diffusers 0.27.2__py3-none-any.whl → 0.28.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (270) hide show
  1. diffusers/__init__.py +18 -1
  2. diffusers/callbacks.py +156 -0
  3. diffusers/commands/env.py +110 -6
  4. diffusers/configuration_utils.py +16 -11
  5. diffusers/dependency_versions_table.py +2 -1
  6. diffusers/image_processor.py +158 -45
  7. diffusers/loaders/__init__.py +2 -5
  8. diffusers/loaders/autoencoder.py +4 -4
  9. diffusers/loaders/controlnet.py +4 -4
  10. diffusers/loaders/ip_adapter.py +80 -22
  11. diffusers/loaders/lora.py +134 -20
  12. diffusers/loaders/lora_conversion_utils.py +46 -43
  13. diffusers/loaders/peft.py +4 -3
  14. diffusers/loaders/single_file.py +401 -170
  15. diffusers/loaders/single_file_model.py +290 -0
  16. diffusers/loaders/single_file_utils.py +616 -672
  17. diffusers/loaders/textual_inversion.py +41 -20
  18. diffusers/loaders/unet.py +168 -115
  19. diffusers/loaders/unet_loader_utils.py +163 -0
  20. diffusers/models/__init__.py +2 -0
  21. diffusers/models/activations.py +11 -3
  22. diffusers/models/attention.py +10 -11
  23. diffusers/models/attention_processor.py +367 -148
  24. diffusers/models/autoencoders/autoencoder_asym_kl.py +14 -16
  25. diffusers/models/autoencoders/autoencoder_kl.py +18 -19
  26. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +11 -11
  27. diffusers/models/autoencoders/autoencoder_tiny.py +16 -16
  28. diffusers/models/autoencoders/consistency_decoder_vae.py +36 -11
  29. diffusers/models/autoencoders/vae.py +23 -24
  30. diffusers/models/controlnet.py +12 -9
  31. diffusers/models/controlnet_flax.py +4 -4
  32. diffusers/models/controlnet_xs.py +1915 -0
  33. diffusers/models/downsampling.py +17 -18
  34. diffusers/models/embeddings.py +147 -24
  35. diffusers/models/model_loading_utils.py +149 -0
  36. diffusers/models/modeling_flax_pytorch_utils.py +2 -1
  37. diffusers/models/modeling_flax_utils.py +4 -4
  38. diffusers/models/modeling_pytorch_flax_utils.py +1 -1
  39. diffusers/models/modeling_utils.py +118 -98
  40. diffusers/models/resnet.py +18 -23
  41. diffusers/models/transformer_temporal.py +3 -3
  42. diffusers/models/transformers/dual_transformer_2d.py +4 -4
  43. diffusers/models/transformers/prior_transformer.py +7 -7
  44. diffusers/models/transformers/t5_film_transformer.py +17 -19
  45. diffusers/models/transformers/transformer_2d.py +272 -156
  46. diffusers/models/transformers/transformer_temporal.py +10 -10
  47. diffusers/models/unets/unet_1d.py +5 -5
  48. diffusers/models/unets/unet_1d_blocks.py +29 -29
  49. diffusers/models/unets/unet_2d.py +6 -6
  50. diffusers/models/unets/unet_2d_blocks.py +137 -128
  51. diffusers/models/unets/unet_2d_condition.py +19 -15
  52. diffusers/models/unets/unet_2d_condition_flax.py +6 -5
  53. diffusers/models/unets/unet_3d_blocks.py +79 -77
  54. diffusers/models/unets/unet_3d_condition.py +13 -9
  55. diffusers/models/unets/unet_i2vgen_xl.py +14 -13
  56. diffusers/models/unets/unet_kandinsky3.py +1 -1
  57. diffusers/models/unets/unet_motion_model.py +114 -14
  58. diffusers/models/unets/unet_spatio_temporal_condition.py +15 -14
  59. diffusers/models/unets/unet_stable_cascade.py +16 -13
  60. diffusers/models/upsampling.py +17 -20
  61. diffusers/models/vq_model.py +16 -15
  62. diffusers/pipelines/__init__.py +25 -3
  63. diffusers/pipelines/amused/pipeline_amused.py +12 -12
  64. diffusers/pipelines/amused/pipeline_amused_img2img.py +14 -12
  65. diffusers/pipelines/amused/pipeline_amused_inpaint.py +13 -11
  66. diffusers/pipelines/animatediff/__init__.py +2 -0
  67. diffusers/pipelines/animatediff/pipeline_animatediff.py +24 -46
  68. diffusers/pipelines/animatediff/pipeline_animatediff_sdxl.py +1284 -0
  69. diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py +82 -72
  70. diffusers/pipelines/animatediff/pipeline_output.py +3 -2
  71. diffusers/pipelines/audioldm/pipeline_audioldm.py +14 -14
  72. diffusers/pipelines/audioldm2/modeling_audioldm2.py +54 -35
  73. diffusers/pipelines/audioldm2/pipeline_audioldm2.py +120 -36
  74. diffusers/pipelines/auto_pipeline.py +21 -17
  75. diffusers/pipelines/blip_diffusion/blip_image_processing.py +1 -1
  76. diffusers/pipelines/blip_diffusion/modeling_blip2.py +5 -5
  77. diffusers/pipelines/blip_diffusion/modeling_ctx_clip.py +1 -1
  78. diffusers/pipelines/blip_diffusion/pipeline_blip_diffusion.py +2 -2
  79. diffusers/pipelines/consistency_models/pipeline_consistency_models.py +5 -5
  80. diffusers/pipelines/controlnet/multicontrolnet.py +4 -8
  81. diffusers/pipelines/controlnet/pipeline_controlnet.py +87 -52
  82. diffusers/pipelines/controlnet/pipeline_controlnet_blip_diffusion.py +2 -2
  83. diffusers/pipelines/controlnet/pipeline_controlnet_img2img.py +50 -43
  84. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint.py +52 -40
  85. diffusers/pipelines/controlnet/pipeline_controlnet_inpaint_sd_xl.py +80 -47
  86. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl.py +147 -49
  87. diffusers/pipelines/controlnet/pipeline_controlnet_sd_xl_img2img.py +89 -55
  88. diffusers/pipelines/controlnet_xs/__init__.py +68 -0
  89. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs.py +911 -0
  90. diffusers/pipelines/controlnet_xs/pipeline_controlnet_xs_sd_xl.py +1115 -0
  91. diffusers/pipelines/deepfloyd_if/pipeline_if.py +14 -28
  92. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py +18 -33
  93. diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py +21 -39
  94. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py +20 -36
  95. diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py +23 -39
  96. diffusers/pipelines/deepfloyd_if/pipeline_if_superresolution.py +17 -32
  97. diffusers/pipelines/deprecated/alt_diffusion/modeling_roberta_series.py +11 -11
  98. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion.py +43 -20
  99. diffusers/pipelines/deprecated/alt_diffusion/pipeline_alt_diffusion_img2img.py +36 -18
  100. diffusers/pipelines/deprecated/repaint/pipeline_repaint.py +2 -2
  101. diffusers/pipelines/deprecated/spectrogram_diffusion/pipeline_spectrogram_diffusion.py +7 -7
  102. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_cycle_diffusion.py +12 -12
  103. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_inpaint_legacy.py +18 -18
  104. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_model_editing.py +20 -15
  105. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_paradigms.py +20 -15
  106. diffusers/pipelines/deprecated/stable_diffusion_variants/pipeline_stable_diffusion_pix2pix_zero.py +30 -25
  107. diffusers/pipelines/deprecated/versatile_diffusion/modeling_text_unet.py +69 -59
  108. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py +13 -13
  109. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_dual_guided.py +10 -5
  110. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_image_variation.py +11 -6
  111. diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion_text_to_image.py +10 -5
  112. diffusers/pipelines/deprecated/vq_diffusion/pipeline_vq_diffusion.py +5 -5
  113. diffusers/pipelines/dit/pipeline_dit.py +3 -0
  114. diffusers/pipelines/free_init_utils.py +39 -38
  115. diffusers/pipelines/i2vgen_xl/pipeline_i2vgen_xl.py +33 -48
  116. diffusers/pipelines/kandinsky/pipeline_kandinsky.py +8 -8
