parse(transformers.__version__).base_version)
73
+ else:
74
+ transformers_version = "N/A"
75
+
76
+ is_transformers_model = (
77
+ is_transformers_available()
78
+ and issubclass(class_obj, PreTrainedModel)
79
+ and transformers_version >= version.parse("4.20.0")
80
+ )
81
+ is_tokenizer = (
82
+ is_transformers_available()
83
+ and issubclass(class_obj, PreTrainedTokenizer)
84
+ and transformers_version >= version.parse("4.20.0")
85
+ )
86
+
87
+ diffusers_module = importlib.import_module(__name__.split(".")[0])
88
+ is_diffusers_single_file_model = issubclass(class_obj, diffusers_module.FromOriginalModelMixin)
89
+ is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)
90
+ is_diffusers_scheduler = issubclass(class_obj, diffusers_module.SchedulerMixin)
91
+
92
+ if is_diffusers_single_file_model:
93
+ load_method = getattr(class_obj, "from_single_file")
94
+
95
+ # We cannot provide two different config options to the `from_single_file` method
96
+ # Here we have to ignore loading the config from `cached_model_config_path` if `original_config` is provided
97
+ if original_config:
98
+ cached_model_config_path = None
99
+
100
+ loaded_sub_model = load_method(
101
+ pretrained_model_link_or_path_or_dict=checkpoint,
102
+ original_config=original_config,
103
+ config=cached_model_config_path,
104
+ subfolder=name,
67
105
  torch_dtype=torch_dtype,
68
- model_type=model_type,
69
- upcast_attention=upcast_attention,
106
+ local_files_only=local_files_only,
107
+ **kwargs,
70
108
  )
71
- return unet_components
72
109
 
73
- if component_name == "vae":
74
- scaling_factor = kwargs.get("scaling_factor", None)
75
- vae_components = create_diffusers_vae_model_from_ldm(
76
- pipeline_class_name,
77
- original_config,
78
- checkpoint,
79
- image_size,
80
- scaling_factor,
81
- torch_dtype,
82
- model_type=model_type,
110
+ elif is_transformers_model and is_clip_model_in_single_file(class_obj, checkpoint):
111
+ loaded_sub_model = create_diffusers_clip_model_from_ldm(
112
+ class_obj,
113
+ checkpoint=checkpoint,
114
+ config=cached_model_config_path,
115
+ subfolder=name,
116
+ torch_dtype=torch_dtype,
117
+ local_files_only=local_files_only,
118
+ is_legacy_loading=is_legacy_loading,
83
119
  )
84
- return vae_components
85
-
86
- if component_name == "scheduler":
87
- scheduler_type = kwargs.get("scheduler_type", "ddim")
88
- prediction_type = kwargs.get("prediction_type", None)
89
-
90
- scheduler_components = create_scheduler_from_ldm(
91
- pipeline_class_name,
92
- original_config,
93
- checkpoint,
94
- scheduler_type=scheduler_type,
95
- prediction_type=prediction_type,
96
- model_type=model_type,
120
+
121
+ elif is_tokenizer and is_legacy_loading:
122
+ loaded_sub_model = _legacy_load_clip_tokenizer(
123
+ class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only
97
124
  )
98
125
 
99
- return scheduler_components
126
+ elif is_diffusers_scheduler and is_legacy_loading:
127
+ loaded_sub_model = _legacy_load_scheduler(
128
+ class_obj, checkpoint=checkpoint, component_name=name, original_config=original_config, **kwargs
129
+ )
100
130
 
101
- if component_name in ["text_encoder", "text_encoder_2", "tokenizer", "tokenizer_2"]:
102
- text_encoder_components = create_text_encoders_and_tokenizers_from_ldm(
103
- original_config,
104
- checkpoint,
105
- model_type=model_type,
106
- local_files_only=local_files_only,
107
- torch_dtype=torch_dtype,
131
+ else:
132
+ if not hasattr(class_obj, "from_pretrained"):
133
+ raise ValueError(
134
+ (
135
+ f"The component {class_obj.__name__} cannot be loaded as it does not seem to have"
136
+ " a supported loading method."
137
+ )
138
+ )
139
+
140
+ loading_kwargs = {}
141
+ loading_kwargs.update(
142
+ {
143
+ "pretrained_model_name_or_path": cached_model_config_path,
144
+ "subfolder": name,
145
+ "local_files_only": local_files_only,
146
+ }
108
147
  )
109
- return text_encoder_components
110
148
 
111
- if component_name == "safety_checker":
112
- if load_safety_checker:
113
- from ..pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
149
+ # Schedulers and Tokenizers don't make use of torch_dtype
150
+ # Skip passing it to those objects
151
+ if issubclass(class_obj, torch.nn.Module):
152
+ loading_kwargs.update({"torch_dtype": torch_dtype})
114
153
 
115
- safety_checker = StableDiffusionSafetyChecker.from_pretrained(
116
- "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only, torch_dtype=torch_dtype
117
- )
118
- else:
119
- safety_checker = None
120
- return {"safety_checker": safety_checker}
154
+ if is_diffusers_model or is_transformers_model:
155
+ if not _is_model_weights_in_cached_folder(cached_model_config_path, name):
156
+ raise SingleFileComponentError(
157
+ f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint."
158
+ )
121
159
 
122
- if component_name == "feature_extractor":
123
- if load_safety_checker:
124
- feature_extractor = AutoFeatureExtractor.from_pretrained(
125
- "CompVis/stable-diffusion-safety-checker", local_files_only=local_files_only
126
- )
127
- else:
128
- feature_extractor = None
129
- return {"feature_extractor": feature_extractor}
160
+ load_method = getattr(class_obj, "from_pretrained")
161
+ loaded_sub_model = load_method(**loading_kwargs)
130
162
 
131
- return
163
+ return loaded_sub_model
132
164
 
133
165
 
134
- def set_additional_components(
135
- pipeline_class_name,
136
- original_config,
137
- checkpoint=None,
138
- model_type=None,
139
- ):
140
- components = {}
141
- if pipeline_class_name in REFINER_PIPELINES:
142
- model_type = infer_model_type(original_config, checkpoint=checkpoint, model_type=model_type)
143
- is_refiner = model_type == "SDXL-Refiner"
144
- components.update(
145
- {
146
- "requires_aesthetics_score": is_refiner,
147
- "force_zeros_for_empty_prompt": False if is_refiner else True,
148
- }
166
+ def _map_component_types_to_config_dict(component_types):
167
+ diffusers_module = importlib.import_module(__name__.split(".")[0])
168
+ config_dict = {}
169
+ component_types.pop("self", None)
170
+
171
+ if is_transformers_available():
172
+ transformers_version = version.parse(version.parse(transformers.__version__).base_version)
173
+ else:
174
+ transformers_version = "N/A"
175
+
176
+ for component_name, component_value in component_types.items():
177
+ is_diffusers_model = issubclass(component_value[0], diffusers_module.ModelMixin)
178
+ is_scheduler_enum = component_value[0].__name__ == "KarrasDiffusionSchedulers"
179
+ is_scheduler = issubclass(component_value[0], diffusers_module.SchedulerMixin)
180
+
181
+ is_transformers_model = (
182
+ is_transformers_available()
183
+ and issubclass(component_value[0], PreTrainedModel)
184
+ and transformers_version >= version.parse("4.20.0")
149
185
  )
186
+ is_transformers_tokenizer = (
187
+ is_transformers_available()
188
+ and issubclass(component_value[0], PreTrainedTokenizer)
189
+ and transformers_version >= version.parse("4.20.0")
190
+ )
191
+
192
+ if is_diffusers_model and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS:
193
+ config_dict[component_name] = ["diffusers", component_value[0].__name__]
194
+
195
+ elif is_scheduler_enum or is_scheduler:
196
+ if is_scheduler_enum:
197
+ # Since we cannot fetch a scheduler config from the hub, we default to DDIMScheduler
198
+ # if the type hint is a KarrassDiffusionSchedulers enum
199
+ config_dict[component_name] = ["diffusers", "DDIMScheduler"]
200
+
201
+ elif is_scheduler:
202
+ config_dict[component_name] = ["diffusers", component_value[0].__name__]
203
+
204
+ elif (
205
+ is_transformers_model or is_transformers_tokenizer
206
+ ) and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS:
207
+ config_dict[component_name] = ["transformers", component_value[0].__name__]
150
208
 