  117. diffusers/pipelines/kandinsky/pipeline_kandinsky_combined.py +23 -20
  118. diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py +11 -11
  119. diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py +12 -12
  120. diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py +10 -10
  121. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2.py +6 -6
  122. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_combined.py +32 -29
  123. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet.py +10 -10
  124. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_controlnet_img2img.py +10 -10
  125. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_img2img.py +6 -6
  126. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_inpainting.py +8 -8
  127. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior.py +7 -7
  128. diffusers/pipelines/kandinsky2_2/pipeline_kandinsky2_2_prior_emb2emb.py +6 -6
  129. diffusers/pipelines/kandinsky3/convert_kandinsky3_unet.py +3 -3
  130. diffusers/pipelines/kandinsky3/pipeline_kandinsky3.py +20 -33
  131. diffusers/pipelines/kandinsky3/pipeline_kandinsky3_img2img.py +24 -35
  132. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_img2img.py +48 -30
  133. diffusers/pipelines/latent_consistency_models/pipeline_latent_consistency_text2img.py +50 -28
  134. diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py +11 -11
  135. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion.py +61 -67
  136. diffusers/pipelines/ledits_pp/pipeline_leditspp_stable_diffusion_xl.py +70 -69
  137. diffusers/pipelines/ledits_pp/pipeline_output.py +2 -2
  138. diffusers/pipelines/marigold/__init__.py +50 -0
  139. diffusers/pipelines/marigold/marigold_image_processing.py +561 -0
  140. diffusers/pipelines/marigold/pipeline_marigold_depth.py +813 -0
  141. diffusers/pipelines/marigold/pipeline_marigold_normals.py +690 -0
  142. diffusers/pipelines/musicldm/pipeline_musicldm.py +14 -14
  143. diffusers/pipelines/paint_by_example/pipeline_paint_by_example.py +17 -12
  144. diffusers/pipelines/pia/pipeline_pia.py +39 -125
  145. diffusers/pipelines/pipeline_flax_utils.py +4 -4
  146. diffusers/pipelines/pipeline_loading_utils.py +268 -23
  147. diffusers/pipelines/pipeline_utils.py +266 -37
  148. diffusers/pipelines/pixart_alpha/__init__.py +8 -1
  149. diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +65 -75
  150. diffusers/pipelines/pixart_alpha/pipeline_pixart_sigma.py +880 -0
  151. diffusers/pipelines/semantic_stable_diffusion/pipeline_semantic_stable_diffusion.py +10 -5
  152. diffusers/pipelines/shap_e/pipeline_shap_e.py +3 -3
  153. diffusers/pipelines/shap_e/pipeline_shap_e_img2img.py +14 -14
  154. diffusers/pipelines/shap_e/renderer.py +1 -1
  155. diffusers/pipelines/stable_cascade/pipeline_stable_cascade.py +18 -18
  156. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_combined.py +23 -19
  157. diffusers/pipelines/stable_cascade/pipeline_stable_cascade_prior.py +33 -32
  158. diffusers/pipelines/stable_diffusion/__init__.py +0 -1
  159. diffusers/pipelines/stable_diffusion/convert_from_ckpt.py +18 -11
  160. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py +2 -2
  161. diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py +6 -6
  162. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py +73 -39
  163. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_depth2img.py +24 -17
  164. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_image_variation.py +13 -8
  165. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py +66 -36
  166. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py +82 -46
  167. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py +123 -28
  168. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py +6 -6
  169. diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_upscale.py +16 -16
  170. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip.py +24 -19
  171. diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py +37 -31
  172. diffusers/pipelines/stable_diffusion/safety_checker.py +2 -1
  173. diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py +23 -15
  174. diffusers/pipelines/stable_diffusion_diffedit/pipeline_stable_diffusion_diffedit.py +44 -39
  175. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py +23 -18
  176. diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen_text_image.py +19 -14
  177. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_k_diffusion.py +20 -15
  178. diffusers/pipelines/stable_diffusion_k_diffusion/pipeline_stable_diffusion_xl_k_diffusion.py +24 -19
  179. diffusers/pipelines/stable_diffusion_ldm3d/pipeline_stable_diffusion_ldm3d.py +65 -32
  180. diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py +274 -38
  181. diffusers/pipelines/stable_diffusion_safe/pipeline_stable_diffusion_safe.py +10 -5
  182. diffusers/pipelines/stable_diffusion_safe/safety_checker.py +1 -1
  183. diffusers/pipelines/stable_diffusion_sag/pipeline_stable_diffusion_sag.py +92 -25
  184. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py +88 -44
  185. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_img2img.py +108 -56
  186. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_inpaint.py +96 -51
  187. diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl_instruct_pix2pix.py +45 -25
  188. diffusers/pipelines/stable_diffusion_xl/watermark.py +9 -3
  189. diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py +110 -57
  190. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_adapter.py +59 -30
  191. diffusers/pipelines/t2i_adapter/pipeline_stable_diffusion_xl_adapter.py +71 -42
  192. diffusers/pipelines/text_to_video_synthesis/pipeline_output.py +3 -2
  193. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py +18 -41
  194. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py +21 -85
  195. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero.py +28 -19
  196. diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_zero_sdxl.py +39 -33
  197. diffusers/pipelines/unclip/pipeline_unclip.py +6 -6
  198. diffusers/pipelines/unclip/pipeline_unclip_image_variation.py +6 -6
  199. diffusers/pipelines/unidiffuser/modeling_text_decoder.py +1 -1
  200. diffusers/pipelines/unidiffuser/modeling_uvit.py +9 -9
  201. diffusers/pipelines/unidiffuser/pipeline_unidiffuser.py +23 -23
  202. diffusers/pipelines/wuerstchen/modeling_paella_vq_model.py +5 -5
  203. diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py +5 -10
  204. diffusers/pipelines/wuerstchen/modeling_wuerstchen_prior.py +4 -6
  205. diffusers/pipelines/wuerstchen/pipeline_wuerstchen.py +4 -4
  206. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_combined.py +12 -12
  207. diffusers/pipelines/wuerstchen/pipeline_wuerstchen_prior.py +10 -10
  208. diffusers/schedulers/__init__.py +2 -2
  209. diffusers/schedulers/deprecated/__init__.py +1 -1
  210. diffusers/schedulers/deprecated/scheduling_karras_ve.py +25 -25
  211. diffusers/schedulers/scheduling_amused.py +5 -5
  212. diffusers/schedulers/scheduling_consistency_decoder.py +11 -11
  213. diffusers/schedulers/scheduling_consistency_models.py +20 -26
  214. diffusers/schedulers/scheduling_ddim.py +22 -24
  215. diffusers/schedulers/scheduling_ddim_flax.py +2 -1
  216. diffusers/schedulers/scheduling_ddim_inverse.py +16 -16
  217. diffusers/schedulers/scheduling_ddim_parallel.py +28 -30
  218. diffusers/schedulers/scheduling_ddpm.py +20 -22
  219. diffusers/schedulers/scheduling_ddpm_flax.py +7 -3
  220. diffusers/schedulers/scheduling_ddpm_parallel.py +26 -28
  221. diffusers/schedulers/scheduling_ddpm_wuerstchen.py +14 -14
  222. diffusers/schedulers/scheduling_deis_multistep.py +42 -42
  223. diffusers/schedulers/scheduling_dpmsolver_multistep.py +103 -77
  224. diffusers/schedulers/scheduling_dpmsolver_multistep_flax.py +2 -2
  225. diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py +46 -46
  226. diffusers/schedulers/scheduling_dpmsolver_sde.py +23 -23
  227. diffusers/schedulers/scheduling_dpmsolver_singlestep.py +86 -65
  228. diffusers/schedulers/scheduling_edm_dpmsolver_multistep.py +75 -54
  229. diffusers/schedulers/scheduling_edm_euler.py +50 -31
  230. diffusers/schedulers/scheduling_euler_ancestral_discrete.py +23 -29
  231. diffusers/schedulers/scheduling_euler_discrete.py +160 -68
  232. diffusers/schedulers/scheduling_heun_discrete.py +57 -39
  233. diffusers/schedulers/scheduling_ipndm.py +8 -8
  234. diffusers/schedulers/scheduling_k_dpm_2_ancestral_discrete.py +19 -19
  235. diffusers/schedulers/scheduling_k_dpm_2_discrete.py +19 -19
  236. diffusers/schedulers/scheduling_karras_ve_flax.py +6 -6
  237. diffusers/schedulers/scheduling_lcm.py +21 -23
  238. diffusers/schedulers/scheduling_lms_discrete.py +24 -26
  239. diffusers/schedulers/scheduling_pndm.py +20 -20
  240. diffusers/schedulers/scheduling_repaint.py +20 -20
  241. diffusers/schedulers/scheduling_sasolver.py +55 -54
  242. diffusers/schedulers/scheduling_sde_ve.py +19 -19
  243. diffusers/schedulers/scheduling_tcd.py +39 -30
  244. diffusers/schedulers/scheduling_unclip.py +15 -15
  245. diffusers/schedulers/scheduling_unipc_multistep.py +111 -41
  246. diffusers/schedulers/scheduling_utils.py +14 -5
  247. diffusers/schedulers/scheduling_utils_flax.py +3 -3
  248. diffusers/schedulers/scheduling_vq_diffusion.py +10 -10
  249. diffusers/training_utils.py +56 -1
  250. diffusers/utils/__init__.py +7 -0
  251. diffusers/utils/doc_utils.py +1 -0
  252. diffusers/utils/dummy_pt_objects.py +30 -0
  253. diffusers/utils/dummy_torch_and_transformers_objects.py +90 -0
  254. diffusers/utils/dynamic_modules_utils.py +24 -11
  255. diffusers/utils/hub_utils.py +3 -2
  256. diffusers/utils/import_utils.py +91 -0
  257. diffusers/utils/loading_utils.py +2 -2
  258. diffusers/utils/logging.py +1 -1
  259. diffusers/utils/peft_utils.py +32 -5
  260. diffusers/utils/state_dict_utils.py +11 -2
  261. diffusers/utils/testing_utils.py +71 -6
  262. diffusers/utils/torch_utils.py +1 -0
  263. diffusers/video_processor.py +113 -0
  264. {diffusers-0.27.2.dist-info → diffusers-0.28.0.dist-info}/METADATA +47 -47
  265. diffusers-0.28.0.dist-info/RECORD +414 -0
  266. {diffusers-0.27.2.dist-info → diffusers-0.28.0.dist-info}/WHEEL +1 -1
  267. diffusers-0.27.2.dist-info/RECORD +0 -399
  268. {diffusers-0.27.2.dist-info → diffusers-0.28.0.dist-info}/LICENSE +0 -0
  269. {diffusers-0.27.2.dist-info → diffusers-0.28.0.dist-info}/entry_points.txt +0 -0
  270. {diffusers-0.27.2.dist-info → diffusers-0.28.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1284 @@
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ from transformers import (
20
+ CLIPImageProcessor,
21
+ CLIPTextModel,
22
+ CLIPTextModelWithProjection,
23
+ CLIPTokenizer,
24
+ CLIPVisionModelWithProjection,
25
+ )
26
+
27
+ from ...image_processor import PipelineImageInput
28
+ from ...loaders import (
29
+ FromSingleFileMixin,
30
+ IPAdapterMixin,
31
+ StableDiffusionXLLoraLoaderMixin,
32
+ TextualInversionLoaderMixin,
33
+ )
34
+ from ...models import AutoencoderKL, ImageProjection, MotionAdapter, UNet2DConditionModel, UNetMotionModel
35
+ from ...models.attention_processor import (
36
+ AttnProcessor2_0,
37
+ FusedAttnProcessor2_0,
38
+ LoRAAttnProcessor2_0,
39
+ LoRAXFormersAttnProcessor,
40
+ XFormersAttnProcessor,
41
+ )
42
+ from ...models.lora import adjust_lora_scale_text_encoder
43
+ from ...schedulers import (
44
+ DDIMScheduler,
45
+ DPMSolverMultistepScheduler,
46
+ EulerAncestralDiscreteScheduler,
47
+ EulerDiscreteScheduler,
48
+ LMSDiscreteScheduler,
49
+ PNDMScheduler,
50
+ )
51
+ from ...utils import (
52
+ USE_PEFT_BACKEND,
53
+ logging,
54
+ replace_example_docstring,
55
+ scale_lora_layers,
56
+ unscale_lora_layers,
57
+ )
58
+ from ...utils.torch_utils import randn_tensor
59
+ from ...video_processor import VideoProcessor
60
+ from ..free_init_utils import FreeInitMixin
61
+ from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
62
+ from .pipeline_output import AnimateDiffPipelineOutput
63
+
64
+
65
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
66
+
67
+ EXAMPLE_DOC_STRING = """
68
+ Examples:
69
+ ```py
70
+ >>> import torch
71
+ >>> from diffusers.models import MotionAdapter
72
+ >>> from diffusers import AnimateDiffSDXLPipeline, DDIMScheduler
73
+ >>> from diffusers.utils import export_to_gif
74
+
75
+ >>> adapter = MotionAdapter.from_pretrained(
76
+ ... "a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16
77
+ ... )
78
+
79
+ >>> model_id = "stabilityai/stable-diffusion-xl-base-1.0"
80
+ >>> scheduler = DDIMScheduler.from_pretrained(
81
+ ... model_id,
82
+ ... subfolder="scheduler",
83
+ ... clip_sample=False,
84
+ ... timestep_spacing="linspace",
85
+ ... beta_schedule="linear",
86
+ ... steps_offset=1,
87
+ ... )
88
+ >>> pipe = AnimateDiffSDXLPipeline.from_pretrained(
89
+ ... model_id,
90
+ ... motion_adapter=adapter,
91
+ ... scheduler=scheduler,
92
+ ... torch_dtype=torch.float16,
93
+ ... variant="fp16",
94
+ ... ).to("cuda")
95
+
96
+ >>> # enable memory savings
97
+ >>> pipe.enable_vae_slicing()
98
+ >>> pipe.enable_vae_tiling()
99
+
100
+ >>> output = pipe(
101
+ ... prompt="a panda surfing in the ocean, realistic, high quality",
102
+ ... negative_prompt="low quality, worst quality",
103
+ ... num_inference_steps=20,
104
+ ... guidance_scale=8,
105
+ ... width=1024,
106
+ ... height=1024,
107
+ ... num_frames=16,
108
+ ... )
109
+
110
+ >>> frames = output.frames[0]
111
+ >>> export_to_gif(frames, "animation.gif")
112
+ ```
113
+ """
114
+
115
+
116
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
117
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
118
+ """
119
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
120
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
121
+ """
122
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
123
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
124
+ # rescale the results from guidance (fixes overexposure)
125
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
126
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
127
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
128
+ return noise_cfg
129
+
130
+
131
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
132
+ def retrieve_timesteps(
133
+ scheduler,
134
+ num_inference_steps: Optional[int] = None,
135
+ device: Optional[Union[str, torch.device]] = None,
136
+ timesteps: Optional[List[int]] = None,
137
+ sigmas: Optional[List[float]] = None,
138
+ **kwargs,
139
+ ):
140
+ """
141
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
142
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
143
+
144
+ Args:
145
+ scheduler (`SchedulerMixin`):
146
+ The scheduler to get timesteps from.