151
- return components
209
+ else:
210
+ config_dict[component_name] = [None, None]
211
+
212
+ return config_dict
213
+
214
+
215
+ def _infer_pipeline_config_dict(pipeline_class):
216
+ parameters = inspect.signature(pipeline_class.__init__).parameters
217
+ required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
218
+ component_types = pipeline_class._get_signature_types()
219
+
220
+ # Ignore parameters that are not required for the pipeline
221
+ component_types = {k: v for k, v in component_types.items() if k in required_parameters}
222
+ config_dict = _map_component_types_to_config_dict(component_types)
223
+
224
+ return config_dict
225
+
226
+
227
+ def _download_diffusers_model_config_from_hub(
228
+ pretrained_model_name_or_path,
229
+ cache_dir,
230
+ revision,
231
+ proxies,
232
+ force_download=None,
233
+ resume_download=None,
234
+ local_files_only=None,
235
+ token=None,
236
+ ):
237
+ allow_patterns = ["**/*.json", "*.json", "*.txt", "**/*.txt"]
238
+ cached_model_path = snapshot_download(
239
+ pretrained_model_name_or_path,
240
+ cache_dir=cache_dir,
241
+ revision=revision,
242
+ proxies=proxies,
243
+ force_download=force_download,
244
+ resume_download=resume_download,
245
+ local_files_only=local_files_only,
246
+ token=token,
247
+ allow_patterns=allow_patterns,
248
+ )
249
+
250
+ return cached_model_path
152
251
 
153
252
 
154
253
  class FromSingleFileMixin:
@@ -177,9 +276,9 @@ class FromSingleFileMixin:
177
276
  cache_dir (`Union[str, os.PathLike]`, *optional*):
178
277
  Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
179
278
  is not used.
180
- resume_download (`bool`, *optional*, defaults to `False`):
181
- Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
182
- incompletely downloaded files are deleted.
279
+ resume_download:
280
+ Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1
281
+ of Diffusers.
183
282
  proxies (`Dict[str, str]`, *optional*):
184
283
  A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
185
284
  'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
@@ -195,22 +294,12 @@ class FromSingleFileMixin:
195
294
  original_config_file (`str`, *optional*):
196
295
  The path to the original config file that was used to train the model. If not provided, the config file
197
296
  will be inferred from the checkpoint file.
198
- model_type (`str`, *optional*):
199
- The type of model to load. If not provided, the model type will be inferred from the checkpoint file.
200
- image_size (`int`, *optional*):
201
- The size of the image output. It's used to configure the `sample_size` parameter of the UNet and VAE model.
202
- load_safety_checker (`bool`, *optional*, defaults to `False`):
203
- Whether to load the safety checker model or not. By default, the safety checker is not loaded unless a `safety_checker` component is passed to the `kwargs`.
204
- num_in_channels (`int`, *optional*):
205
- Specify the number of input channels for the UNet model. Read more about how to configure UNet model with this parameter
206
- [here](https://huggingface.co/docs/diffusers/training/adapt_a_model#configure-unet2dconditionmodel-parameters).
207
- scaling_factor (`float`, *optional*):
208
- The scaling factor to use for the VAE model. If not provided, it is inferred from the config file first.
209
- If the scaling factor is not found in the config file, the default value 0.18215 is used.
210
- scheduler_type (`str`, *optional*):
211
- The type of scheduler to load. If not provided, the scheduler type will be inferred from the checkpoint file.
212
- prediction_type (`str`, *optional*):
213
- The type of prediction to load. If not provided, the prediction type will be inferred from the checkpoint file.
297
+ config (`str`, *optional*):
298
+ Can be either:
299
+ - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
300
+ hosted on the Hub.
301
+ - A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline
302
+ component configs in Diffusers format.
214
303
  kwargs (remaining dictionary of keyword arguments, *optional*):
215
304
  Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
216
305
  class). The overwritten components are passed directly to the pipelines `__init__` method. See example
@@ -228,7 +317,7 @@ class FromSingleFileMixin:
228
317
 