147
+ num_inference_steps (`int`):
148
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
149
+ must be `None`.
150
+ device (`str` or `torch.device`, *optional*):
151
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
152
+ timesteps (`List[int]`, *optional*):
153
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
154
+ `num_inference_steps` and `sigmas` must be `None`.
155
+ sigmas (`List[float]`, *optional*):
156
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
157
+ `num_inference_steps` and `timesteps` must be `None`.
158
+
159
+ Returns:
160
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
161
+ second element is the number of inference steps.
162
+ """
163
+ if timesteps is not None and sigmas is not None:
164
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
165
+ if timesteps is not None:
166
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
167
+ if not accepts_timesteps:
168
+ raise ValueError(
169
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
170
+ f" timestep schedules. Please check whether you are using the correct scheduler."
171
+ )
172
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
173
+ timesteps = scheduler.timesteps
174
+ num_inference_steps = len(timesteps)
175
+ elif sigmas is not None:
176
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
177
+ if not accept_sigmas:
178
+ raise ValueError(
179
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
180
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
181
+ )
182
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
183
+ timesteps = scheduler.timesteps
184
+ num_inference_steps = len(timesteps)
185
+ else:
186
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
187
+ timesteps = scheduler.timesteps
188
+ return timesteps, num_inference_steps
189
+
190
+
191
+ class AnimateDiffSDXLPipeline(
192
+ DiffusionPipeline,
193
+ StableDiffusionMixin,
194
+ FromSingleFileMixin,
195
+ StableDiffusionXLLoraLoaderMixin,
196
+ TextualInversionLoaderMixin,
197
+ IPAdapterMixin,
198
+ FreeInitMixin,
199
+ ):
200
+ r"""
201
+ Pipeline for text-to-video generation using Stable Diffusion XL.
202
+
203
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
204
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
205
+
206
+ The pipeline also inherits the following loading methods:
207
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
208
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
209
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
210
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
211
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
212
+
213
+ Args:
214
+ vae ([`AutoencoderKL`]):
215
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
216
+ text_encoder ([`CLIPTextModel`]):
217
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
218
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
219
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
220
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
221
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
222
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
223
+ specifically the
224
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
225
+ variant.
226
+ tokenizer (`CLIPTokenizer`):
227
+ Tokenizer of class
228
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
229
+ tokenizer_2 (`CLIPTokenizer`):
230
+ Second Tokenizer of class
231
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
232
+ unet ([`UNet2DConditionModel`]):
233
+ Conditional U-Net architecture to denoise the encoded image latents.
234
+ scheduler ([`SchedulerMixin`]):
235
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
236
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
237
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
238
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
239
+ `stabilityai/stable-diffusion-xl-base-1-0`.
240
+ """
241
+
242
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
243
+ _optional_components = [
244
+ "tokenizer",
245
+ "tokenizer_2",
246
+ "text_encoder",
247
+ "text_encoder_2",
248
+ "image_encoder",
249
+ "feature_extractor",
250
+ ]
251
+ _callback_tensor_inputs = [
252
+ "latents",
253
+ "prompt_embeds",
254
+ "negative_prompt_embeds",
255
+ "add_text_embeds",
256
+ "add_time_ids",
257
+ "negative_pooled_prompt_embeds",
258
+ "negative_add_time_ids",
259
+ ]
260
+
261
+ def __init__(
262
+ self,
263
+ vae: AutoencoderKL,
264
+ text_encoder: CLIPTextModel,
265
+ text_encoder_2: CLIPTextModelWithProjection,
266
+ tokenizer: CLIPTokenizer,
267
+ tokenizer_2: CLIPTokenizer,
268
+ unet: Union[UNet2DConditionModel, UNetMotionModel],
269
+ motion_adapter: MotionAdapter,
270
+ scheduler: Union[
271
+ DDIMScheduler,
272
+ PNDMScheduler,
273
+ LMSDiscreteScheduler,
274
+ EulerDiscreteScheduler,
275
+ EulerAncestralDiscreteScheduler,
276
+ DPMSolverMultistepScheduler,
277
+ ],
278
+ image_encoder: CLIPVisionModelWithProjection = None,
279
+ feature_extractor: CLIPImageProcessor = None,
280
+ force_zeros_for_empty_prompt: bool = True,
281
+ ):
282
+ super().__init__()
283
+
284
+ if isinstance(unet, UNet2DConditionModel):
285
+ unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
286
+
287
+ self.register_modules(
288
+ vae=vae,
289
+ text_encoder=text_encoder,
290
+ text_encoder_2=text_encoder_2,
291
+ tokenizer=tokenizer,
292
+ tokenizer_2=tokenizer_2,
293
+ unet=unet,
294
+ motion_adapter=motion_adapter,
295
+ scheduler=scheduler,
296
+ image_encoder=image_encoder,
297
+ feature_extractor=feature_extractor,
298
+ )
299
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
300
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
301
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor)
302
+
303
+ self.default_sample_size = self.unet.config.sample_size
304
+
305
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt with num_images_per_prompt->num_videos_per_prompt
306
+ def encode_prompt(
307
+ self,
308
+ prompt: str,
309
+ prompt_2: Optional[str] = None,
310
+ device: Optional[torch.device] = None,
311
+ num_videos_per_prompt: int = 1,
312
+ do_classifier_free_guidance: bool = True,
313
+ negative_prompt: Optional[str] = None,
314
+ negative_prompt_2: Optional[str] = None,
315
+ prompt_embeds: Optional[torch.Tensor] = None,
316
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
317
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
318
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
319
+ lora_scale: Optional[float] = None,
320
+ clip_skip: Optional[int] = None,
321
+ ):
322
+ r"""
323
+ Encodes the prompt into text encoder hidden states.
324
+
325
+ Args:
326
+ prompt (`str` or `List[str]`, *optional*):
327
+ prompt to be encoded
328
+ prompt_2 (`str` or `List[str]`, *optional*):
329
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
330
+ used in both text-encoders
331
+ device: (`torch.device`):
332
+ torch device
333
+ num_videos_per_prompt (`int`):
334
+ number of images that should be generated per prompt
335
+ do_classifier_free_guidance (`bool`):
336
+ whether to use classifier free guidance or not
337
+ negative_prompt (`str` or `List[str]`, *optional*):
338
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
339
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
340
+ less than `1`).
341
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
342
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
343
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
344
+ prompt_embeds (`torch.Tensor`, *optional*):
345
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
346
+ provided, text embeddings will be generated from `prompt` input argument.
347
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
348
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
349
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
350
+ argument.
351
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
352
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
353
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
354
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
355
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
356
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
357
+ input argument.
358
+ lora_scale (`float`, *optional*):
359
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
360
+ clip_skip (`int`, *optional*):
361
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
362
+ the output of the pre-final layer will be used for computing the prompt embeddings.
363
+ """
364
+ device = device or self._execution_device
365
+
366
+ # set lora scale so that monkey patched LoRA
367
+ # function of text encoder can correctly access it
368
+ if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
369
+ self._lora_scale = lora_scale
370
+
371
+ # dynamically adjust the LoRA scale
372
+ if self.text_encoder is not None:
373
+ if not USE_PEFT_BACKEND:
374
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
375
+ else:
376
+ scale_lora_layers(self.text_encoder, lora_scale)
377
+
378
+ if self.text_encoder_2 is not None:
379
+ if not USE_PEFT_BACKEND:
380
+ adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
381
+ else:
382
+ scale_lora_layers(self.text_encoder_2, lora_scale)
383
+
384
+ prompt = [prompt] if isinstance(prompt, str) else prompt
385
+
386
+ if prompt is not None:
387
+ batch_size = len(prompt)
388
+ else:
389
+ batch_size = prompt_embeds.shape[0]
390
+
391
+ # Define tokenizers and text encoders
392
+ tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
393
+ text_encoders = (
394
+ [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
395
+ )
396
+
397
+ if prompt_embeds is None:
398
+ prompt_2 = prompt_2 or prompt
399
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
400
+
401
+ # textual inversion: process multi-vector tokens if necessary
402
+ prompt_embeds_list = []
403
+ prompts = [prompt, prompt_2]
404
+ for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
405
+ if isinstance(self, TextualInversionLoaderMixin):
406
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
407
+
408
+ text_inputs = tokenizer(
409
+ prompt,
410
+ padding="max_length",
411
+ max_length=tokenizer.model_max_length,
412
+ truncation=True,
413
+ return_tensors="pt",
414
+ )
415
+
416
+ text_input_ids = text_inputs.input_ids
417
+ untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
418
+
419
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
420
+ text_input_ids, untruncated_ids
421
+ ):
422
+ removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
423
+ logger.warning(
424
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
425
+ f" {tokenizer.model_max_length} tokens: {removed_text}"
426
+ )
427
+
428
+ prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
429
+
430
+ # We are only ALWAYS interested in the pooled output of the final text encoder
431
+ pooled_prompt_embeds = prompt_embeds[0]
432
+ if clip_skip is None:
433
+ prompt_embeds = prompt_embeds.hidden_states[-2]
434
+ else:
435
+ # "2" because SDXL always indexes from the penultimate layer.
436
+ prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
437
+
438
+ prompt_embeds_list.append(prompt_embeds)
439
+
440
+ prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
441
+
442
+ # get unconditional embeddings for classifier free guidance
443
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
444
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
445
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
446
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
447
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
448
+ negative_prompt = negative_prompt or ""
449
+ negative_prompt_2 = negative_prompt_2 or negative_prompt
450
+
451
+ # normalize str to list
452
+ negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
453
+ negative_prompt_2 = (
454
+ batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
455
+ )
456
+
457
+ uncond_tokens: List[str]
458
+ if prompt is not None and type(prompt) is not type(negative_prompt):
459
+ raise TypeError(
460
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
461
+ f" {type(prompt)}."
462
+ )
463
+ elif batch_size != len(negative_prompt):
464
+ raise ValueError(
465
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
466
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
467
+ " the batch size of `prompt`."
468
+ )
469
+ else:
470
+ uncond_tokens = [negative_prompt, negative_prompt_2]
471
+
472
+ negative_prompt_embeds_list = []
473
+ for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
474
+ if isinstance(self, TextualInversionLoaderMixin):
475
+ negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
476
+
477
+ max_length = prompt_embeds.shape[1]
478
+ uncond_input = tokenizer(
479
+ negative_prompt,
480
+ padding="max_length",
481
+ max_length=max_length,
482
+ truncation=True,
483
+ return_tensors="pt",
484
+ )
485
+
486
+ negative_prompt_embeds = text_encoder(
487
+ uncond_input.input_ids.to(device),
488
+ output_hidden_states=True,
489
+ )
490
+ # We are only ALWAYS interested in the pooled output of the final text encoder
491
+ negative_pooled_prompt_embeds = negative_prompt_embeds[0]
492
+ negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
493
+
494
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
495
+
496
+ negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
497
+
498
+ if self.text_encoder_2 is not None:
499
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
500
+ else:
501
+ prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
502
+
503
+ bs_embed, seq_len, _ = prompt_embeds.shape
504
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
505
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
506
+ prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
507
+
508
+ if do_classifier_free_guidance:
509
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
510
+ seq_len = negative_prompt_embeds.shape[1]
511
+
512
+ if self.text_encoder_2 is not None:
513
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
514
+ else:
515
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
516
+
517
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
518
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
519
+
520
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_videos_per_prompt).view(
521
+ bs_embed * num_videos_per_prompt, -1
522
+ )
523
+ if do_classifier_free_guidance:
524
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_videos_per_prompt).view(
525
+ bs_embed * num_videos_per_prompt, -1
526
+ )
527
+
528
+ if self.text_encoder is not None:
529
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
530
+ # Retrieve the original scale by scaling back the LoRA layers
531
+ unscale_lora_layers(self.text_encoder, lora_scale)
532
+
533
+ if self.text_encoder_2 is not None:
534
+ if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
535
+ # Retrieve the original scale by scaling back the LoRA layers
536
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
537
+
538
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
539
+
540
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
541
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
542
+ dtype = next(self.image_encoder.parameters()).dtype
543
+
544
+ if not isinstance(image, torch.Tensor):
545
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
546
+
547
+ image = image.to(device=device, dtype=dtype)
548
+ if output_hidden_states:
549
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
550
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
551
+ uncond_image_enc_hidden_states = self.image_encoder(
552
+ torch.zeros_like(image), output_hidden_states=True
553
+ ).hidden_states[-2]
554
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
555
+ num_images_per_prompt, dim=0
556
+ )
557
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
558
+ else:
559
+ image_embeds = self.image_encoder(image).image_embeds
560
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
561
+ uncond_image_embeds = torch.zeros_like(image_embeds)