229
318
  >>> # Download pipeline from local file
230
319
  >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
231
- >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
320
+ >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly.ckpt")
232
321
 
233
322
  >>> # Enable float16 and move to GPU
234
323
  >>> pipeline = StableDiffusionPipeline.from_single_file(
@@ -237,9 +326,21 @@ class FromSingleFileMixin:
237
326
  ... )
238
327
  >>> pipeline.to("cuda")
239
328
  ```
329
+
240
330
  """
241
331
  original_config_file = kwargs.pop("original_config_file", None)
242
- resume_download = kwargs.pop("resume_download", False)
332
+ config = kwargs.pop("config", None)
333
+ original_config = kwargs.pop("original_config", None)
334
+
335
+ if original_config_file is not None:
336
+ deprecation_message = (
337
+ "`original_config_file` argument is deprecated and will be removed in future versions."
338
+ "please use the `original_config` argument instead."
339
+ )
340
+ deprecate("original_config_file", "1.0.0", deprecation_message)
341
+ original_config = original_config_file
342
+
343
+ resume_download = kwargs.pop("resume_download", None)
243
344
  force_download = kwargs.pop("force_download", False)
244
345
  proxies = kwargs.pop("proxies", None)
245
346
  token = kwargs.pop("token", None)
@@ -248,68 +349,198 @@ class FromSingleFileMixin:
248
349
  revision = kwargs.pop("revision", None)
249
350
  torch_dtype = kwargs.pop("torch_dtype", None)
250
351
 
251
- class_name = cls.__name__
352
+ is_legacy_loading = False
252
353
 
253
- original_config, checkpoint = fetch_ldm_config_and_checkpoint(
254
- pretrained_model_link_or_path=pretrained_model_link_or_path,
255
- class_name=class_name,
256
- original_config_file=original_config_file,
354
+ # We shouldn't allow configuring individual models components through a Pipeline creation method
355
+ # These model kwargs should be deprecated
356
+ scaling_factor = kwargs.get("scaling_factor", None)
357
+ if scaling_factor is not None:
358
+ deprecation_message = (
359
+ "Passing the `scaling_factor` argument to `from_single_file is deprecated "
360
+ "and will be ignored in future versions."
361
+ )
362
+ deprecate("scaling_factor", "1.0.0", deprecation_message)
363
+
364
+ if original_config is not None:
365
+ original_config = fetch_original_config(original_config, local_files_only=local_files_only)
366
+
367
+ from ..pipelines.pipeline_utils import _get_pipeline_class
368
+
369
+ pipeline_class = _get_pipeline_class(cls, config=None)
370
+
371
+ checkpoint = load_single_file_checkpoint(
372
+ pretrained_model_link_or_path,
257
373
  resume_download=resume_download,
258
374
  force_download=force_download,
259
375
  proxies=proxies,
260
376
  token=token,
261
- revision=revision,
262
- local_files_only=local_files_only,
263
377
  cache_dir=cache_dir,
378
+ local_files_only=local_files_only,
379
+ revision=revision,
264
380
  )
265
381
 
266
- from ..pipelines.pipeline_utils import _get_pipeline_class
382
+ if config is None:
383
+ config = fetch_diffusers_config(checkpoint)
384
+ default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
385
+ else:
386
+ default_pretrained_model_config_name = config
387
+
388
+ if not os.path.isdir(default_pretrained_model_config_name):
389
+ # Provided config is a repo_id
390
+ if default_pretrained_model_config_name.count("/") > 1:
391
+ raise ValueError(
392
+ f'The provided config "{config}"'
393
+ " is neither a valid local path nor a valid repo id. Please check the parameter."
394
+ )
395
+ try:
396
+ # Attempt to download the config files for the pipeline
397
+ cached_model_config_path = _download_diffusers_model_config_from_hub(
398
+ default_pretrained_model_config_name,
399
+ cache_dir=cache_dir,
400
+ revision=revision,
401
+ proxies=proxies,
402
+ force_download=force_download,
403
+ resume_download=resume_download,
404
+ local_files_only=local_files_only,
405
+ token=token,
406
+ )
407
+ config_dict = pipeline_class.load_config(cached_model_config_path)
408
+
409
+ except LocalEntryNotFoundError:
410
+ # `local_files_only=True` but a local diffusers format model config is not available in the cache
411
+ # If `original_config` is not provided, we need override `local_files_only` to False
412
+ # to fetch the config files from the hub so that we have a way
413
+ # to configure the pipeline components.
414
+
415
+ if original_config is None:
416
+ logger.warning(
417
+ "`local_files_only` is True but no local configs were found for this checkpoint.\n"
418
+ "Attempting to download the necessary config files for this pipeline.\n"
419
+ )
420
+ cached_model_config_path = _download_diffusers_model_config_from_hub(
421
+ default_pretrained_model_config_name,
422
+ cache_dir=cache_dir,
423
+ revision=revision,
424
+ proxies=proxies,
425
+ force_download=force_download,
426
+ resume_download=resume_download,
427
+ local_files_only=False,
428
+ token=token,
429
+ )
430
+ config_dict = pipeline_class.load_config(cached_model_config_path)
431
+
432
+ else:
433
+ # For backwards compatibility
434
+ # If `original_config` is provided, then we need to assume we are using legacy loading for pipeline components
435
+ logger.warning(
436
+ "Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\n"
437
+ "This may lead to errors if the model components are not correctly inferred. \n"
438
+ "To avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \n"
439
+ "e.g. `from_single_file(<my model checkpoint path>, config=<path to local diffusers model repo>) \n"
440
+ "or run `from_single_file` with `local_files_only=False` first to update the local cache directory with "
441
+ "the necessary config files.\n"
442
+ )
443
+ is_legacy_loading = True
444
+ cached_model_config_path = None
445
+
446
+ config_dict = _infer_pipeline_config_dict(pipeline_class)
447
+ config_dict["_class_name"] = pipeline_class.__name__
267
448
 
268
- pipeline_class = _get_pipeline_class(
269
- cls,
270
- config=None,
271
- cache_dir=cache_dir,
272
- )
449
+ else:
450
+ # Provided config is a path to a local directory attempt to load directly.
451
+ cached_model_config_path = default_pretrained_model_config_name
452
+ config_dict = pipeline_class.load_config(cached_model_config_path)
273
453
 
274
- expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
454
+ # pop out "_ignore_files" as it is only needed for download
455
+ config_dict.pop("_ignore_files", None)
456
+
457
+ expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls)
275
458
  passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
276
459
  passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
277
460
 
278
- model_type = kwargs.pop("model_type", None)
279
- image_size = kwargs.pop("image_size", None)
280
- load_safety_checker = (kwargs.pop("load_safety_checker", False)) or (
281
- passed_class_obj.get("safety_checker", None) is not None
282
- )
461
+ init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
462
+ init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
463
+ init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
464
+
465
+ from diffusers import pipelines
466
+
467
+ # remove `null` components
468