562
+
563
+ return image_embeds, uncond_image_embeds
564
+
565
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
566
+ def prepare_ip_adapter_image_embeds(
567
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
568
+ ):
569
+ if ip_adapter_image_embeds is None:
570
+ if not isinstance(ip_adapter_image, list):
571
+ ip_adapter_image = [ip_adapter_image]
572
+
573
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
574
+ raise ValueError(
575
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
576
+ )
577
+
578
+ image_embeds = []
579
+ for single_ip_adapter_image, image_proj_layer in zip(
580
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
581
+ ):
582
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
583
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
584
+ single_ip_adapter_image, device, 1, output_hidden_state
585
+ )
586
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
587
+ single_negative_image_embeds = torch.stack(
588
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
589
+ )
590
+
591
+ if do_classifier_free_guidance:
592
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
593
+ single_image_embeds = single_image_embeds.to(device)
594
+
595
+ image_embeds.append(single_image_embeds)
596
+ else:
597
+ repeat_dims = [1]
598
+ image_embeds = []
599
+ for single_image_embeds in ip_adapter_image_embeds:
600
+ if do_classifier_free_guidance:
601
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
602
+ single_image_embeds = single_image_embeds.repeat(
603
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
604
+ )
605
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
606
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
607
+ )
608
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
609
+ else:
610
+ single_image_embeds = single_image_embeds.repeat(
611
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
612
+ )
613
+ image_embeds.append(single_image_embeds)
614
+
615
+ return image_embeds
616
+
617
+ # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents
618
+ def decode_latents(self, latents):
619
+ latents = 1 / self.vae.config.scaling_factor * latents
620
+
621
+ batch_size, channels, num_frames, height, width = latents.shape
622
+ latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
623
+
624
+ image = self.vae.decode(latents).sample
625
+ video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4)
626
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
627
+ video = video.float()
628
+ return video
629
+
630
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
631
+ def prepare_extra_step_kwargs(self, generator, eta):
632
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
633
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
634
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
635
+ # and should be between [0, 1]
636
+
637
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
638
+ extra_step_kwargs = {}
639
+ if accepts_eta:
640
+ extra_step_kwargs["eta"] = eta
641
+
642
+ # check if the scheduler accepts generator
643
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
644
+ if accepts_generator:
645
+ extra_step_kwargs["generator"] = generator
646
+ return extra_step_kwargs
647
+
648
+ def check_inputs(
649
+ self,
650
+ prompt,
651
+ prompt_2,
652
+ height,
653
+ width,
654
+ negative_prompt=None,
655
+ negative_prompt_2=None,
656
+ prompt_embeds=None,
657
+ negative_prompt_embeds=None,
658
+ pooled_prompt_embeds=None,
659
+ negative_pooled_prompt_embeds=None,
660
+ callback_on_step_end_tensor_inputs=None,
661
+ ):
662
+ if height % 8 != 0 or width % 8 != 0:
663
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
664
+
665
+ if callback_on_step_end_tensor_inputs is not None and not all(
666
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
667
+ ):
668
+ raise ValueError(
669
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
670
+ )
671
+
672
+ if prompt is not None and prompt_embeds is not None:
673
+ raise ValueError(
674
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
675
+ " only forward one of the two."
676
+ )
677
+ elif prompt_2 is not None and prompt_embeds is not None:
678
+ raise ValueError(
679
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
680
+ " only forward one of the two."
681
+ )
682
+ elif prompt is None and prompt_embeds is None:
683
+ raise ValueError(
684
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
685
+ )
686
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
687
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
688
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
689
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
690
+
691
+ if negative_prompt is not None and negative_prompt_embeds is not None:
692
+ raise ValueError(
693
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
694
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
695
+ )
696
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
697
+ raise ValueError(
698
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
699
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
700
+ )
701
+
702
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
703
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
704
+ raise ValueError(
705
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
706
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
707
+ f" {negative_prompt_embeds.shape}."
708
+ )
709
+
710
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
711
+ raise ValueError(
712
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
713
+ )
714
+
715
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
716
+ raise ValueError(
717
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
718
+ )
719
+
720
+ # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
721
+ def prepare_latents(
722
+ self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
723
+ ):
724
+ shape = (
725
+ batch_size,
726
+ num_channels_latents,
727
+ num_frames,
728
+ height // self.vae_scale_factor,
729
+ width // self.vae_scale_factor,
730
+ )
731
+ if isinstance(generator, list) and len(generator) != batch_size:
732
+ raise ValueError(
733
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
734
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
735
+ )
736
+
737
+ if latents is None:
738
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
739
+ else:
740
+ latents = latents.to(device)
741
+
742
+ # scale the initial noise by the standard deviation required by the scheduler
743
+ latents = latents * self.scheduler.init_noise_sigma
744
+ return latents
745
+
746
+ def _get_add_time_ids(
747
+ self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
748
+ ):
749
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
750
+
751
+ passed_add_embed_dim = (
752
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
753
+ )
754
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
755
+
756
+ if expected_add_embed_dim != passed_add_embed_dim:
757
+ raise ValueError(
758
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
759
+ )
760
+
761
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
762
+ return add_time_ids
763
+
764
+ def upcast_vae(self):
765
+ dtype = self.vae.dtype
766
+ self.vae.to(dtype=torch.float32)
767
+ use_torch_2_0_or_xformers = isinstance(
768
+ self.vae.decoder.mid_block.attentions[0].processor,
769
+ (
770
+ AttnProcessor2_0,
771
+ XFormersAttnProcessor,
772
+ LoRAXFormersAttnProcessor,
773
+ LoRAAttnProcessor2_0,
774
+ FusedAttnProcessor2_0,
775
+ ),
776
+ )
777
+ # if xformers or torch_2_0 is used attention block does not need
778
+ # to be in float32 which can save lots of memory
779
+ if use_torch_2_0_or_xformers:
780
+ self.vae.post_quant_conv.to(dtype)
781
+ self.vae.decoder.conv_in.to(dtype)
782
+ self.vae.decoder.mid_block.to(dtype)
783
+
784
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
785
+ def get_guidance_scale_embedding(
786
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
787
+ ) -> torch.Tensor:
788
+ """
789
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
790
+
791
+ Args:
792
+ w (`torch.Tensor`):
793
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
794
+ embedding_dim (`int`, *optional*, defaults to 512):
795
+ Dimension of the embeddings to generate.
796
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
797
+ Data type of the generated embeddings.
798
+
799
+ Returns:
800
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
801
+ """
802
+ assert len(w.shape) == 1
803
+ w = w * 1000.0
804
+
805
+ half_dim = embedding_dim // 2
806
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
807
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
808
+ emb = w.to(dtype)[:, None] * emb[None, :]
809
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
810
+ if embedding_dim % 2 == 1: # zero pad
811
+ emb = torch.nn.functional.pad(emb, (0, 1))
812
+ assert emb.shape == (w.shape[0], embedding_dim)
813
+ return emb
814
+
815
+ @property
816
+ def guidance_scale(self):
817
+ return self._guidance_scale
818
+
819
+ @property
820
+ def guidance_rescale(self):
821
+ return self._guidance_rescale
822
+
823
+ @property
824
+ def clip_skip(self):
825
+ return self._clip_skip
826
+
827
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
828
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
829
+ # corresponds to doing no classifier free guidance.
830
+ @property
831
+ def do_classifier_free_guidance(self):
832
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
833
+
834
+ @property
835
+ def cross_attention_kwargs(self):
836
+ return self._cross_attention_kwargs
837
+
838
+ @property
839
+ def denoising_end(self):
840
+ return self._denoising_end
841
+
842
+ @property
843
+ def num_timesteps(self):
844
+ return self._num_timesteps
845
+
846
+ @property
847
+ def interrupt(self):
848
+ return self._interrupt
849
+
850
+ @torch.no_grad()
851
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
852
+ def __call__(
853
+ self,
854
+ prompt: Union[str, List[str]] = None,
855
+ prompt_2: Optional[Union[str, List[str]]] = None,
856
+ num_frames: int = 16,
857
+ height: Optional[int] = None,
858
+ width: Optional[int] = None,
859
+ num_inference_steps: int = 50,
860
+ timesteps: List[int] = None,
861
+ sigmas: List[float] = None,
862
+ denoising_end: Optional[float] = None,
863
+ guidance_scale: float = 5.0,
864
+ negative_prompt: Optional[Union[str, List[str]]] = None,
865
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
866
+ num_videos_per_prompt: Optional[int] = 1,
867
+ eta: float = 0.0,
868
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
869
+ latents: Optional[torch.Tensor] = None,
870
+ prompt_embeds: Optional[torch.Tensor] = None,
871
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
872
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
873
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
874
+ ip_adapter_image: Optional[PipelineImageInput] = None,
875
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
876
+ output_type: Optional[str] = "pil",
877
+ return_dict: bool = True,
878
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
879
+ guidance_rescale: float = 0.0,
880
+ original_size: Optional[Tuple[int, int]] = None,
881
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
882
+ target_size: Optional[Tuple[int, int]] = None,
883
+ negative_original_size: Optional[Tuple[int, int]] = None,
884
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
885
+ negative_target_size: Optional[Tuple[int, int]] = None,
886
+ clip_skip: Optional[int] = None,
887
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
888
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
889
+ ):
890
+ r"""
891
+ Function invoked when calling the pipeline for generation.
892
+
893
+ Args:
894
+ prompt (`str` or `List[str]`, *optional*):
895
+ The prompt or prompts to guide the video generation. If not defined, one has to pass `prompt_embeds`.
896
+ instead.
897
+ prompt_2 (`str` or `List[str]`, *optional*):
898
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
899
+ used in both text-encoders
900
+ num_frames:
901
+ The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
902
+ amounts to 2 seconds of video.
903
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
904
+ The height in pixels of the generated video. This is set to 1024 by default for the best results.
905
+ Anything below 512 pixels won't work well for
906
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
907
+ and checkpoints that are not specifically fine-tuned on low resolutions.
908
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
909
+ The width in pixels of the generated video. This is set to 1024 by default for the best results.
910
+ Anything below 512 pixels won't work well for
911
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
912
+ and checkpoints that are not specifically fine-tuned on low resolutions.
913
+ num_inference_steps (`int`, *optional*, defaults to 50):
914
+ The number of denoising steps. More denoising steps usually lead to a higher quality video at the
915
+ expense of slower inference.
916
+ timesteps (`List[int]`, *optional*):
917
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
918
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
919
+ passed will be used. Must be in descending order.
920
+ sigmas (`List[float]`, *optional*):
921
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
922
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
923
+ will be used.
924
+ denoising_end (`float`, *optional*):
925
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
926
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
927
+ still retain a substantial amount of noise as determined by the discrete timesteps selected by the
928
+ scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
929
+ "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
930
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
931
+ guidance_scale (`float`, *optional*, defaults to 5.0):
932
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
933
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
934
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
935
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
936
+ usually at the expense of lower video quality.
937
+ negative_prompt (`str` or `List[str]`, *optional*):
938
+ The prompt or prompts not to guide the video generation. If not defined, one has to pass
939
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
940
+ less than `1`).
941
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
942
+ The prompt or prompts not to guide the video generation to be sent to `tokenizer_2` and
943
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
944
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
945
+ The number of videos to generate per prompt.
946
+ eta (`float`, *optional*, defaults to 0.0):
947
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
948
+ [`schedulers.DDIMScheduler`], will be ignored for others.
949
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
950
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
951
+ to make generation deterministic.
952
+ latents (`torch.Tensor`, *optional*):
953
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for video
954
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
955
+ tensor will ge generated by sampling using the supplied random `generator`.
956
+ prompt_embeds (`torch.Tensor`, *optional*):
957
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
958
+ provided, text embeddings will be generated from `prompt` input argument.
959
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
960
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
961
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
962
+ argument.
963
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
964
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
965
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
966
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
967
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
968
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
969
+ input argument.
970
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
971
+ Optional image input to work with IP Adapters.
972
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
973
+ Pre-generated image embeddings for IP-Adapter. If not provided, embeddings are computed from the
974
+ `ip_adapter_image` input argument.
975
+ output_type (`str`, *optional*, defaults to `"pil"`):
976
+ The output format of the generated video. Choose between
977
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
978
+ return_dict (`bool`, *optional*, defaults to `True`):
979
+ Whether or not to return a [`~pipelines.stable_diffusion_xl.AnimateDiffPipelineOutput`] instead of a
980
+ plain tuple.
981
+ cross_attention_kwargs (`dict`, *optional*):
982
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
983
+ `self.processor` in
984
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
985
+ guidance_rescale (`float`, *optional*, defaults to 0.0):
986
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
987
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
988
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
989
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
990
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
991
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
992
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
993
+ explained in section 2.2 of
994
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
995
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
996
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
997
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
998
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
999
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1000
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1001
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1002
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1003
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1004
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1005
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1006
+ micro-conditioning as explained in section 2.2 of
1007
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1008
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1009
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1010
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1011
+ micro-conditioning as explained in section 2.2 of
1012
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1013
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1014
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1015
+ To negatively condition the generation process based on a target image resolution. It should be as same
1016
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1017
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1018
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1019
+ callback_on_step_end (`Callable`, *optional*):
1020
+ A function that calls at the end of each denoising steps during the inference. The function is called
1021
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
1022
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
1023
+ `callback_on_step_end_tensor_inputs`.
1024
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1025
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1026
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1027
+ `._callback_tensor_inputs` attribute of your pipeline class.
1028
+
1029
+ Examples:
1030
+
1031
+ Returns:
1032
+ [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`:
1033
+ If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is
1034
+ returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
1035
+ """
1036
+
1037
+ # 0. Default height and width to unet
1038
+ height = height or self.default_sample_size * self.vae_scale_factor
1039
+ width = width or self.default_sample_size * self.vae_scale_factor
1040
+
1041
+ num_videos_per_prompt = 1
1042
+
1043
+ original_size = original_size or (height, width)
1044
+ target_size = target_size or (height, width)
1045
+
1046
+ # 1. Check inputs. Raise error if not correct
1047
+ self.check_inputs(
1048
+ prompt,
1049
+ prompt_2,
1050
+ height,
1051
+ width,
1052
+ negative_prompt,
1053
+ negative_prompt_2,
1054
+ prompt_embeds,
1055
+ negative_prompt_embeds,
1056
+ pooled_prompt_embeds,
1057
+ negative_pooled_prompt_embeds,
1058
+ callback_on_step_end_tensor_inputs,
1059
+ )
1060
+
1061
+ self._guidance_scale = guidance_scale
1062
+ self._guidance_rescale = guidance_rescale
1063
+ self._clip_skip = clip_skip
1064
+ self._cross_attention_kwargs = cross_attention_kwargs
1065
+ self._denoising_end = denoising_end
1066
+ self._interrupt = False
1067
+
1068
+ # 2. Define call parameters
1069
+ if prompt is not None and isinstance(prompt, str):
1070
+ batch_size = 1
1071
+ elif prompt is not None and isinstance(prompt, list):
1072
+ batch_size = len(prompt)
1073
+ else:
1074
+ batch_size = prompt_embeds.shape[0]
1075
+
1076
+ device = self._execution_device
1077
+
1078
+ # 3. Encode input prompt
1079
+ lora_scale = (
1080
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1081
+ )
1082
+
1083
+ (
1084
+ prompt_embeds,
1085
+ negative_prompt_embeds,
1086
+ pooled_prompt_embeds,
1087
+ negative_pooled_prompt_embeds,
1088
+ ) = self.encode_prompt(
1089
+ prompt=prompt,
1090
+ prompt_2=prompt_2,
1091
+ device=device,
1092
+ num_videos_per_prompt=num_videos_per_prompt,
1093
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1094
+ negative_prompt=negative_prompt,
1095
+ negative_prompt_2=negative_prompt_2,
1096
+ prompt_embeds=prompt_embeds,
1097
+ negative_prompt_embeds=negative_prompt_embeds,
1098
+ pooled_prompt_embeds=pooled_prompt_embeds,
1099
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1100
+ lora_scale=lora_scale,
1101
+ clip_skip=self.clip_skip,
1102
+ )
1103
+
1104
+ # 4. Prepare timesteps
1105
+ timesteps, num_inference_steps = retrieve_timesteps(
1106
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1107
+ )
1108
+
1109
+ # 5. Prepare latent variables
1110
+ num_channels_latents = self.unet.config.in_channels
1111
+ latents = self.prepare_latents(
1112
+ batch_size * num_videos_per_prompt,
1113
+ num_channels_latents,
1114
+ num_frames,
1115
+ height,
1116
+ width,
1117
+ prompt_embeds.dtype,
1118
+ device,
1119
+ generator,
1120
+ latents,
1121
+ )
1122
+
1123
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1124
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1125
+
1126
+ # 7. Prepare added time ids & embeddings
1127
+ add_text_embeds = pooled_prompt_embeds
1128
+ if self.text_encoder_2 is None:
1129
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1130
+ else:
1131
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1132
+
1133
+ add_time_ids = self._get_add_time_ids(
1134
+ original_size,
1135
+ crops_coords_top_left,
1136
+ target_size,
1137
+ dtype=prompt_embeds.dtype,
1138
+ text_encoder_projection_dim=text_encoder_projection_dim,
1139
+ )
1140
+ if negative_original_size is not None and negative_target_size is not None:
1141
+ negative_add_time_ids = self._get_add_time_ids(
1142
+ negative_original_size,
1143
+ negative_crops_coords_top_left,
1144
+ negative_target_size,
1145
+ dtype=prompt_embeds.dtype,
1146
+ text_encoder_projection_dim=text_encoder_projection_dim,
1147
+ )
1148
+ else:
1149
+ negative_add_time_ids = add_time_ids
1150
+
1151
+ if self.do_classifier_free_guidance:
1152
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1153
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1154
+ add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
1155
+
1156
+ prompt_embeds = prompt_embeds.to(device)
1157
+ add_text_embeds = add_text_embeds.to(device)
1158
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_videos_per_prompt, 1)
1159
+
1160
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1161
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1162
+ ip_adapter_image,
1163
+ ip_adapter_image_embeds,
1164
+ device,
1165
+ batch_size * num_videos_per_prompt,
1166
+ self.do_classifier_free_guidance,
1167
+ )
1168
+
1169
+ # 7.1 Apply denoising_end
1170
+ if (
1171
+ self.denoising_end is not None
1172
+ and isinstance(self.denoising_end, float)
1173
+ and self.denoising_end > 0
1174
+ and self.denoising_end < 1
1175
+ ):
1176
+ discrete_timestep_cutoff = int(
1177
+ round(
1178
+ self.scheduler.config.num_train_timesteps
1179
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1180
+ )
1181
+ )
1182
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1183
+ timesteps = timesteps[:num_inference_steps]
1184
+
1185
+ # 8. Optionally get Guidance Scale Embedding
1186
+ timestep_cond = None
1187
+ if self.unet.config.time_cond_proj_dim is not None:
1188
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_videos_per_prompt)
1189
+ timestep_cond = self.get_guidance_scale_embedding(
1190
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1191
+ ).to(device=device, dtype=latents.dtype)
1192
+
1193
+ num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1
1194
+ for free_init_iter in range(num_free_init_iters):
1195
+ if self.free_init_enabled:
1196
+ latents, timesteps = self._apply_free_init(
1197
+ latents, free_init_iter, num_inference_steps, device, latents.dtype, generator
1198
+ )
1199
+
1200
+ self._num_timesteps = len(timesteps)
1201
+
1202
+ # 9. Denoising loop
1203
+ with self.progress_bar(total=self._num_timesteps) as progress_bar:
1204
+ for i, t in enumerate(timesteps):
1205
+ if self.interrupt:
1206
+ continue
1207
+
1208
+ # expand the latents if we are doing classifier free guidance
1209
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1210
+
1211
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1212
+
1213
+ # predict the noise residual
1214
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1215
+ if ip_adapter_image is not None or ip_adapter_image_embeds:
1216
+ added_cond_kwargs["image_embeds"] = image_embeds
1217
+
1218
+ noise_pred = self.unet(
1219
+ latent_model_input,
1220
+ t,
1221
+ encoder_hidden_states=prompt_embeds,
1222
+ timestep_cond=timestep_cond,
1223
+ cross_attention_kwargs=self.cross_attention_kwargs,
1224
+ added_cond_kwargs=added_cond_kwargs,
1225
+ return_dict=False,
1226
+ )[0]
1227
+
1228
+ # perform guidance
1229
+ if self.do_classifier_free_guidance:
1230
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1231
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1232
+
1233
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1234
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1235
+ noise_pred = rescale_noise_cfg(
1236
+ noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale
1237
+ )
1238
+
1239
+ # compute the previous noisy sample x_t -> x_t-1
1240
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1241
+
1242
+ if callback_on_step_end is not None:
1243
+ callback_kwargs = {}
1244
+ for k in callback_on_step_end_tensor_inputs:
1245
+ callback_kwargs[k] = locals()[k]
1246
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1247
+
1248
+ latents = callback_outputs.pop("latents", latents)
1249
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1250
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1251
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1252
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1253
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1254
+ )
1255
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1256
+ negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
1257
+
1258
+ progress_bar.update()
1259
+
1260
+ # make sure the VAE is in float32 mode, as it overflows in float16
1261
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1262
+
1263
+ if needs_upcasting:
1264
+ self.upcast_vae()
1265
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1266
+
1267
+ # 10. Post processing
1268
+ if output_type == "latent":
1269
+ video = latents
1270
+ else:
1271
+ video_tensor = self.decode_latents(latents)
1272
+ video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)
1273
+
1274
+ # cast back to fp16 if needed
1275
+ if needs_upcasting:
1276
+ self.vae.to(dtype=torch.float16)
1277
+
1278
+ # 11. Offload all models
1279
+ self.maybe_free_model_hooks()
1280
+
1281
+ if not return_dict:
1282
+ return (video,)
1283
+
1284
+ return AnimateDiffPipelineOutput(frames=video)