+ def load_module(name, value):
469
+ if value[0] is None:
470
+ return False
471
+ if name in passed_class_obj and passed_class_obj[name] is None:
472
+ return False
473
+ if name in SINGLE_FILE_OPTIONAL_COMPONENTS:
474
+ return False
475
+
476
+ return True
477
+
478
+ init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
479
+
480
+ for name, (library_name, class_name) in logging.tqdm(
481
+ sorted(init_dict.items()), desc="Loading pipeline components..."
482
+ ):
483
+ loaded_sub_model = None
484
+ is_pipeline_module = hasattr(pipelines, library_name)
283
485
 
284
- init_kwargs = {}
285
- for name in expected_modules:
286
486
  if name in passed_class_obj:
287
- init_kwargs[name] = passed_class_obj[name]
487
+ loaded_sub_model = passed_class_obj[name]
488
+
288
489
  else:
289
- components = build_sub_model_components(
290
- init_kwargs,
291
- class_name,
292
- name,
293
- original_config,
294
- checkpoint,
295
- model_type=model_type,
296
- image_size=image_size,
297
- load_safety_checker=load_safety_checker,
298
- local_files_only=local_files_only,
299
- torch_dtype=torch_dtype,
300
- **kwargs,
301
- )
302
- if not components:
303
- continue
304
- init_kwargs.update(components)
490
+ try:
491
+ loaded_sub_model = load_single_file_sub_model(
492
+ library_name=library_name,
493
+ class_name=class_name,
494
+ name=name,
495
+ checkpoint=checkpoint,
496
+ is_pipeline_module=is_pipeline_module,
497
+ cached_model_config_path=cached_model_config_path,
498
+ pipelines=pipelines,
499
+ torch_dtype=torch_dtype,
500
+ original_config=original_config,
501
+ local_files_only=local_files_only,
502
+ is_legacy_loading=is_legacy_loading,
503
+ **kwargs,
504
+ )
505
+ except SingleFileComponentError as e:
506
+ raise SingleFileComponentError(
507
+ (
508
+ f"{e.message}\n"
509
+ f"Please load the component before passing it in as an argument to `from_single_file`.\n"
510
+ f"\n"
511
+ f"{name} = {class_name}.from_pretrained('...')\n"
512
+ f"pipe = {pipeline_class.__name__}.from_single_file(<checkpoint path>, {name}={name})\n"
513
+ f"\n"
514
+ )
515
+ )
516
+
517
+ init_kwargs[name] = loaded_sub_model
518
+
519
+ missing_modules = set(expected_modules) - set(init_kwargs.keys())
520
+ passed_modules = list(passed_class_obj.keys())
521
+ optional_modules = pipeline_class._optional_components
522
+
523
+ if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
524
+ for module in missing_modules:
525
+ init_kwargs[module] = passed_class_obj.get(module, None)
526
+ elif len(missing_modules) > 0:
527
+ passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
528
+ raise ValueError(
529
+ f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
530
+ )
305
531
 
306
- additional_components = set_additional_components(
307
- class_name, original_config, checkpoint=checkpoint, model_type=model_type
308
- )
309
- if additional_components:
310
- init_kwargs.update(additional_components)
532
+ # deprecated kwargs
533
+ load_safety_checker = kwargs.pop("load_safety_checker", None)
534
+ if load_safety_checker is not None:
535
+ deprecation_message = (
536
+ "Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`"
537
+ "using the `safety_checker` and `feature_extractor` arguments in `from_single_file`"
538
+ )
539
+ deprecate("load_safety_checker", "1.0.0", deprecation_message)
540
+
541
+ safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype)
542
+ init_kwargs.update(safety_checker_components)
311
543
 
312
- init_kwargs.update(passed_pipe_kwargs)
313
544
  pipe = pipeline_class(**init_kwargs)
314
545
 
315
546
  if torch_dtype is not None: